Discrete Optimization

MA2827

Fondements de l'optimisation discrète

https://project.inria.fr/2015ma2827/

Recap of previous lectures

- Lecture 1
 - Graph preliminaries
 - Complexity basics
 - Shortest path algorithms (Dijkstra, Bellman-Ford, Floyd-Warshall)
- Lecture 2
 - Chow-Liu tree
 - Minimum spanning tree (Prim's, Kruskal's)
 - Maximum flow (Ford-Fulkerson, Dinits)

Outline

Preliminaries

Menger's Theorem for Disjoint Paths

Path Packing

But first...

Find the max flow/min cut. Show the steps.

Outline

Preliminaries

Menger's Theorem for Disjoint Paths

Path Packing

Directed Graphs (Digraphs)

'n' vertices or nodes V

'm' arcs A: ordered pairs from V

Indegree of a Vertex

Number of arcs entering the vertex.

 $indeg(v_0) = 1$, $indeg(v_1) = 1$, $indeg(v_4) = 2$, ...

Indegree of a Subset of Vertices

Number of arcs entering the subset.

indeg($\{v_0, v_1\}$) = 1, indeg($\{v_1, v_4\}$) = 3, ...

Outdegree of a Vertex

Number of arcs leaving the vertex.

outdeg(v_0) = 1, outdeg(v_1) = 1, outdeg(v_2) = 2, ...

Outdegree of a Subset of Vertices

Number of arcs leaving the subset.

outdeg($\{v_0, v_1\}$) = 1, outdeg($\{v_1, v_4\}$) = 2, ...

s-t Path

Sequence P = $(s=v_0, a_1, v_1, ..., a_k, t=v_k)$, $a_i = (v_{i-1}, v_i)$

Vertices $s=v_0, v_1, ..., t=v_k$ are distinct

S-T Path

D = (V, A)

S and T are subsets of V

Any st-path where $s \in S$ and $t \in T$

S-T Path

D = (V, A)

S and T are subsets of V

Any st-path where $s \in S$ and $t \in T$

Outline

Preliminaries

Menger's Theorem for Disjoint Paths

Path Packing

Internally Vertex Disjoint s-t Paths

Set of s-t Paths with no common internal vertex

Internally Vertex Disjoint s-t Paths

Set of s-t Paths with no common internal vertex

Internally Vertex Disjoint s-t Paths

Set of s-t Paths with no common internal vertex

Arc Disjoint s-t Paths

Set of s-t Paths with no common arcs

Arc Disjoint s-t Paths

Set of s-t Paths with no common arcs

Arc Disjoint s-t Paths

Set of s-t Paths with no common arcs

Outline

Preliminaries

- Menger's Theorem for Disjoint Paths
 - Vertex Disjoint S-T Paths
 - Internally Vertex Disjoint s-t Paths
 - Arc Disjoint s-t Paths

Path Packing

Maximum number of disjoint paths?

Minimum size of S-T disconnecting vertex set !!

Connection

Maximum number of disjoint paths

 \leq

Minimum size of S-T disconnecting vertex set !!

Menger's Theorem

Maximum number of disjoint paths

=

Minimum size of S-T disconnecting vertex set !!

Proof?

Mathematical Induction on |A|

Menger's Theorem

True for |A| = 0

Assume it is true for |A| < m

To be continued...
(Try working out the rest)

Mathematical Induction on |A|