
Discrete Optimization

MA2827

Fondements de l’optimisation discrète

https://project.inria.fr/2015ma2827/

Constraint programming

Material based on the lectures of Pascal Van Hentenryck at Coursera

https://project.inria.fr/2015ma2827/

Outline
• Computational paradigm

• More constraints

• linear constraints over integers

• redundant constraints

• symmetry breaking

• Global constraints

• Feasibility

• Pruning

• Search strategies

Constraint programming

• Computational paradigm

• use constraints to reduce the set of values that each
variable can take

• make a choice if no deduction can be made

• Modelling technology

• convey the structure of the problem as explicitly as
possible

• express substructures of the problem

• give solvers as much information as possible

Example: 8-queen problem

Task: place 8 queens on the chess board such that they
do not attack each other

Good Bad

8 queens

Task: place 8 queens on the chess board such that they
do not attack each other

Guess the first queen

Try the first spot

8 queens

Task: place 8 queens on the chess board such that they
do not attack each other

Guess the first queen

Apply constraints

8 queens

Task: place 8 queens on the chess board such that they
do not attack each other

Guess the first queen

Guess the second queen

Try the first available spot

8 queens

Task: place 8 queens on the chess board such that they
do not attack each other

Guess the first queen

Guess the second queen

Apply constraints

8 queens

Task: place 8 queens on the chess board such that they
do not attack each other

Guess the first queen

Guess the second queen

Guess the third queen

Apply constraints

8 queens

Task: place 8 queens on the chess board such that they
do not attack each other

Guess the first queen

Guess the second queen

Guess the third queen

Only one possibility!

8 queens

Task: place 8 queens on the chess board such that they
do not attack each other

Guess the first queen

Guess the second queen

Guess the third queen

Place the fourth queen

Apply constraints

8 queens

Task: place 8 queens on the chess board such that they
do not attack each other

Guess the first queen

Guess the second queen

Guess the third queen

Place the fourth queen

Only one possibility!

8 queens

Task: place 8 queens on the chess board such that they
do not attack each other

Guess the first queen

Guess the second queen

Guess the third queen

Place the fourth queen

Place the fifth queen

Apply constraints

8 queens

Task: place 8 queens on the chess board such that they
do not attack each other

Guess the first queen

Guess the second queen

Guess the third queen

Place the fourth queen

Place the fifth queen

Only one possibility!

8 queens

Task: place 8 queens on the chess board such that they
do not attack each other

Guess the first queen

Guess the second queen

Guess the third queen

Place the fourth queen

Place the fifth queen

Place the sixth queen

Apply constraints

8 queens

Task: place 8 queens on the chess board such that they
do not attack each other

Guess the first queen

Guess the second queen

Guess the third queen

Place the fourth queen

Place the fifth queen

Place the sixth queen

Only one possibility!

8 queens

Task: place 8 queens on the chess board such that they
do not attack each other

Guess the first queen

Guess the second queen

Guess the third queen

Place the fourth queen

Place the fifth queen

Place the sixth queen

Place the seventh queen

Apply constraints

8 queens

Task: place 8 queens on the chess board such that they
do not attack each other

Guess the first queen

Guess the second queen

Guess the third queen

Place the fourth queen

Place the fifth queen

Place the sixth queen

Place the seventh queen

FAILURE!

8 queens

Task: place 8 queens on the chess board such that they
do not attack each other

Guess the first queen

Guess the second queen

Guess the third queen

Try another guess!

8 queens

Task: place 8 queens on the chess board such that they
do not attack each other

Guess the first queen

Guess the second queen

Guess the third queen

Apply constraints

Constraint programming

• Computational paradigm

• use constraints to reduce the set of values that each
variable can take

• make a choice if no deduction can be made

• What is the choice?

• there are many choices!

• for the moment, assume a choice assigns a value to a
variable

• give solvers as much information as possible

• Choices can go wrong!

• Try another one

Computational paradigm

• Branch and prune

• pruning: reduce the search space as much as possible

• branching: decompose the problem into subproblems and
explore the subproblems

• Pruning

• use constraints to remove values that cannot belong to any
solution from the variable domains

• Branching

• try all the possible values of a variable until a solution is
found or it can be proven that no solution exists

Computational paradigm

• Complete method, not a heuristic

• given enough time, it will find a solution to a satisfaction
problem

• Focus on feasibility

• how to use constraints to prune the search space by
eliminating values that cannot belong to any solution

Computational paradigm

Search
Constraint

Store

X = 5

Success

Y ≠ 2

Failure

Computational paradigm

Search

Constraint Store

Domain
Store

C2

C1

C3 C5C4

Constraints

Computational paradigm

• What does a constraint do?

• feasibility checking

• pruning

• Feasibility checking

• a constraint checks if it can be satisfied given the values in
the domains of its variables

• Branching

• if satisfiable, a constraint determines which values in the
domains cannot be part of any solution

Computational paradigm

• Propagation engine

• the core of any constraint programming solver

• a simple iterative algorithm to reach a stable state

8-queen problem

Task: place 8 queens on the chess board such that they
do not attack each other

• Many ways to model

• Associate a decision variable with each column

• the variable denotes the row of the queen in that column

• no two queens can be placed on the same column

• What are the constraints?

• the queens cannot be placed on the same
• row

• upward diagonal

• downward diagonal

8-queen problem

Task: place 8 queens on the chess board such that they
do not attack each other

Constraints: the queens cannot be placed on the same

• row

• upward diagonal

• downward diagonal

Computational paradigm

Consider two variables X and Y

Domains: D(X) = {0,1,2}, D(Y) = {1,2,3}

Consider constraint X ≠ Y

Feasibility checking:

|D(X) ∪ D(Y)| ≥ 2

|{0,1,2,3}| ≥ 2

4 ≥ 2

Pruning?
when variables take only one
value

If D(X) = {1}
Then D(Y) := D(Y) \ {1}

More constraints: Send More Money

Task: assign different digits to letters to satisfy the addition

What are the decision variables?

– there is a variable for each letter to denote the value

Send More Money

Task: assign different digits to letters to satisfy the addition

What are the decision variables?

– there is a variable for each letter to denote the value

– there is a variable for each carry

Send More Money

Task: assign different digits to letters to satisfy the addition

Constraints?

Send More Money

Task: assign different digits to letters to satisfy the addition

Search space?

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1

Send More Money

Task: assign different digits to letters to satisfy the addition

value[S] ≠ 0

value[M] ≠ 0

carry[4] = value[M]

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1

Send More Money

Task: assign different digits to letters to satisfy the addition

value[S] ≠ 0

value[M] ≠ 0

carry[4] = value[M]

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1

Send More Money

Task: assign different digits to letters to satisfy the addition

value[S] ≠ 0

value[M] ≠ 0

carry[4] = value[M]

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1

Send More Money

Task: assign different digits to letters to satisfy the addition

value[S] ≠ 0

value[M] ≠ 0

carry[4] = value[M]

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1

Send More Money

Task: assign different digits to letters to satisfy the addition

value[S] ≠ 0

value[M] ≠ 0

carry[4] = value[M]

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1

Send More Money

Task: assign different digits to letters to satisfy the addition

value[i] ≠ value[j]

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1

Send More Money

Task: assign different digits to letters to satisfy the addition

value[i] ≠ value[j]

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1

Send More Money

Task: assign different digits to letters to satisfy the addition

carry[3]+value[S]+value[M]=

=value[O]+10*carry[4]

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1

Send More Money

Task: assign different digits to letters to satisfy the addition

carry[3]+value[S]+1=

=value[O]+10*1

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1

Send More Money

Task: assign different digits to letters to satisfy the addition

carry[3]+value[S]+1=

=value[O]+10*1

lhs  [3, …, 11]

rhs  [10, …, 19]

=> lhs = rhs  [10, 11]

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1

Send More Money

Task: assign different digits to letters to satisfy the addition

carry[3]+value[S]+1=

=value[O]+10  [10, 11]

=>

9 ≤ carry[3]+value[S] ≤ 10

=>

8 ≤ value[S] ≤ 10

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1

Send More Money

Task: assign different digits to letters to satisfy the addition

carry[3]+value[S]+1=

=value[O]+10  [10, 11]

=>

9 ≤ carry[3]+value[S] ≤ 10

=>

8 ≤ value[S] ≤ 10

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1

Send More Money

Task: assign different digits to letters to satisfy the addition

carry[3] + value[S] + 1

= value[O] + 10 *carry[4]

rhs  [10, 19]

lhs  [8, 11]

=>

rhs = lhs  [10, 11]

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1

Send More Money

Task: assign different digits to letters to satisfy the addition

value[O]  [0, 1]

=>

value[O] = 0

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1

Send More Money

Task: assign different digits to letters to satisfy the addition

value[i] ≠ value[j]

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1

Send More Money

Task: assign different digits to letters to satisfy the addition

value[i] ≠ value[j]

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1

Send More Money

Task: assign different digits to letters to satisfy the addition

carry[2]+value[E]+value[O]

=value[N]+10*carry[3]

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1

Send More Money

Task: assign different digits to letters to satisfy the addition

carry[2]+value[E]

=value[N]+10*carry[3]

lhs  [2, 10]

=>

carry[3] = 0

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1

Send More Money

Task: assign different digits to letters to satisfy the addition

carry[2]+value[E]

=value[N]+10*carry[3]

lhs  [2, 10]

=>

carry[3] = 0

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1

Send More Money

Task: assign different digits to letters to satisfy the addition

carry[3]+value[S]+value[M]

=value[O]+10*carry[4]

=>

value[S] = 9

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1

Send More Money

Task: assign different digits to letters to satisfy the addition

carry[3]+value[S]+value[M]

=value[O]+10*carry[4]

=>

value[S] = 9

value[i] ≠ value[j]

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1

Linear constraints over integers

Consider a constraint

a1 x1 + … + an xn ≥ b1 y1 + … + bm ym

ai, bj ≥ are constants

xi, yj are variables with domains D(xi), D(yj)

Feasibility test:

a1 max(D(x1)) + … + an max(D(xn)) ≥ b1 min(D(y1)) + … + bm min(D(ym))

Pruning:

ai xi ≥ B – (A – ai max(D(xi)))

bj yj ≤ A – (B – bj max(D(yj)))

Symmetry breaking

• Many problems naturally exhibit symmetries

• Exploring symmetrical parts of the search space is useless

• Many kinds of symmetries

• Variable symmetries

• Value symmetries

• Symmetry breaking constraints

Symmetry breaking: variable symmetries

• Balanced Incomplete Block Designs (BIBDs)

• Input: (v, b, r, k, l)

• Output: v × b matrix of 0/1 with exactly r ones per row, k
ones per column, and a scalar product of rows is l

• Why BIBDs?

• Example of combinatorial design

• Full of variable symmetries

1 1 0

0 1 1

1 0 1

(3, 3, 2, 2, 1)

Symmetry breaking: BIBDs

• Balanced Incomplete Block Designs (BIBDs)

• Input: (v, b, r, k, l)

• Output: v × b matrix of 0/1 with exactly r ones per row, k
ones per column, and a scalar product of rows is l

1 1 0

0 1 1

1 0 1

(3, 3, 2, 2, 1)

Symmetry breaking: BIBDs

0 1 1 0 0 1 0

1 0 1 0 1 0 0

0 0 1 1 0 0 1

1 1 0 0 0 0 1

0 0 0 0 1 1 1

1 0 0 1 0 1 0

0 1 0 1 1 0 0

(7, 7, 3, 3, 1)

1 0 1 0 1 0 0

0 1 1 0 0 1 0

0 0 1 1 0 0 1

1 1 0 0 0 0 1

0 0 0 0 1 1 1

1 0 0 1 0 1 0

0 1 0 1 1 0 0

Swapping rows

Symmetry breaking: BIBDs

0 1 1 0 0 1 0

1 0 1 0 1 0 0

0 0 1 1 0 0 1

1 1 0 0 0 0 1

0 0 0 0 1 1 1

1 0 0 1 0 1 0

0 1 0 1 1 0 0

(7, 7, 3, 3, 1) Swapping columns

0 1 1 0 0 1 0

1 0 1 0 1 0 0

0 0 1 1 0 0 1

1 0 0 0 0 1 1

0 1 0 0 1 0 1

1 1 0 1 0 0 0

0 0 0 1 1 1 0

Symmetry breaking: BIBDS

• How to break variable symmetries

• Impose an ordering on the variables

• Consider the row symmetries

• Impose a lexicographic constraint

• Lexicographic ordering

• a : 0 1 1 0 0 1 0 1 1 1 0 0 1 0

• b : 1 0 1 0 1 0 0 1 0 1 0 1 0 0
a ≤ b a ≥ b

Symmetry breaking: BIBDs

0 1 1 0 0 1 0

1 0 1 0 1 0 0

0 0 1 1 0 0 1

1 1 0 0 0 0 1

0 0 0 0 1 1 1

1 0 0 1 0 1 0

0 1 0 1 1 0 0

(7, 7, 3, 3, 1)

0 0 0 0 1 1 1

0 0 1 1 0 0 1

0 1 0 1 1 0 0

0 1 1 0 0 1 0

1 0 0 1 0 1 0

1 0 1 0 1 0 0

1 1 0 0 0 0 1

Lexicographic Ordering

0 0 0 0 1 1 1

0 0 1 1 0 0 1

0 1 0 1 1 0 0

0 1 1 0 0 1 0

1 0 0 1 0 1 0

1 0 1 0 1 0 0

1 1 0 0 0 0 1

Symmetry breaking: BIBDs

(7, 7, 3, 3, 1) Break column symmetries

0 0 0 0 1 1 1

0 0 1 1 0 0 1

0 1 0 1 0 1 0

0 1 1 0 1 0 0

1 0 0 1 1 0 0

1 0 1 0 0 1 0

1 1 0 0 0 0 1

Symmetry breaking: BIBDs

Symmetry breaking: value symmetries

Scene allocation problem

• Shooting scenes for a movie

• an actor plays in some of the scenes

• at most k scenes can be shot per day

• each actor is paid by the day

• scenes are different, actors are different

• Objective

• Minimize the total cost

• Symmetries

• What kind of symmetries do we have here?

Symmetry breaking: scene allocation

Symmetry breaking: scene allocation

• Value symmetries

• the days are interchangeable

• can swap all the scenes in day 1 and all the scenes in day 2
and still have a solution

• if s is a solution, then p(s) is a solution where the days of s
have been permuted by permutation p

• How do we eliminate these symmetries?

• Consider the scene 1. What are the days that we consider
for this scene?

• Only day 1 for scene 1.

• Where do we schedule the second scene?

• Day 1 or day 2.

Symmetry breaking: scene allocation

• How do we eliminate these symmetries?

• Choose between the days already used and one new day.

Optimization in constraint programming?

• Focus of constraint programming

• Feasibility

• How to optimize?

• Solve a sequence of satisfaction problems

• Find a solution

• Impose a constraint that the new solution mush be better

• Guaranteed to find an optimal solution

• at least theoretically

• Strong when the new constraint reduces the search space

• Works well for scheduling problems

Redundant constraints

• Motivation

• Semantically redundant (do not exclude any solution)

• Computationally significant (reduce the search space)

• How do we find redundant constraints?

• they express properties of the solutions not captures by the
model

• Critical aspect of constraint programming!

Redundant constraints: magic series

A series S = (S0, …, Sn) is magic if Si represents the
number of occurrences of i in S

0 1 2 3 4

Occurences ? ? ? ? ?

Redundant constraints: magic series

A series S = (S0, …, Sn) is magic if Si represents the
number of occurrences of i in S

How to find magic series?

0 1 2 3 4

Occurences 2 1 2 0 0

Redundant constraints: magic series

A series S = (S0, …, Sn) is magic if Si represents the
number of occurrences of i in S

Redundant constraints:

• The decision variables denote a number of occurrences

• The number of occurrences is bounded

0 1 2 3 4

Occurences ? ? ? ? 17

Redundant constraints: magic series

A series S = (S0, …, Sn) is magic if Si represents the
number of occurrences of i in S

Redundant constraints: magic series

A series S = (S0, …, Sn) is magic if Si represents the
number of occurrences of i in S

What does “series[2]=3” mean?

That there are three “2” in the array “series”

Constraint:

0 1 2 3 4

Occurences ? ? 3 ? ?

A series S = (S0, …, Sn) is magic if Si represents the
number of occurrences of i in S

Redundant constraints: magic series

A series S = (S0, …, Sn) is magic if Si represents the number of
occurrences of i in S

The redundant constraint implies:

series[4] ≤ 1

series[3] ≤ 1

series[2] ≤ 2

series[1] ≤ 5

Redundant constraints: magic series

A series S = (S0, …, Sn) is magic if Si represents the
number of occurrences of i in S

Choice: assume that series[0] = 2

It follows that series[2] ≥ 1

series[1] + 3 series[3] + 4 series[4] ≤ 4

series[4] ≤ 0; series[3] ≤ 1

Redundant constraints: magic series

Redundant constraints

• First role

• express properties of the solutions

• boost the propagation of other constraints

• Second role

• provide a more global view

• combine existing constraints

• improve communication

Global constraints

• Critical feature of constraint programming

• Capture combinatorial substructures arising in may
applications

• Modeling

• Make modeling easier and more natural

• Problem solving

• Convey the problem structure to the solver that does not have
to rediscover it

• Give the ability to exploit dedicated algorithms

Global constraints: alldifferent

alldifferent(x1,…,xn)

specifies that x1,…,xn take values that are different

8 queens:

Global constraints: all different

alldifferent(x1,…,xn)

specifies that x1,…,xn take values that are different

Constraint c(x1,…,xn) where x1  D1=D(x1), xn  Dn=D(xn)

Feasibility testing:

find values in the variable domains such that the constraint holds

Global constraints: all different

Example:

a constraint alldifferent(x1, x2, x3)

x1  {1, 2}, x2  {1, 2}, x3  {1, 2}

Is this feasible?

No, only two values for 3 variables

(pigeon hole principle)

Each of the local constraints

x1≠x2, x2≠x3, x3≠x1

can be satisfied

Global constraints: all different

alldifferent(x1,…,xn)

specifies that x1,…,xn take values that are different

Constraint c(x1,…,xn) where x1  D1=D(x1), xn  Dn=D(xn)

Pruning

given vi in Di, does there exist a solution such that xi=vi?

For each value search for the values of variables such that the
constraint holds

Global constraints: alldifferent

Example:

a constraint alldifferent(x1, x2, x3)

x1  {1, 2}, x2  {1, 2}, x3  {1, 2, 3}

Pruning?

x3≠1, x3≠2 => D(x3) = {3}

Local constraints x1≠x2, x2≠x3, x3≠x1 do not produce pruning

Global constraints

• Global constraints deal with many variables at the same
time

• Global constraints make it possible to discover
infeasibilities earlier

• Global constraints make it possible to prune the search
space more

Global constraints

Million-dollar question:

Can we detect feasibility and prune global constraints
efficiently?

It depends on the constraints

• Sometimes we can

• Sometimes we need to relax standards

• The pruning may be suboptimal

• The pruning make take exponential time

Example: sudoku

1 2 9

9 3 1

8 6

3

6 2

7 9 1 6

8 6 7

4 1 9

4 2

Example: sudoku

Example: sudoku

1 2 9

9 3 1

8 6

3

6 2

7 9 1 6

8 6 7

4 1 9

4 2

Example: sudoku

1 2 9

9 3 1

8 6

3

6 2

7 9 1 6

8 6 7

4 2 1 9

4 2

Example: sudoku

8 3 6 1 2 9 4

2 4 6 9 3 8 1

9 3 4 8 2 6

8 3 6

6 2 1

7 9 1 6 4

9 2 8 5 6 1 4 3 7

6 5 4 7 2 3 1 9 8

7 1 3 9 8 4 2 5

Example: sudoku

8 3 6 1 5 2 9 4

2 4 6 9 3 8 1

9 3 4 8 2 6

8 3 6

6 2 1

7 9 1 6 4

9 2 8 5 6 1 4 3 7

6 5 4 7 2 3 1 9 8

7 1 3 9 8 4 2 5

Example: sudoku

8 3 6 1 5 2 9 7 4

2 4 5 6 9 7 3 8 1

1 9 7 3 4 8 2 5 6

8 1 3 7 6

6 2 7 1

7 9 1 6 4

9 2 8 5 6 1 4 3 7

6 5 4 7 2 3 1 9 8

7 1 3 9 8 4 6 2 5

Example: sudoku

8 3 6 1 5 2 9 7 4

2 4 5 6 9 7 3 8 1

1 9 7 3 4 8 2 5 6

4 8 1 3 7 6

6 2 7 1

7 9 1 6 4

9 2 8 5 6 1 4 3 7

6 5 4 7 2 3 1 9 8

7 1 3 9 8 4 6 2 5

Example: sudoku

8 3 6 1 5 2 9 7 4

2 4 5 6 9 7 3 8 1

1 9 7 3 4 8 2 5 6

4 8 1 2 3 5 7 6 9

5 6 2 4 7 9 8 1 3

3 7 9 8 1 6 5 4 2

9 2 8 5 6 1 4 3 7

6 5 4 7 2 3 1 9 8

7 1 3 9 8 4 6 2 5

Global constraints: table constraints

The simplest global constraint

Example: X {1, 2}, Y {1, 2}, Z {3, 4, 5}

Total possibilities: |{1,2}| × |{1, 2}| × |{3, 4, 5}| = 12

Table constraint X Y Z

Combination 1 1 1 5

Combination 2 1 2 4

Combination 3 2 2 3

Combination 4 1 2 3

Global constraints: table constraints

The simplest global constraint

Example: X {1, 2}, Y {1, 2}, Z {3, 4, 5}

Total possibilities: |{1,2}| × |{1, 2}| × |{3, 4, 5}| = 12

Table constraint X Y Z

Combination 1 1 1 5

Combination 2 1 2 4

Combination 3 2 2 3

Combination 4 1 2 3

Given Z ≠ 5
=>
Y = 2

How to implement global constraints?

Two types of global constraints:

• knapsack

• alldifferent

Significant area of research:

• over 100 global constraints proposed so far

The Gold Standard for Pruning

• After pruning

if value v is in the domain of variable x, then there exists a
solution to the constraint with value v assigned to variable x

• Optimal pruning

cannot prune more if only domains are considered

• Complexity

in general, can’t be enforced in polynomial time

Binary knapsack

• The constraint

• Example

• Feasibility

• Can we find a solution satisfying the constraint?

• Pruning

• Can we eliminate values from the domains?

Binary knapsack

• The constraint

• Feasibility

• Use dynamic programming (pseudo-polynomial)

• Pruning

• Exploit the dynamic programming table to prune the search

• Forward phase (keep dependency links)

• Backward phase (update dependency links to keep only
feasible values)

• Combine feasibility with pruning

• The constraint

Binary knapsack: forward phase

w

12

11

10

9

8

7

6

5

4

3

2

1

0

x1 x2 x3 x4

• The constraint

Binary knapsack: forward phase

w

12

11

10

9

8

7

6

5

4

3

2

1

0

x1 x2 x3 x4

• The constraint

Binary knapsack: forward phase

w

12

11

10

9

8

7

6

5

4

3

2

1

0

x1 x2 x3 x4

• The constraint

Binary knapsack: forward phase

w

12

11

10

9

8

7

6

5

4

3

2

1

0

x1 x2 x3 x4

• The constraint

Binary knapsack: forward phase

w

12

11

10

9

8

7

6

5

4

3

2

1

0

x1 x2 x3 x4

• The constraint

Binary knapsack: backward phase

w

12

11

10

9

8

7

6

5

4

3

2

1

0

x1 x2 x3 x4

• The constraint

Binary knapsack: backward phase

w

12

11

10

9

8

7

6

5

4

3

2

1

0

x1 x2 x3 x4

• The constraint

Binary knapsack: backward phase

w

12

11

10

9

8

7

6

5

4

3

2

1

0

x1 x2 x3 x4

• The constraint

Binary knapsack: backward phase

w

12

11

10

9

8

7

6

5

4

3

2

1

0

x1 x2 x3 x4

• The constraint

Binary knapsack: backward phase

w

12

11

10

9

8

7

6

5

4

3

2

1

0

x1 x2 x3 x4

x4=1

Alldifferent constraint

• The constraint

• Alldifferent(x1, …, xn)

• Feasibility

• can we find values in the domains of the variables so that each
two variables are assigned a different value?

• Pruning

• are there values in the domain of a variable that the variable
cannot take, i.e., if the variable takes that value, then there is
no solution.

Alldifferent representation

x1

x2

x3

x4

x5

x6

 {1, 2}

 {2, 3}

 {1, 3}

 {2, 4}

 {3, 4, 5, 6}

 {6, 7}

If all the variables take different values
can x4 take the value 2?

Alldifferent representation

x1

x2

x3

x4

x5

x6

 {1, 2}

 {2, 3}

 {1, 3}

 {2, 4}

 {3, 4, 5, 6}

 {6, 7}

1

2

3

4

5

6

7

Can x4 take the value 2?

Alldifferent feasibility

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

Alldifferent feasibility

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

Created a bipartite graph
• nodes for variables
• nodes for values
• edges between

variables and values

Alldifferent and matching

• A matching for a graph G=(V,E) is a set of edges in E such
that no two edges in E share a vertex.

• A maximum matching M for a graph G is a matching with
the largest number of edges.

• Feasibility

• finding a maximum matching in a bipartite graph.

• if the maximum matching has a size equal to the number of
variables, then the constraint is feasible; otherwise, it is not
feasible

Alldifferent feasibility

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

Feasible constraint

Alldifferent feasibility

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

Not feasible constraint

Alldifferent and matching

• How to find a maximum matching?

• Start with any matching

• Improve the matching

• When no improvement is possible

• We have a maximum matching

Maximum matching

• How to find a maximum matching?

• Start with any matching

• Improve the matching

• How to find an improvement?

1. Start from a free vertex x

2. If there us an edge (x,v) where v is not matched, then insert
(x,v) in the matching

3. Otherwise, take a vertex v matched to y.

remove (y, v) and add (x,v) from the matching and restart at
step 2 with y instead of x

Maximum matching

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

Start with a matching

Maximum matching

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

Start with a matching

Select x2 and 2

Maximum matching

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

Start with a matching

Select x2 and 2

Remove edge x4 – 2

Start again with x4

Maximum matching

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

Start with a matching

Select x2 and 2

Remove edge x4 – 2

Start again with x4

Add x4 - 4

Alternating path

• An alternating path P for a matching M is a path from a
vertex x in X to a vertex v in V (both of which are free)
such that the edges in the path are alternatively in E\M
and M

• Alternating path has odd number of edges

• Alternating path improves a matching

Finding an alternating path

• Create a directed graph

• Edges in the matching are oriented from right to left

• Edges not in the matching are oriented from left to right

• An alternating path is thus a path starting from a free
vertex x and ending in another free vertex v

• Find such a path with Depth-First Search

• Complexity O(|V| + |E|) where V is the set of vertices and E is
the set of edges

Maximum matching

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

Directed graph

Maximum matching

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

Directed graph

An alternating path

Change the direction

Maximum matching

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

Directed graph

An alternating path

Change the direction

Repeat

Maximum matching

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

Directed graph

An alternating path

Change the direction

Repeat

Maximum matching

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

Directed graph

An alternating path

Change the direction

Repeat

Maximum matching

Feasibility of the Alldifferent constraint

• Use a bipartite graph

• Vertex set for the variables

• Vertex set for the values

• Edge (x,v) if v is in D(x)

• Feasibility

• Alldifferent is feasible iff the size of the maximum matching
equals the number of variables

• Finding a maximum matching

• Improve a matching using alternating paths in the directed
graph obtained by the proper orientation of the edges

Alldifferent constraint: pruning

• The constraint
• Alldifferent(x1, …, xn)

• How to prune?
• v must be removed from the domain of x if the edge (x, v)

appears in no maximum matching

• Only need to look at the edges not present in the
maximum matching

• Naïve approach
• Force the edge (x,v) in the matching, i.e., remove all other

edges (x,w)

• Search for a maximum matching

• If it is smaller than the number of vars,

v can be removed from D(x)

Alldifferent constraint: pruning

• Basic property (Berge, 1970)

• An edge belongs to some but not all maximum matchings iff,
given a maximum matching M, it belongs to either
• An even alternative path starting at a free vertex

• An even alternating cycle

• Note that

• The edges not in the maximum matching do not belong to all
maximum matchings

• The above property tells us whether they belong to at least
one maximum matching

• The free vertices are the values

Alldifferent constraint: pruning

• Create a directed graph like before but reverse the
direction of the edges

• Given a matching

• Edges in the matching are oriented from left to right

• Edges not in the matching are oriented from bottom to top

Maximum matching

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

Maximum matching

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

An even alternative
path starting at a free
vertex

Maximum matching

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

An even alternating
cycle

Alldifferent constraint: pruning

• Given a maximum matching M, create a directed graph
like before but reverse the direction of edges

• Search for even alternating path starting from a free
label vertex: P

• Search for all loops and collect all the edges belonging
to them: C

• Remove all edges belonging to M, P, C

Maximum matching

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

Edges that can be
removed

Search in constraint programming

Computational paradigm

Search
Constraint

Store

X = 5

Success

Y ≠ 2

Failure

Search in constraint programming

• Key idea

• Use feasibility information for branching

• First-fail principle

• Try first where you are the most likely to fail

• Why first-fail principle?

• Do not spend time doing easy stuff first and avoid redoing
the difficult path

• The ultimate goal

• Creating small search trees

First-fail search in 8 queens

Hard position
only one option

Trial and error

• When a constraint fails

• that is, when adding a constraint to the constraint store
returns a failure

• The solver goes back to the last guess

• and assigns a value that has not been tried before

• If no such value is left, the system backtracks to an earlier
guessing instruction

Trial and error

Trial and error

Search strategies

Active research area. Some approaches:

• Variable/value labeling

• Value/variable labeling

• Symmetry breaking during search

• Randomization and restarts

• Domain splitting

• Focusing on the objective

• …

• …

• …

Variable/value labeling

• Two steps

• Choose the variable to assign next

• Choose the value to assign

• First-fail principle

• Choose the variable with the smallest domain

• The variable ordering is dynamic

• Reconsider the selection after each choice

Variable/value labeling

• Two steps

• Choose the variable to assign next

• Choose the value to assign

• First-fail principle

• Choose the variable to with the smallest domain

• Choose the most constrained variable

• Use a lexicographic criterion

• First the domain size

• Next the proximity to the middle of the board

Variable/value labeling

• Two steps

• Choose the variable to assign next

• Choose the value to assign

Variable/value labeling

• Two steps

• Choose the value to assign next

• Choose the variable to assign to this value

• Why it is useful?

• You may know that a value must be assigned

• Often the case in scheduling and resource allocation
problems

The perfect square problem

Task: arrange small squares into a big square

The perfect square problem

• What are the decision variables?

• x and y-coordinates of the bottom-left corner of every
square

• What are the constraints?

• The squares fit in the larger square

• The squares do not overlap

The value/variable labeling

• Why a value/variable labeling

• We know that there is no empty space in the square to be
filled

The value/variable labeling

• Why a value/variable labeling

• We know that there is no empty space in the square to be
filled

• What is the labeling doing?

• Choose a x-coordinate p

• For all square i, decide whether to place i at coordinate p
• That is, whether the bottom-left corner of i has x-coordinate p

• Repeat for all x-coordinates

• Repeat for all y-coordinates

Scene allocation problem

• Shooting scenes for a movie

• an actor plays in some of the scenes

• at most k scenes can be shot per day

• each actor is paid by the day

• scenes are different, actors are different

• Objective

• Minimize the total cost

• Symmetries

• What kind of symmetries do we have here?

Symmetry breaking during search

Symmetry breaking: scene allocation

• Value symmetries

• the days are interchangeable

• How do we eliminate these symmetries?

• For each scene we consider only the used days and one
new day

• Side effect

• Interferes with the search heuristics

• Can we avoid this?

• Symmetry-breaking during search

• Dynamically impose the symmetry-breaking constraints

• Same constraints, the order is different and discovered
dynamically

Symmetry breaking: scene allocation

• Choose a scene to shoot

• Use good heuristics
• First-fail

• Expensive scene

• Consider existing days + 1 new day

• To label the scene

• Advantages

• Break symmetries

• Does not interfere with the search heuristics

Randomization and restarts

• Sometimes there is no obvious search ordering

• But there exist some good ones

• How to find them?

• Brute force

• Randomization and restarts

• Key idea

• Try a random ordering

• If no solution is found after some limit, restart the search

• and possibly increase the limit

