Discrete Optimization

MA2827
Fondements de I"'optimisation discrete

https://project.inria.fr/2015ma2827/

Material from P. Van Hentenryck’s course




Outline

* Linear Programming

* Mixed Integer Program

 Examples (TSP, Knapsack)



What is a linear program?

mincixry+ ...+ c,xn
subject to
a1121 + ...+ a1n,x, < by

Am1T1 + ... + GpnTn < by



What is a linear program?

mincixry+ ...+ c,xn
subject to
a1121 + ...+ a1n,x, < by

Am1T1 + ... + GpnTn < by

* nvariables, m constraints
* Variables are non-negative
* |[nequality constraints



What is a linear program?

What about maximization?

— solve min —(cix1 + ... 4+ cpzy)

What if a variable can take negative values?
_|_

—replacex;by x,” — x.

Equality constraints?

— use two inequalities

Variables taking integer values?

— mixed integer programming



Geometrical view

* First, convex sets
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* First, convex sets




Geometrical view

e Convex combinations

A1v1 + ...+ A\,v, 1S a convex combination of vq,..., v, if

AM+...+ A, =1

and
Ai >0 (1<i<n).



Geometrical view

e Convex sets

— A set Sin R"is convex if it contains all the convex
combinations of the pointsin S

e The intersection of convex sets is convex
— Proof ?



Geometrical view

* A half space is a convex set

a1r1+ ... +a,x, <b

e Polyhedron: intersection of set of half spaces
(also convex). If finite, polytope

a11T1 + ...+ A1nLn S bl

Am1T1+ ...+ mnTy, < b,



Geometrical view




Geometrical view
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Geometrical view

//
12} 4
4
y
10} /
//‘"
8} 4
i) /
/

/ £

6 /%
//
‘Hyperplane
4
/f
22 éll (IS 8 1‘0 1‘ 2 14 1[6
X1

—4.0x; + 2.5xy < -—-0.25



Geometrical view
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Geometrical view

2 4 6 8 10 12 14 16

X1

1.5331 — 4.533'2 S 3.00



Geometrical view

—4.05171 + 251’2 S —0.25
—3.0z7 — 6.0z, < —43.50
1.5$1 - 45562 S 3.00
48x1 + 12z9 < 82.33
20x;1 + 39572 < 65.75
—3.0z1 + 5.0z < 29.50
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Geometrical view




Geometrical view

> Every point in a polytope is a convex
combination of its vertices
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Geometrical view

> Every point in a polytope is a convex
combination of its vertices




Geometrical view

> Every point in a polytope is a convex
combination of its vertices




Geometrical view

mincixy + ...+ ¢, o,
subject to
a1y + ...+ a1z, < by

Am1T1 + ..o+ Gpn Ty < by,
r; >0 (1<i<n)

> Theorem: At least one of the points where the
objective value is minimal is a vertex.



Geometrical view
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min c1x1+...+cpr, =



Geometrical view
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min c1x1+...+cpry, =



Geometrical view




Geometrical view
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min cy#i +...+c,x, =0



Geometrical view

2 1‘1 é 8 ‘0 12 £4 £6
1
. >k
min c27+...+cpx, = b



Geometrical view




Geometrical view




Geometrical view

* Theorem: At least one of the points where the
objective value is minimal is a vertex

e Proof ?



Geometrical view

Let =™ be the minimum. Since each point in a polytope is a convex combination
of the vertices vq,...,vs, we have

¥ = Nvy + ..o+ ANy
and the objective value at optimality can be expressed as
cr™ = Ay x (cvy) + ...+ Ae(cvy).
Assume that the minimum is not at a vertex, i.e.,

cxt <cv; Vi:l<i<t.

It follows that

cr* = Apx(cvr) 4+ ...+ Ae(cvy)
> Ay x(cx®) + ..o+ N(ex™)
> (AL A+ A (ex)
> cx’.

Hence, it must be the case that * = v; for some 1 <17 <.



Geometrical view

* How to solve a linear program?
— Enumerate all the vertices

— Select the one with the smallest objective value



Algebraic view

* The simplex algorithm
— A more intelligent way of exploring the vertices

* |[nvented by G. Dantzig

* Exponential worst-case, but works well in
practice



Simplex algorithm

e Qutline

A

An optimal solution is at a vertex

A vertex is a basic feasible solution (BFS)

You can move from one BFS to a neighboring BFS
You can detect whether a BFS is optimal

From any BFS, you can move to a BFS with better
a cost



Basic feasible solution (BFS)

mincixi1 +...+c,x,
subject to
111 + ...+ a1,T, < by

Am1L1 + ... 1 Amndn § bm

r; >0 (1<i<n)



Basic feasible solution (BFS)

Goal: How to find solutions to linear systems

111 e A1ndLn — bl



Basic feasible solution (BFS)

Basic Solution

mn
r1 = by + g a1; T;

1=m-+1

.. .

1=m-+1



Basic feasible solution (BFS)

Basic Solution

1=m—+1
n
Lo — bm =+ E Uy Lg
1=m-+1

Basic Variables



Basic feasible solution (BFS)

Basic Solution

Ty += b1 H Z a1; T

1= m—|—1
. — b, I8 E @R,
1=m-+1

Basic Variables Non Basic Variables



Basic feasible solution (BFS)

Basic Solution

£y = b1 + Z ay; ;

1= m—|—1
0., E Tl 453
1=m—+1

Assign to the b’s Assign to zero



Basic feasible solution (BFS)

Basic Solution

x1 = by + Z a1 T;

1= m—|—1
. — b, & E R
1=m-+1

{x;, =1 <i<m}U{z;, =0m+1<1<n}



Basic feasible solution (BFS)

Goal: How to find solutions to linear systems

111 e A1ndLn — bl



Basic feasible solution (BFS)

Basic Solution

T += b1 H Z a1; T

1= m—|—1
. — b, & E R
1=m-+1

Basic Variables Non Basic Variables



Basic feasible solution (BFS)

Basic Feasible Solution

L1 —b1_|_ Z A4 Lg

1=m-+1
n

Feasibleif Vie 1.m : b; > 0



Basic feasible solution (BFS)

e Select m variables
— Will be the basic variables

* Re-write them using only non-basic variables

— Gaussian elimination

 |f all the b’s are non-negative
— We have a BFS



Basic feasible solution (BFS)

 But we do not have equalities

a1l 1+ ...+ a1, Ty < bq

Am1T1 + ... + GmnTn S bm



Basic feasible solution (BFS)

 But we do not have equalities

a1l 1+ ...+ a1, Ty < bq

Am1T1 + ... + GmnTn S bm

ai1 1+ ...+ ain Tn +51.= b1

1Tl + - .. + Qo Ty, +18n = b,y
N

Slack variables



Basic feasible solution (BFS)

Re-write the constraints as equalities
— With slack variables

Select m variables

— Will be the basic variables

Re-write them using only non-basic variables
— Gaussian elimination

If all the b’s are non-negative
— We have a BFS



Naive algorithm

e Generate all basic feasible solutions
— i.e., select m basic variables, perform Gaussian elim.
— test whether it is feasible

e Select the BFS with the best cost

n!

* But,
m!(n—-m)!

Can we explore this space more efficiently?



Simplex algorithm

e Outline
1. An optimal solution is at a vertex
2. Avertex is a basic feasible solution (BFS)

[ 3. You can move from one BFS to a neighboring BFS}

4. You can detect whether a BFS is optimal

5. From any BFS, you can move to a BFS with better
a cost



Simplex algorithm

* Local search algorithm
* Move from BFS to BFS

* Guaranteed to find a global optimum
— Due to convexity

Key idea: How do we do this move operation?



Simplex algorithm

209 + X3
+ x4 - L6
+ 5 + Te
\ 4
r3 = 1 — 3x1 — 2x9
X4 2 — 2551 + L6
s = 3 — L1 + L6

)



Simplex algorithm

I3 = 1 — 3$1 — QZL‘Q
Ty = 2 — 211 + ¢
rs = 3 — X1 + Xg

* Move to another BFS (local search)

— Select a non-basic variable with negative coeff.
(entering variable)

— Replace a basic variable with this selection
(leaving variable)

— Perform Gaussian elimination
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Simplex algorithm

3$1 — 2$2

21 + T
L1 + Zg
3 _ 1

7l 213

21 T Tg



Simplex algorithm

1 |— 3371 — 2.%‘2
2 | — 2:171 + T
3 | — 1 + Tg



X3

L5

Simplex algorithm

1 |— 3371 — 2.%‘2
2 — 2:171 + L6
3 | — 1 -+ L6



Simplex algorithm

= 1 — 32131 — 2332
2 | — 2331 -+ @6
= 3 |- L1 + @6
= -8 - 2$2 + 3$5 == SIG
—4 —+ 2335 — L6
= 3 — 105 o L6



Simplex algorithm

r3 = 1 |— 3x1 | — 29

Ty = 2 |— 2z + x¢

rs = 3 | — L1 + @6

L3 = —8 | — 2%2 S 3$5 = 3%6
xy = |—4 + 25 — xg
L1 = 3 — T8 Ar L6

Not a BFS: | cannot select the leaving variable arbitrarily!



Simplex algorithm

r3 = 1 — 3331 — 2332 %
Ty = 2 |— 2x + X6 1
xrs = 3 | — L1 + Tg 5

» How to choose the leaving variable?
—we must maintain feasibility

. b
[ = arg-min
ira;.<0 Qe
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Simplex algorithm
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Simplex algorithm

Move to another BFS:
* Select the entering variable x,
— Non-basic variable with negative coeff.
* Select the leaving variable x, to maintain feasibility

* Apply Gaussian elimination
— i.e., eliminate x, from the the right hand side

* Pivot(e,l)



Simplex algorithm

e Outline
1. An optimal solution is at a vertex
2. Avertex is a basic feasible solution (BFS)

3. You can move from one BFS to a neighboring BFS

[ 4. You can detect whether a BFS is optimal }

5. From any BFS, you can move to a BFS with better
a cost



Simplex algorithm

A BFSis optimal if the objective function, after
eliminating all the basic variables is

Co+CiT1+ ... T ChTp

¢; >0 (1<i<n).



Simplex algorithm

e Example
min T1
subject to
3561
52131

2331

+ 4+ +

+ -

o



Simplex algorithm

e Example

min T1

subject to
3561
5%1
2331

min

subject to
X3
L4

+ To -+ XT3 -+

+ 220 + 23

+ To + X3 -+

+ dxo + I3

[6 — 32, — 3
1 — 3xz1 — 2x9
2 — 2x1 + To
3 + xr1 — 3%2

o



Simplex algorithm

min 6 — 3r1 — 3z
subject to
r3 = 1 — 3331 — 21‘2
Ty = 2 — 21 + x9

3 + r1 — 3To



Simplex algorithm

min 6 — 3r1 |— 3z
subject to
r3 = 1 — 3331 — 232‘2
Ty = 2 — 21 |+ 29

3 + r1 |— 3xo



Simplex algorithm

min 6 — 3r1 |— 3z
subject to
ry = 1 — 3%1 — 2332
Ty = 2 — 21 |+ 29

3 + r1 |— 3x9



Simplex algorithm

min 6 — 3x1 |[— 3x9
subject to
r3 = 1 — 3331 — 2562
a4 = 2 — 21 |+ X9
rs = 3 + x1 — 3x9
min % == %Tl == %T‘g
subject to
1 3 1
o = 5 — 5.’171 — 5(13’;
5 7 1
Ty = 5 —  5T1 — 5T3

]
a
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_|_
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=
—
+
No|
%
w



Simplex algorithm

min 6 — 3:131 — 3:132
subject to
3 = 1 — 321 — 2x9
Ta = 2 — 21 + @ x9
rs = 3 + r1 — 3I9
min % =5 %$1 + %$3
subject to
1 3 1
o = 5 — 5371 — 5’1‘3
5 7 1
Ty = 5 — T1 — T3

]
a
I
][V}
_|_
|2
=
—
+
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Simplex algorithm

e Qutline

1. An optimal solution is at a vertex

2. Avertex is a basic feasible solution (BFS)
You can move from one BFS to a neighboring BFS
You can detect whether a BFS is optimal

From any BFS, you can move to a BFS with better
a cost

B = W




Simplex algorithm

* Local move improves the objective value

* |In a BFS, assume that
—b,>0,b,>0, ..,b_>0
— there exists an entering variable e with c,< 0

* Then, the move pivot(e,l) is improving



Simplex algorithm

while 91 <1< n:¢; <0 do

choose e such that ¢, < 0;
. b
[ = arg-min ;
ira;.<0 TUje
pivot(e,l);

e |f
—b,, b,, ..., b, are strictly positive
— objective function is bounded below

* Algorithm terminates with an optimal solution



Simplex algorithm

e Selecting the leaving variable

. b
[ = arg-min
i:a,6<0 Qe

* No leaving variable!

min 6 | — 3$1 — 3372
subject to
rs = 1 |4+ 3x1| — 229
xe = 2|4+ 2z + @2
Iy = 3 + 1, — 32132



Simplex algorithm

min 6 | — 3$1 — 3.5132
subject to
rs = 1|4+ 3x1| — 229
Ty = 2 |+ 2x1| + X9
rs = 3|4+ x| — 319

* Basic solution
{21 =0;29 =0;23 = ;24 = 2; x5 = 3}
* What if | increase the value of x;

— Solution remains feasible, but

— Value of objective function decreases



Simplex algorithm

* Another issue: What if some b, becomes zero?

min
subject to

* Leaving variable: x,

min
subject to

3
X4
X5

L2
L4
L5

5

(N

()

_|_

3331

3$1
2331
L1

_|_

_|_

3%‘2

2332
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3[132
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8 8 S
w W w

DL [ DO [
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Simplex algorithm

e Qutline
1. An optimal solution is at a vertex
2. Avertex is a basic feasible solution (BFS)
3. You can move from one BFS to a neighboring BFS
4. You can detect whether a BFS is optimal
5.

From any BFS, you can move to a BFS with better
a cost

Need to find a new way to guarantee termination



Simplex algorithm

e Termination

— Bland rule: select always the first entering variable
lexicographically

— Lexicographic pivoting rule: break ties when selecting
the leaving variable

— Pertubation methods



Simplex algorithm

* How do | find my first BFS ?

min ciry + ... -+ CnTn
subject to
ai1rT + ... + a1nTn

aAmi1t1T + ... + QmnTn

* Introduce artificial variables



Simplex algorithm

min c1ry + ... -+ CnTn
subject to
a11r1 + ... +  aipnT, + Y1
a;1r1 + ... +  QinTn —+
Am1T1 + ... + AmnTn

 Easy BFS U

 But wrt another problem @

Yi

Ym



Simplex algorithm

 Two-phase strategy
1. First find a BFS (if one exists)

2. Then, find optimal BFS



Simplex algorithm

1. Find a BFS
min y1 + ... + Ym
subject to
ai1ry + ... +  Q1pnTn + Y1 = b
a1r1 + ..+ Aty + v = b
Am1iT1 + ... +  AmnTn + Ym = bm

* Feasible if the objective valueis 0

—i.e., all y’s are 0, and there is a BFS without y; (almost
always)



Simplex algorithm



