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Mixed Integer Program

Examples
— Warehouse location
— Knapsack

Branch and Bound
Branch and Cut
TSP



What is an integer program?

min
subject to

C121 + ... T ChTy

1121 + + aprn, < b
A 11 + +  AmnTn < bpy
x; >0

x; Integer

* nvariables, m constraints

* Variables are non-negative and integers

* |Integrality constraints



What is a mixed integer program?

min C121 + ... 4+ cprn

subject to
1121 + ...+ aprn, < b
CLmlﬂfl _|_ .« o e _|_ amnxn < bm

x; integer (i € )
* nvariables, m constraints

e Variables are non-negative and may be integers
* |Integrality constraints



What is a mixed integer program?

* MIP vs LP
— Integrality constraints

— Minor? But, P vs NP!



Knapsack problem

maximize E V; Tj
el

el
T; © {0,1} (Z c I)

subject to



Warehouse location
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Warehouse location
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Warehouse location
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Warehouse location

O - Warehouse @ - Customer



Warehouse location

* Modeling it as a MIP
— Decision variables?
— Constraints?

— Objective function?

* Decision variables
— Will a warehouse w be opened?

*je,lIsx, =17
— Will a warehouse w serve customer c?
*ie,lsy, =17



Warehouse location

* Decision variables
— Will a warehouse w be opened?

*ie,lIsx,=1?
— Will a warehouse w serve customer c?
*ie,lsy, =17
* Constraints
— A warehouse can serve a customer only if it is open
Yw,c < Ty

— A customer must be served by exactly one warehouse

Z Yw,c — 1



Warehouse location

* Decision variables
— Will a warehouse w be opened?

*ie,lIsx,=1?
— Will a warehouse w serve customer c?
*ie,lsy, =17

* Objective function

Z Cw Ty T+ Z tw,c Yw,c

weWw weW,ceC

Fixed cost Transportation cost



Warehouse location

min Z Cw Twt+ Z tw.c Yw,c

weW weEW,ceC
subject to
Yw.e < Ty (we W,ce ()
Z Ywe =1 (ce )
weW
T, €4{0,1} (weW)
Yw,e €10,1}  (weW,ceC)



Warehouse location

* Decision variables
— Will a warehouse w be opened?

*ie,lIsx,=1?
— Will a warehouse w serve customer c?
*ie,lsy, =17

* Why not

—y. denotes the warehouse serving customer c?



Mixed integer programming

* Typically 0/1 variables in a MIP
e Easy to transform them to linear constraints

* Other possible models to consider though
— Decision variables
— Constraints
— Objective function



Mixed integer programming

e How to solve?
— Active area of research

* Branch and bound

— Bounding: finding an optimistic relaxation

— Branching: splitting the problem into subproblems
 MIP gives rise to a natural relaxation

— Linear relaxation
— i.e., remove integrality constraints



Branch and bound

e Solve the linear relaxation

e |f the linear relaxation is

— worse than the best solution found so far, prune
this node (because the associated problem is
suboptimal)

— integral, we have found a feasible solution
(update the best feasible solution if necessary)

 Otherwise,

— find an integer variable x with fractional value f,
create two subproblems x < | f|, x > [ f] and
repeat



Branch and bound

Focus on the objective
— Relaxation gives an optimistic bound

Pruning based on sub-optimality

— Prune provably suboptimal nodes

Relax feasibility

— Relax the integrality constraints

Global view of relaxation
— Consider all problem constraints



Knapsack problem

* Revisit this problem

maximize g V; T;
icl
subject to

el
T; € {0,1} (Z c I)



Knapsack problem

 Linear relaxation

maximize g V; T;
=

il
0<z; <1 (tel)

subject to



Knapsack problem

Branch and bound for this problem

Linear relaxation
— Related to the greedy solution

Branching
— Variable with a fractional value

— i.e., most valuable item (x;) that cannot fit entirely

Bounding (subproblems)
— Do not take the item (x, = 0)
— Take the item (x, = 0)



Knapsack problem
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Branch and bound

e When is it effective?

— Necessary condition: the linear relaxation is strong
— |s it sufficient? (homework)

* What is a good MIP model?

— One with a good linear relaxation

 Which variable to branch on?

— One with the most fractional value



Outline

e Branch and Cut
e TSP



Cover cuts

n
* Constraints: » ajz; <b
j=1

* Find facets of these constraints?

* Cover:asetC C N ={1,...,n}isacoverif
ZCLJ' > b
jedl

— A cover is minimal if C'\ {j} is not a cover for any j



Cover cuts

* Constraints: » ajz; <b
j=1
* Find facets of these constraints?
« IfC C N ={1,...,n}is acover, then
> oz <|C|-1
jeC
is a valid inequality



Cover cuts

 Example
117 + 625 + 623 + 524 + D5 + 406 + 7 < 19
 Minimal cover inequalities

r1+ T2+ x3 <2

T3+ T4+ 25+ 26 <3



Stronger cover cuts

e fC C N ={1,...,n}is acover, then

»  a;<[C]-1

JjeE(C)
is a valid inequality, where

E(O):CU{] ’ \V/’iECICLjZCZi}



Stronger cover Cuts
 Example
1121 4+ 629 + 623 + 524 + 525 + 4206 + 7 < 19

* Cover inequality

T3+ T4+ x5+ 16 <3

e Stronger cover inequality

331—|-—|—£IZ‘6§3



Branch and cut

* Overall idea
1. Formulate MIP for the application (e.g., TSP)

2. Solve the linear relaxation; if the solution is integral,
terminate

3. Find a polyhedral cut which prunes the linear
relaxation and is a facet, if possible

* |f found, repeat from step 2
e Otherwise, do a branch



Separation problem

e Consider a solution x* to the linear relaxation
(may already be enhanced by cuts)

e Goal: To know whether there exists a cover
cut for x*



Separation for cover cuts

* The cover inequality Z z; < [C]—1
jeC

can be rewrittenas » (1—a;) >1
jeC

* Does there exista(C C N that satisfies

Y 1-ap) <1

jel

Zaj>b

jel



Separation for cover cuts

* This is equivalent to

min Z (1 —27)z;

JEN

S.t.
Z a;z; > b

JEN
Z; € {O, 1}

* |f the minimum value is less than 1, a cut exists.
All the variables assigned to 1 are a cover.



Separation for cover cuts

 Example

4521’}1 + 46[132 + 79563 + 54334 + 535135 + 125[136 < 178

. . . 3 1
Fractional solution: =™ = (0,0,1,5,1,0)

e Separation problem is given by

1
23 T3524 +2z6

==

min 21 +29 +
S.T
45z1 +46z9 +79z3 +54z4 +5H3z5 +125z¢ > 178



Separation for cover cuts

* Problem

min Z(l — 7))
jEN
S.t.

ZCLJ'ZJ' > b

JEN
Z; € {0, 1}

* Related to anything you know already?
— Replace z, by (1 -vy))



P, but first seven bridges of Kbnisberg
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Seven bridges of Konisberg

Bridges of Konigsberg, 1741

Leonhard Euler
By Jakob Emanuel Handmann



Seven bridges of Konisberg




Traveling salesman problem



Traveling salesman problem

e MIP for TSP
— Decision variables, constraints, objectives?

 Decision variables

— |s an edge part of the tour or not?

e Constraints

— Degree constraints: Each node has exactly two
edges selected



MIP for TSP

* Decision variables
— X, is 1 if edge e is selected

* Notation
— V: set of vertices
— E: set of edges
— 6(v): edges adjacent to vertex v
— 6(S): edges with exactly one vertex in S (subset of V)
— v(S): edges with both vertices in S

— Lley,....en} = Lex T ..o T Te,



MIP for TSP

[flow Conservation]

min Z Cele
eckE
subject to

375(@):2 veV
r. €{0,1} e€eF

[minimize cost ]




MIP for TSP



MIP for TSP



MIP for TSP

e Eliminate these subtours

How many edges can
be selected between
these vertices?
/
X oo /

. e




Subtour elimination

min E Cele

ec kb

subject to
Tyw) 22 . VEY
"CE’Y(S)< |S‘—1 SCV'
T, €40, 1Y T ec

* Great, but too many (exponential no.) of them

e Branch and cut
— Generate them on demand



Subtour elimination

min E Cele

subject to

----------------------------

* How to separate subtour constraints?



Separation of subtour constraints

e Build a graph G* = (V, E) where
— weight of an edge e, w(e) = x.*

* Finding a separation is equivalent to finding
— A minimum cut in G*

— If the cost of the cut is less than 2, then we have

isolated a subtour constraint violated by the linear
relaxation

— Recall: Finding the cut takes polynomial time



MIP for TSP




MIP for TSP

e Comb constraints

* Number of edges crossed?



MIP for TSP

e Comb constraints




MIP for TSP

e Comb constraints

Rl . ! . !
v ! v ! v !
W ! W ! 2 /!
' T T
\T_I \ 2 ¢ 3

»comb inequalities

t k
3k
Ty + Y Tyry < H|+ Y |T =[]
1=1 1=1




Branch and cut for TSP

e On the TSPLIB benchmark

— Subtour elimination: 2% of optimality gap
— Subtour + comb cuts: 0.5% of optimality gap

* Other constraints are needed for large instances



Outline

* Bonus! (Duality)



Duality

https://en.wikipedia.org/wiki/File:German_postcard_from_1888.png



Duality

min CI

subject to primal
Ax > b
ZUj Z 0
max y b
subject to
‘] dual



Duality

min 3r1 + 2x9 + 4xs
subject to

207 + xo9 + > 2

2331 — To + I3 > 5
max 21+ Oy2
subject to

21+ 2y2 <3

y1 — Y2 <2



min
subject to

max
subject to

Duality

3x1 4+ 2xp + 4xs)

r

2%1 aF G5 N =
2113‘1 o G | =F

. /

2u1\ + [5u2
/

\

2y + 1 2yo
(1 = y2 <2
( y2 <4

------



Duality
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