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•  Linear	Programming	

•  Mixed	Integer	Program	

•  Examples	(TSP,	Knapsack)	

Outline	



What	is	a	linear	program?	



What	is	a	linear	program?	

•  n	variables,	m	constraints	
•  Variables	are	non-nega+ve	
•  Inequality	constraints	



What	is	a	linear	program?	

•  What	about	maximiza+on?	
– solve		

•  What	if	a	variable	can	take	nega+ve	values?	
–  replace	xi by	

•  Equality	constraints?	
– use	two	inequali+es	

•  Variables	taking	integer	values?	
– mixed	integer	programming	



Geometrical	view	

•  First,	convex	sets	



Geometrical	view	

•  First,	convex	sets	



Geometrical	view	

•  Convex	combina+ons	



Geometrical	view	

•  Convex	sets	
– A	set	S	in	Rn	is	convex	if	it	contains	all	the	convex	
combina+ons	of	the	points	in	S	

•  The	intersec+on	of	convex	sets	is	convex	
– Proof	?	



Geometrical	view	

•  A	half	space	is	a	convex	set	

•  Polyhedron:	intersec+on	of	set	of	half	spaces	
(also	convex).	If	finite,	polytope	



Geometrical	view	Hyperplanes
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Geometrical	view	
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�4.0x1 + 2.5x2  �0.25

Hyperplanes
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Geometrical	view	



Geometrical	view	
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�3.0x1 � 6.0x2  �43.50

Hyperplanes
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Geometrical	view	



Geometrical	view	
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1.5x1 � 4.5x2  3.00

Hyperplanes
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Geometrical	view	

x1

x2

�4.0x1 + 2.5x2  �0.25
�3.0x1 � 6.0x2  �43.50
1.5x1 � 4.5x2  3.00
1.7x1 � 1.7x2  16.67
4.8x1 + 1.2x2  82.33
2.0x1 + 3.5x2  65.75

�3.0x1 + 5.0x2  29.50

Hyperplanes
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Geometrical	view	3D Hyperplanes
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Geometrical	view	3D Hyperplanes

24

Tuesday, 11 June 13



Geometrical	view	3D Hyperplanes
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Geometrical	view	Hyperplane, Facets, and Vertices
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Geometrical	view	Hyperplane, Facets, and Vertices
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Geometrical	view	Hyperplane, Facets, and Vertices
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Geometrical	view	3D Constraints
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Geometrical	view	3D Constraints
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Geometrical	view	Geometry of Linear Programs
‣Every point in a polytope is a convex 

combination of its vertices
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Geometrical	view	
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Geometry of Linear Programs
‣Every point in a polytope is a convex 

combination of its vertices
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Geometrical	view	
min c1x1 + . . .+ cnxn

subject to

a11x1 + . . .+ a1nxn  b1

. . .

am1x1 + . . .+ amnxn  bm

xi � 0 (1  i  n)

Why I Love These Vertices

30

‣Theorem: At least one of the points where the 
objective value is minimal is a vertex.
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Geometrical	view	
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Why I Love These Vertices
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Geometrical	view	
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c1x1 + . . .+ cnxn = b

Why I Love These Vertices
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Geometrical	view	
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Geometrical	view	

x1
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c1x1 + . . .+ cnxn = bmin

Why I Love These Vertices

31

c1x1 + . . .+ cnxn = b

⇤

Tuesday, 11 June 13



Geometrical	view	Why I Love These Vertices Now in 3D!
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Geometrical	view	Why I Love These Vertices Now in 3D!
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Geometrical	view	

•  Theorem:	At	least	one	of	the	points	where	the	
objec+ve	value	is	minimal	is	a	vertex	

•  Proof	?	



Geometrical	view	



Geometrical	view	

•  How	to	solve	a	linear	program?	
– Enumerate	all	the	ver+ces	

– Select	the	one	with	the	smallest	objec+ve	value	



Algebraic	view	

•  The	simplex	algorithm	
– A	more	intelligent	way	of	exploring	the	ver+ces	

•  Invented	by	G.	Dantzig	

•  Exponen+al	worst-case,	but	works	well	in	
prac+ce	



Simplex	algorithm	

•  Outline	
1.  An	op+mal	solu+on	is	at	a	vertex	
2.  A	vertex	is	a	basic	feasible	solu+on	(BFS)	
3.  You	can	move	from	one	BFS	to	a	neighboring	BFS	
4.  You	can	detect	whether	a	BFS	is	op+mal	
5.  From	any	BFS,	you	can	move	to	a	BFS	with	be7er	

a	cost	



Basic	feasible	solu+on	(BFS)	
min c1x1 + . . .+ cnxn

subject to

a11x1 + . . .+ a1nxn  b1

. . .

am1x1 + . . .+ amnxn  bm

xi � 0 (1  i  n)

Linear Programs
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Basic	feasible	solu+on	(BFS)	

a11x1 + . . .+ a1nxn = b1

. . .

am1x1 + . . .+ amnxn = bm

xi � 0 (1  i  n)

Algebraic View: BFS

Goal: How to find solutions to linear systems
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Basic	feasible	solu+on	(BFS)	

x1 = b1 +
nX

i=m+1

a1i xi

. . .

xm = bm +
nX

i=m+1

ami xi

Algebraic View: BFS

Basic Solution
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Basic	feasible	solu+on	(BFS)	



Basic	feasible	solu+on	(BFS)	



Basic	feasible	solu+on	(BFS)	



Basic	feasible	solu+on	(BFS)	



Basic	feasible	solu+on	(BFS)	

a11x1 + . . .+ a1nxn = b1

. . .

am1x1 + . . .+ amnxn = bm

xi � 0 (1  i  n)

Algebraic View: BFS

Goal: How to find solutions to linear systems
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Basic	feasible	solu+on	(BFS)	



Basic	feasible	solu+on	(BFS)	

x1 = b1 +
nX

i=m+1

a1i xi

. . .

xm = bm +
nX

i=m+1

ami xi

Feasible if 8i 2 1..m : bi � 0

Algebraic View: BFS

Basic Feasible Solution
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Basic	feasible	solu+on	(BFS)	

•  Select	m	variables	
– Will	be	the	basic	variables	

•  Re-write	them	using	only	non-basic	variables	
– Gaussian	elimina+on	

•  If	all	the	b’s	are	non-nega+ve	
– We	have	a	BFS	



Basic	feasible	solu+on	(BFS)	

•  But	we	do	not	have	equali+es	



Basic	feasible	solu+on	(BFS)	

•  But	we	do	not	have	equali+es	

Slack	variables	



Basic	feasible	solu+on	(BFS)	

•  Re-write	the	constraints	as	equali+es	
– With	slack	variables	

•  Select	m	variables	
– Will	be	the	basic	variables	

•  Re-write	them	using	only	non-basic	variables	
– Gaussian	elimina+on	

•  If	all	the	b’s	are	non-nega+ve	
– We	have	a	BFS	



Naïve	algorithm	

•  Generate	all	basic	feasible	solu+ons	
–  i.e.,	select	m	basic	variables,	perform	Gaussian	elim.	
–  test	whether	it	is	feasible	

•  Select	the	BFS	with	the	best	cost	

•  But,		 n!
m!(n−m)!

Can	we	explore	this	space	more	efficiently?	



Simplex	algorithm	

•  Outline	
1.  An	op+mal	solu+on	is	at	a	vertex	
2.  A	vertex	is	a	basic	feasible	solu+on	(BFS)	
3.  You	can	move	from	one	BFS	to	a	neighboring	BFS	
4.  You	can	detect	whether	a	BFS	is	op+mal	
5.  From	any	BFS,	you	can	move	to	a	BFS	with	be7er	

a	cost	



Simplex	algorithm	

•  Local	search	algorithm	

•  Move	from	BFS	to	BFS	

•  Guaranteed	to	find	a	global	op+mum	
– Due	to	convexity	

	

Key	idea:	How	do	we	do	this	move	opera+on?	



Simplex	algorithm	



Simplex	algorithm	

	
•  Move	to	another	BFS	(local	search)	
– Select	a	non-basic	variable	with	nega+ve	coeff.	
(entering	variable)	

– Replace	a	basic	variable	with	this	selec+on	
(leaving	variable)	

– Perform	Gaussian	elimina+on	



Simplex	algorithm	



Simplex	algorithm	
x3 = 1 � 3x1 � 2x2

x4 = 2 � 2x1 + x6

x5 = 3 � x1 + x6

From BFS to BFS
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Simplex	algorithm	
x3 = 1 � 3x1 � 2x2

x4 = 2 � 2x1 + x6

x5 = 3 � x1 + x6

From BFS to BFS
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Simplex	algorithm	



Simplex	algorithm	



Simplex	algorithm	



Simplex	algorithm	



Simplex	algorithm	

Move	to	another	BFS:	
•  Select	the	entering	variable	xe
– Non-basic	variable	with	nega+ve	coeff.	

•  Select	the	leaving	variable	xl	to	maintain	feasibility	
•  Apply	Gaussian	elimina+on	
–  i.e.,	eliminate	xe from	the	the	right	hand	side

•  Pivot(e,l)	



Simplex	algorithm	

•  Outline	
1.  An	op+mal	solu+on	is	at	a	vertex	
2.  A	vertex	is	a	basic	feasible	solu+on	(BFS)	
3.  You	can	move	from	one	BFS	to	a	neighboring	BFS	
4.  You	can	detect	whether	a	BFS	is	op+mal	
5.  From	any	BFS,	you	can	move	to	a	BFS	with	be7er	

a	cost	



Simplex	algorithm	

•  A	BFS	is	op+mal	if	the	objec+ve	func+on,	aher	
elimina+ng	all	the	basic	variables	is	



Simplex	algorithm	

•  Example	



Simplex	algorithm	

•  Example	



Simplex	algorithm	
min 6 � 3x1 � 3x2

subject to

x3 = 1 � 3x1 � 2x2

x4 = 2 � 2x1 + x2

x5 = 3 + x1 � 3x2

From BFS to BFS

19
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Simplex	algorithm	

•  Outline	
1.  An	op+mal	solu+on	is	at	a	vertex	
2.  A	vertex	is	a	basic	feasible	solu+on	(BFS)	
3.  You	can	move	from	one	BFS	to	a	neighboring	BFS	
4.  You	can	detect	whether	a	BFS	is	op+mal	
5.  From	any	BFS,	you	can	move	to	a	BFS	with	be7er	

a	cost	



Simplex	algorithm	

•  Local	move	improves	the	objec+ve	value	
•  In	a	BFS,	assume	that	
– b1	>	0,	b2	>	0,	…,	bm	>	0	
–  there	exists	an	entering	variable	e	with	ce	<	0	

•  Then,	the	move	pivot(e,l)	is	improving	



Simplex	algorithm	

•  If	
– b1,	b2,	…,	bm	are	strictly	posi+ve	
– objec+ve	func+on	is	bounded	below	

•  Algorithm	terminates	with	an	op+mal	solu+on	



Simplex	algorithm	

•  Selec+ng	the	leaving	variable	

•  No	leaving	variable!	



Simplex	algorithm	

	
•  Basic	solu+on	

•  What	if	I	increase	the	value	of	x1
– Solu+on	remains	feasible,	but	
– Value	of	objec+ve	func+on	decreases	



Simplex	algorithm	

•  Another	issue:	What	if	some	bi	becomes	zero?	

•  Leaving	variable:	x2



Simplex	algorithm	

•  Outline	
1.  An	op+mal	solu+on	is	at	a	vertex	
2.  A	vertex	is	a	basic	feasible	solu+on	(BFS)	
3.  You	can	move	from	one	BFS	to	a	neighboring	BFS	
4.  You	can	detect	whether	a	BFS	is	op+mal	
5.  From	any	BFS,	you	can	move	to	a	BFS	with	be7er	

a	cost	

Need	to	find	a	new	way	to	guarantee	termina+on	



Simplex	algorithm	

•  Termina+on	
– Bland	rule:	select	always	the	first	entering	variable	
lexicographically	

– Lexicographic	pivo+ng	rule:	break	+es	when	selec+ng	
the	leaving	variable	

– Pertuba+on	methods	



Simplex	algorithm	

•  How	do	I	find	my	first	BFS	?	

•  Introduce	ar+ficial	variables	



Simplex	algorithm	

	
•  Easy	BFS	

•  But	wrt	another	problem	



Simplex	algorithm	

•  Two-phase	strategy	
1.  First	find	a	BFS	(if	one	exists)	

2.  Then,	find	op+mal	BFS	



Simplex	algorithm	

1.  Find	a	BFS	

•  Feasible	if	the	objec+ve	value	is	0	
–  i.e.,	all	yi’s	are	0,	and	there	is	a	BFS	without	yi	(almost	
always)	



Simplex	algorithm	


