Discrete Optimization

MA2827

Fondements de l'optimisation discrète

https://project.inria.fr/2015ma2827/

Material from P. Van Hentenryck's course

Outline

- Mixed Integer Program
- Examples
 - Warehouse location
 - Knapsack
- Branch and Bound
- Branch and Cut
- TSP

What is an integer program?

- n variables, m constraints
- Variables are non-negative and integers
- Integrality constraints

What is a mixed integer program?

- n variables, m constraints
- Variables are non-negative and may be integers
- Integrality constraints

What is a mixed integer program?

• MIP vs LP

Integrality constraints

- Minor? But, P vs NP!

maximize $\sum_{i \in I} v_i \ x_i$ subject to $\sum_{i \in I} w_i x_i \le K$ $x_i \in \{0, 1\} \quad (i \in I)$

- Modeling it as a MIP
 - Decision variables?
 - Constraints?
 - Objective function?
- Decision variables
 - Will a warehouse w be opened?
 - i.e., ls x_w = 1?
 - Will a warehouse w serve customer c?
 - i.e., Is y_{wc} = 1?

- Decision variables
 - Will a warehouse w be opened?
 - i.e., ls x_w = 1?
 - Will a warehouse w serve customer c?
 - i.e., Is y_{wc} = 1?
- Constraints

A warehouse can serve a customer only if it is open

$$y_{w,c} \le x_w$$

– A customer must be served by exactly one warehouse $\sum_{w \in W} y_{w,c} = 1$

- Decision variables
 - Will a warehouse w be opened?
 - i.e., ls x_w = 1?
 - Will a warehouse w serve customer c?
 - i.e., Is y_{wc} = 1?
- Objective function

$$\sum_{w \in W} c_w x_w + \sum_{w \in W, c \in C} t_{w,c} y_{w,c}$$

Fixed cost Transportation cost

- Decision variables
 - Will a warehouse w be opened?
 - i.e., ls x_w = 1?
 - Will a warehouse w serve customer c?
 - i.e., Is y_{wc} = 1?
- Why not

 $-y_c$ denotes the warehouse serving customer c?

Mixed integer programming

- Typically 0/1 variables in a MIP
- Easy to transform them to linear constraints
- Other possible models to consider though
 - Decision variables
 - Constraints
 - Objective function

Mixed integer programming

- How to solve?
 - Active area of research
- Branch and bound
 - Bounding: finding an optimistic relaxation
 - Branching: splitting the problem into subproblems
- MIP gives rise to a natural relaxation
 - Linear relaxation
 - i.e., remove integrality constraints

Branch and bound

- Solve the linear relaxation
- If the linear relaxation is
 - worse than the best solution found so far, prune this node (because the associated problem is suboptimal)
 - integral, we have found a feasible solution (update the best feasible solution if necessary)
- Otherwise,
 - find an integer variable x with fractional value f, create two subproblems $\mathbf{x} \leq \lfloor f \rfloor$, $\mathbf{x} \geq \lceil f \rceil$ and repeat

Branch and bound

- Focus on the objective
 - Relaxation gives an optimistic bound
- Pruning based on sub-optimality
 - Prune provably suboptimal nodes
- Relax feasibility
 - Relax the integrality constraints
- Global view of relaxation
 - Consider all problem constraints

• Revisit this problem

maximize $\sum_{i \in I} v_i \ x_i$
subject to $\sum_{i \in I} w_i x_i \le K$
 $x_i \in \{0, 1\} \quad (i \in I)$

• Linear relaxation

maximize
$$\sum_{i \in I} v_i \ x_i$$

subject to
$$\sum_{i \in I} w_i x_i \le K$$

$$0 \le x_i \le 1 \quad (i \in I)$$

- Branch and bound for this problem
- Linear relaxation
 - Related to the greedy solution
- Branching
 - Variable with a fractional value
 - i.e., most valuable item (x_i) that cannot fit entirely
- Bounding (subproblems)
 - Do not take the item $(x_i = 0)$
 - Take the item ($x_i = 0$)

Branch and bound

- When is it effective?
 - Necessary condition: the linear relaxation is strong
 - Is it sufficient? (homework)
- What is a good MIP model?
 - One with a good linear relaxation
- Which variable to branch on?
 - One with the most fractional value

Outline

- Mixed Integer Program
- Examples
 - Warehouse location
 - Knapsack
- Branch and Bound
- Branch and Cut
- TSP

Cover cuts

- Constraints: $\sum_{j=1}^{n} a_j x_j \le b$
- Find facets of these constraints?
- Cover: a set $C \subseteq N = \{1, \dots, n\}$ is a cover if

$$\sum_{j \in C} a_j > b$$

– A cover is minimal if $C \setminus \{j\}$ is not a cover for any j

Cover cuts

- Constraints: $\sum_{j=1}^{n} a_j x_j \le b$
- Find facets of these constraints?
- If $C \subseteq N = \{1, \ldots, n\}$ is a cover, then $\sum_{j \in C} x_j \leq |C| 1$

is a valid inequality

Cover cuts

• Example

 $11x_1 + 6x_2 + 6x_3 + 5x_4 + 5x_5 + 4x_6 + x_7 \le 19$

• Minimal cover inequalities

 $x_1 + x_2 + x_3 \le 2$

 $x_3 + x_4 + x_5 + x_6 \le 3$

Stronger cover cuts

• If $C \subseteq N = \{1, \dots, n\}$ is a cover, then $\sum_{j \in E(C)} x_j \leq |C| - 1$

is a valid inequality, where

$$E(C) = C \cup \{j \mid \forall i \in C : a_j \ge a_i\}$$

Stronger cover Cuts

• Example

 $11x_1 + 6x_2 + 6x_3 + 5x_4 + 5x_5 + 4x_6 + x_7 \le 19$

• Cover inequality

 $x_3 + x_4 + x_5 + x_6 \le 3$

• Stronger cover inequality

 $x_1 + \ldots + x_6 \le 3$

Branch and cut

- Overall idea
 - 1. Formulate MIP for the application (e.g., TSP)
 - 2. Solve the linear relaxation; if the solution is integral, terminate
 - 3. Find a polyhedral cut which prunes the linear relaxation and is a facet, if possible
 - If found, repeat from step 2
 - Otherwise, do a branch

Separation problem

- Consider a solution x* to the linear relaxation (may already be enhanced by cuts)
- Goal: To know whether there exists a cover cut for x*

• The cover inequality $\sum_{j \in C} x_j \le |C| - 1$

can be rewritten as
$$\sum_{j \in C} (1 - x_j) \ge 1$$

• Does there exist a $C \subseteq N$ that satisfies

$$\sum_{j \in C} (1 - x_j^*) < 1$$
$$\sum_{j \in C} a_j > b$$

• This is equivalent to

$$\min \sum_{j \in N} (1 - x_j^*) z_j$$

s.t.
$$\sum_{j \in N} a_j z_j > b$$

$$z_j \in \{0, 1\}$$

• If the minimum value is less than 1, a cut exists. All the variables assigned to 1 are a cover.

• Example

$$45x_1 + 46x_2 + 79x_3 + 54x_4 + 53x_5 + 125x_6 \le 178$$

Fractional solution: $x^* = (0, 0, \frac{3}{4}, \frac{1}{2}, 1, 0)$

• Separation problem is given by

• Problem

$$\min \sum_{j \in N} (1 - x_j^*) z_j$$

s.t.
$$\sum_{j \in N} a_j z_j > b$$

$$z_j \in \{0, 1\}$$

Related to anything you know already?

- Replace z_i by $(1 - y_i)$

TSP, but first seven bridges of Könisberg

https://commons.wikimedia.org/wiki/File:Koenigsberg,_Map_by_Bering_1613.jpg#globalusage

Seven bridges of Könisberg

https://commons.wikimedia.org/wiki/File:Leonhard_Euler_2.jpg

Bridges of Königsberg, 1741

Leonhard Euler By Jakob Emanuel Handmann

Seven bridges of Könisberg

Traveling salesman problem

Traveling salesman problem

• MIP for TSP

- Decision variables, constraints, objectives?

- Decision variables
 - Is an edge part of the tour or not?
- Constraints
 - Degree constraints: Each node has exactly two edges selected

- Decision variables
 - $-x_e$ is 1 if edge e is selected
- Notation
 - V: set of vertices
 - E: set of edges
 - $-\delta(v)$: edges adjacent to vertex v
 - $-\delta(S)$: edges with exactly one vertex in S (subset of V)
 - $-\gamma(S)$: edges with both vertices in S

$$-x_{\{e_1,\ldots,e_n\}} = x_{e_1} + \ldots + x_{e_n}$$

• Eliminate these subtours

Subtour elimination

- Great, but too many (exponential no.) of them
- Branch and cut
 - Generate them on demand

Subtour elimination

• How to separate subtour constraints?

Separation of subtour constraints

• Build a graph G* = (V, E) where

- weight of an edge e, w(e) = x_e^*

- Finding a separation is equivalent to finding
 - A minimum cut in G^*
 - If the cost of the cut is less than 2, then we have isolated a subtour constraint violated by the linear relaxation
 - Recall: Finding the cut takes polynomial time

• Comb constraints

• Number of edges crossed?

• Comb constraints

• Comb constraints

► comb inequalities

$$x_{\gamma(H)} + \sum_{i=1}^{t} x_{\gamma(T_i)} \le |H| + \sum_{i=1}^{k} |T_i| - \lceil \frac{3k}{2} \rceil$$

Branch and cut for TSP

- On the TSPLIB benchmark
 - Subtour elimination: 2% of optimality gap
 - Subtour + comb cuts: 0.5% of optimality gap
- Other constraints are needed for large instances

Outline

- Mixed Integer Program
- Examples
 - Warehouse location
 - Knapsack
- Branch and Bound
- Branch and Cut
- TSP
- Bonus! (Duality)

https://en.wikipedia.org/wiki/File:German_postcard_from_1888.png

