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Outline
• Computational paradigm

• More constraints

• linear constraints over integers

• redundant constraints

• symmetry breaking

• Global constraints

• Feasibility

• Pruning

• Search strategies



Constraint programming

• Computational paradigm

• use constraints to reduce the set of values that each 
variable can take

• make a choice if no deduction can be made

• Modelling technology

• convey the structure of the problem as explicitly as 
possible

• express substructures of the problem

• give solvers as much information as possible



Example: 8-queen problem

Task: place 8 queens on the chess board such that they 
do not attack each other

Good Bad



8 queens

Task: place 8 queens on the chess board such that they 
do not attack each other

Guess the first queen

Try the first spot



8 queens

Task: place 8 queens on the chess board such that they 
do not attack each other

Guess the first queen

Apply constraints



8 queens

Task: place 8 queens on the chess board such that they 
do not attack each other

Guess the first queen

Guess the second queen

Try the first available spot



8 queens

Task: place 8 queens on the chess board such that they 
do not attack each other

Guess the first queen

Guess the second queen

Apply constraints



8 queens

Task: place 8 queens on the chess board such that they 
do not attack each other

Guess the first queen

Guess the second queen

Guess the third queen

Apply constraints



8 queens

Task: place 8 queens on the chess board such that they 
do not attack each other

Guess the first queen

Guess the second queen

Guess the third queen

Only one possibility!



8 queens

Task: place 8 queens on the chess board such that they 
do not attack each other

Guess the first queen

Guess the second queen

Guess the third queen

Place the fourth queen

Apply constraints



8 queens

Task: place 8 queens on the chess board such that they 
do not attack each other

Guess the first queen

Guess the second queen

Guess the third queen

Place the fourth queen

Only one possibility!



8 queens

Task: place 8 queens on the chess board such that they 
do not attack each other

Guess the first queen

Guess the second queen

Guess the third queen

Place the fourth queen

Place the fifth queen

Apply constraints



8 queens

Task: place 8 queens on the chess board such that they 
do not attack each other

Guess the first queen

Guess the second queen

Guess the third queen

Place the fourth queen

Place the fifth queen

Only one possibility!



8 queens

Task: place 8 queens on the chess board such that they 
do not attack each other

Guess the first queen

Guess the second queen

Guess the third queen

Place the fourth queen

Place the fifth queen

Place the sixth queen

Apply constraints



8 queens

Task: place 8 queens on the chess board such that they 
do not attack each other

Guess the first queen

Guess the second queen

Guess the third queen

Place the fourth queen

Place the fifth queen

Place the sixth queen

Only one possibility!



8 queens

Task: place 8 queens on the chess board such that they 
do not attack each other

Guess the first queen

Guess the second queen

Guess the third queen

Place the fourth queen

Place the fifth queen

Place the sixth queen

Place the seventh queen

Apply constraints



8 queens

Task: place 8 queens on the chess board such that they 
do not attack each other

Guess the first queen

Guess the second queen

Guess the third queen

Place the fourth queen

Place the fifth queen

Place the sixth queen

Place the seventh queen

FAILURE!



8 queens

Task: place 8 queens on the chess board such that they 
do not attack each other

Guess the first queen

Guess the second queen

Guess the third queen

Try another guess!



8 queens

Task: place 8 queens on the chess board such that they 
do not attack each other

Guess the first queen

Guess the second queen

Guess the third queen

Apply constraints



Constraint programming

• Computational paradigm

• use constraints to reduce the set of values that each 
variable can take

• make a choice if no deduction can be made

• What is the choice?

• there are many choices!

• for the moment, assume a choice assigns a value to a 
variable

• give solvers as much information as possible

• Choices can go wrong!

• Try another one



Computational paradigm

• Branch and prune

• pruning: reduce the search space as much as possible

• branching: decompose the problem into subproblems and 
explore the subproblems

• Pruning

• use constraints to remove values that cannot belong to any 
solution from the variable domains

• Branching

• try all the possible values of a variable until a solution is 
found or it can be proven that no solution exists



Computational paradigm

• Complete method, not a heuristic

• given enough time, it will find a solution to a satisfaction 
problem

• Focus on feasibility

• how to use constraints to prune the search space by 
eliminating values that cannot belong to any solution



Computational paradigm

Search
Constraint 

Store

X = 5

Success

Y ≠ 2

Failure



Computational paradigm

Search

Constraint Store

Domain 
Store

C2

C1

C3 C5C4

Constraints



Computational paradigm

• What does a constraint do?

• feasibility checking

• pruning

• Feasibility checking

• a constraint checks if it can be satisfied given the values in 
the domains of its variables

• Branching

• if satisfiable, a constraint determines which values in the 
domains cannot be part of any solution



Computational paradigm

• Propagation engine

• the core of any constraint programming solver

• a simple iterative algorithm to reach a stable state



8-queen problem

Task: place 8 queens on the chess board such that they 
do not attack each other

• Many ways to model

• Associate a decision variable with each column

• the variable denotes the row of the queen in that column

• no two queens can be placed on the same column

• What are the constraints?

• the queens cannot be placed on the same 
• row

• upward diagonal

• downward diagonal



8-queen problem

Task: place 8 queens on the chess board such that they 
do not attack each other

Constraints: the queens cannot be placed on the same

• row

• upward diagonal

• downward diagonal



Computational paradigm

Consider two variables X and Y

Domains:   D(X) = {0,1,2},   D(Y) = {1,2,3}

Consider constraint  X ≠ Y

Feasibility checking:

|D(X) ∪ D(Y)| ≥ 2

|{0,1,2,3}| ≥ 2

4 ≥ 2

Pruning?
when variables take only one 
value

If D(X) = {1}
Then D(Y) := D(Y) \ {1}



More constraints: Send More Money

Task: assign different digits to letters to satisfy the addition

What are the decision variables?

– there is a variable for each letter to denote the value



Send More Money

Task: assign different digits to letters to satisfy the addition

What are the decision variables?

– there is a variable for each letter to denote the value

– there is a variable for each carry



Send More Money

Task: assign different digits to letters to satisfy the addition

Constraints?



Send More Money

Task: assign different digits to letters to satisfy the addition

Search space?

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1



Send More Money

Task: assign different digits to letters to satisfy the addition

value[S] ≠ 0

value[M] ≠ 0

carry[4] = value[M]

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1
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Task: assign different digits to letters to satisfy the addition

value[S] ≠ 0
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carry[4] = value[M]
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Send More Money

Task: assign different digits to letters to satisfy the addition

value[S] ≠ 0

value[M] ≠ 0

carry[4] = value[M]
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Send More Money

Task: assign different digits to letters to satisfy the addition

value[i] ≠ value[j]

0 1 2 3 4 5 6 7 8 9

S
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Send More Money

Task: assign different digits to letters to satisfy the addition

value[i] ≠ value[j]

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1



Send More Money

Task: assign different digits to letters to satisfy the addition

carry[3]+value[S]+value[M]=

=value[O]+10*carry[4]

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1



Send More Money

Task: assign different digits to letters to satisfy the addition

carry[3]+value[S]+1=

=value[O]+10*1

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1



Send More Money

Task: assign different digits to letters to satisfy the addition

carry[3]+value[S]+1=

=value[O]+10*1

lhs  [3, …, 11]

rhs  [10, …, 19]

=> lhs = rhs  [10, 11]

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1



Send More Money

Task: assign different digits to letters to satisfy the addition

carry[3]+value[S]+1=

=value[O]+10   [10, 11]

=>

9 ≤ carry[3]+value[S] ≤ 10

=>

8  ≤  value[S] ≤ 10

0 1 2 3 4 5 6 7 8 9

S

E

N
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M

O

R

Y

C4

C3

C2

C1



Send More Money

Task: assign different digits to letters to satisfy the addition

carry[3]+value[S]+1=

=value[O]+10   [10, 11]

=>

9 ≤ carry[3]+value[S] ≤ 10

=>

8  ≤  value[S] ≤ 10
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Send More Money

Task: assign different digits to letters to satisfy the addition

carry[3] + value[S] + 1 

= value[O] + 10 *carry[4]

rhs  [10, 19]

lhs  [8, 11]

=>

rhs = lhs  [10, 11]

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1



Send More Money

Task: assign different digits to letters to satisfy the addition

value[O]  [0, 1]

=> 

value[O] = 0

0 1 2 3 4 5 6 7 8 9

S
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M
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C2

C1



Send More Money

Task: assign different digits to letters to satisfy the addition

value[i] ≠ value[j]
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Send More Money

Task: assign different digits to letters to satisfy the addition

value[i] ≠ value[j]

0 1 2 3 4 5 6 7 8 9
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Send More Money

Task: assign different digits to letters to satisfy the addition

carry[2]+value[E]+value[O]

=value[N]+10*carry[3]

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1



Send More Money

Task: assign different digits to letters to satisfy the addition

carry[2]+value[E]

=value[N]+10*carry[3]

lhs  [2, 10]

=>

carry[3] = 0

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1



Send More Money

Task: assign different digits to letters to satisfy the addition

carry[2]+value[E]

=value[N]+10*carry[3]

lhs  [2, 10]

=>

carry[3] = 0

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1



Send More Money

Task: assign different digits to letters to satisfy the addition

carry[3]+value[S]+value[M]

=value[O]+10*carry[4]

=>

value[S] = 9

0 1 2 3 4 5 6 7 8 9

S

E
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D

M
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Y

C4
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C2

C1



Send More Money

Task: assign different digits to letters to satisfy the addition

carry[3]+value[S]+value[M]

=value[O]+10*carry[4]

=>

value[S] = 9

value[i] ≠ value[j]

0 1 2 3 4 5 6 7 8 9

S

E

N

D

M

O

R

Y

C4

C3

C2

C1



Linear constraints over integers

Consider a constraint

a1 x1 + … + an xn ≥ b1 y1 + … + bm ym

ai, bj ≥ are constants

xi, yj are variables with domains D(xi), D(yj)

Feasibility test:

a1 max(D(x1)) + … + an max(D(xn)) ≥ b1 min(D(y1)) + … + bm min(D(ym)) 

Pruning:

ai xi ≥ B – ( A – ai max(D(xi)) ) 

bj yj ≤ A – ( B – bj max(D(yj)) ) 



Symmetry breaking

• Many problems naturally exhibit symmetries

• Exploring symmetrical parts of the search space is useless

• Many kinds of symmetries

• Variable symmetries

• Value symmetries

• Symmetry breaking constraints



Symmetry breaking: variable symmetries

• Balanced Incomplete Block Designs (BIBDs)

• Input: (v, b, r, k, l)

• Output: v × b matrix of 0/1 with exactly r ones per row, k 
ones per column, and a scalar product of rows is l

• Why BIBDs?

• Example of combinatorial design

• Full of variable symmetries

1 1 0

0 1 1

1 0 1

(3, 3, 2, 2, 1)



Symmetry breaking: BIBDs

• Balanced Incomplete Block Designs (BIBDs)

• Input: (v, b, r, k, l)

• Output: v × b matrix of 0/1 with exactly r ones per row, k 
ones per column, and a scalar product of rows is l

1 1 0

0 1 1

1 0 1

(3, 3, 2, 2, 1)



Symmetry breaking: BIBDs

0 1 1 0 0 1 0

1 0 1 0 1 0 0

0 0 1 1 0 0 1

1 1 0 0 0 0 1

0 0 0 0 1 1 1

1 0 0 1 0 1 0

0 1 0 1 1 0 0

(7, 7, 3, 3, 1)

1 0 1 0 1 0 0

0 1 1 0 0 1 0

0 0 1 1 0 0 1

1 1 0 0 0 0 1

0 0 0 0 1 1 1

1 0 0 1 0 1 0

0 1 0 1 1 0 0

Swapping rows



Symmetry breaking: BIBDs

0 1 1 0 0 1 0

1 0 1 0 1 0 0

0 0 1 1 0 0 1

1 1 0 0 0 0 1

0 0 0 0 1 1 1

1 0 0 1 0 1 0

0 1 0 1 1 0 0

(7, 7, 3, 3, 1) Swapping columns

0 1 1 0 0 1 0

1 0 1 0 1 0 0

0 0 1 1 0 0 1

1 0 0 0 0 1 1

0 1 0 0 1 0 1

1 1 0 1 0 0 0

0 0 0 1 1 1 0



Symmetry breaking: BIBDS

• How to break variable symmetries

• Impose an ordering on the variables

• Consider the row symmetries

• Impose a lexicographic constraint

• Lexicographic ordering

• a :  0 1 1 0 0 1 0 1  1  1  0  0  1  0 

• b :  1 0 1 0 1 0 0 1  0  1  0  1  0  0
a ≤ b a ≥ b



Symmetry breaking: BIBDs

0 1 1 0 0 1 0

1 0 1 0 1 0 0

0 0 1 1 0 0 1

1 1 0 0 0 0 1

0 0 0 0 1 1 1

1 0 0 1 0 1 0

0 1 0 1 1 0 0

(7, 7, 3, 3, 1)

0 0 0 0 1 1 1

0 0 1 1 0 0 1

0 1 0 1 1 0 0

0 1 1 0 0 1 0

1 0 0 1 0 1 0

1 0 1 0 1 0 0

1 1 0 0 0 0 1

Lexicographic Ordering



0 0 0 0 1 1 1

0 0 1 1 0 0 1

0 1 0 1 1 0 0

0 1 1 0 0 1 0

1 0 0 1 0 1 0

1 0 1 0 1 0 0

1 1 0 0 0 0 1

Symmetry breaking: BIBDs

(7, 7, 3, 3, 1) Break column symmetries

0 0 0 0 1 1 1

0 0 1 1 0 0 1

0 1 0 1 0 1 0

0 1 1 0 1 0 0

1 0 0 1 1 0 0

1 0 1 0 0 1 0

1 1 0 0 0 0 1



Symmetry breaking: BIBDs



Symmetry breaking: value symmetries

Scene allocation problem

• Shooting scenes for a movie

• an actor plays in some of the scenes

• at most k scenes can be shot per day

• each actor is paid by the day

• scenes are different, actors are different

• Objective

• Minimize the total cost

• Symmetries

• What kind of symmetries do we have here?



Symmetry breaking: scene allocation



Symmetry breaking: scene allocation

• Value symmetries

• the days are interchangeable

• can swap all the scenes in day 1 and all the scenes in day 2 
and still have a solution

• if s is a solution, then p(s) is a solution where the days of s 
have been permuted by permutation p

• How do we eliminate these symmetries?

• Consider the scene 1. What are the days that we consider 
for this scene?

• Only day 1 for scene 1.

• Where do we schedule the second scene?

• Day 1 or day 2.



Symmetry breaking: scene allocation

• How do we eliminate these symmetries?

• Choose between the days already used and one new day.



Optimization in constraint programming?

• Focus of constraint programming

• Feasibility

• How to optimize?

• Solve a sequence of satisfaction problems

• Find a solution

• Impose a constraint that the new solution mush be better

• Guaranteed to find an optimal solution

• at least theoretically

• Strong when the new constraint reduces the search space

• Works well for scheduling problems



Redundant constraints

• Motivation

• Semantically redundant (do not exclude any solution)

• Computationally significant (reduce the search space)

• How do we find redundant constraints?

• they express properties of the solutions not captures by the 
model

• Critical aspect of constraint programming!



Redundant constraints: magic series

A series S = (S0, …, Sn) is magic if Si represents the 
number of occurrences of i in S

0 1 2 3 4

Occurences ? ? ? ? ?



Redundant constraints: magic series

A series S = (S0, …, Sn) is magic if Si represents the 
number of occurrences of i in S

How to find magic series?

0 1 2 3 4

Occurences 2 1 2 0 0



Redundant constraints: magic series

A series S = (S0, …, Sn) is magic if Si represents the 
number of occurrences of i in S

Redundant constraints:

• The decision variables denote a number of occurrences

• The number of occurrences is bounded

0 1 2 3 4

Occurences ? ? ? ? 17



Redundant constraints: magic series

A series S = (S0, …, Sn) is magic if Si represents the 
number of occurrences of i in S



Redundant constraints: magic series

A series S = (S0, …, Sn) is magic if Si represents the 
number of occurrences of i in S

What does “series[2]=3” mean?

That there are three “2” in the array “series”

Constraint:

0 1 2 3 4

Occurences ? ? 3 ? ?



A series S = (S0, …, Sn) is magic if Si represents the 
number of occurrences of i in S

Redundant constraints: magic series



A series S = (S0, …, Sn) is magic if Si represents the number of 
occurrences of i in S

The redundant constraint implies:

series[4] ≤ 1

series[3] ≤ 1

series[2] ≤ 2

series[1] ≤ 5

Redundant constraints: magic series



A series S = (S0, …, Sn) is magic if Si represents the 
number of occurrences of i in S

Choice: assume that series[0] = 2

It follows that series[2] ≥ 1

series[1] + 3 series[3] + 4 series[4] ≤ 4

series[4] ≤ 0;  series[3] ≤ 1

Redundant constraints: magic series



Redundant constraints

• First role

• express properties of the solutions

• boost the propagation of other constraints

• Second role

• provide a more global view

• combine existing constraints

• improve communication



Global constraints

• Critical feature of constraint programming

• Capture combinatorial substructures arising in may 
applications

• Modeling

• Make modeling easier and more natural

• Problem solving

• Convey the problem structure to the solver that does not have 
to rediscover it

• Give the ability to exploit dedicated algorithms



Global constraints: alldifferent

alldifferent(x1,…,xn)

specifies that x1,…,xn take values that are different

8 queens:



Global constraints: all different

alldifferent(x1,…,xn)

specifies that x1,…,xn take values that are different

Constraint  c(x1,…,xn)  where  x1  D1=D(x1), xn  Dn=D(xn)

Feasibility testing:

find values in the variable domains such that the constraint holds



Global constraints: all different

Example:

a constraint alldifferent(x1, x2, x3)

x1  {1, 2}, x2  {1, 2}, x3  {1, 2}

Is this feasible?

No, only two values for 3 variables

(pigeon hole principle)

Each of the local constraints 

x1≠x2, x2≠x3, x3≠x1

can be satisfied



Global constraints: all different

alldifferent(x1,…,xn)

specifies that x1,…,xn take values that are different

Constraint  c(x1,…,xn)  where  x1  D1=D(x1), xn  Dn=D(xn)

Pruning

given vi in Di, does there exist a solution such that xi=vi?

For each value search for the values of variables such that the 
constraint holds



Global constraints: alldifferent

Example:

a constraint alldifferent(x1, x2, x3)

x1  {1, 2}, x2  {1, 2}, x3  {1, 2, 3}

Pruning?

x3≠1, x3≠2 =>   D(x3) = {3}

Local constraints x1≠x2, x2≠x3, x3≠x1 do not produce pruning



Global constraints

• Global constraints deal with many variables at the same 
time

• Global constraints make it possible to discover 
infeasibilities earlier

• Global constraints make it possible to prune the search 
space more



Global constraints

Million-dollar question:

Can we detect feasibility and prune global constraints 
efficiently?

It depends on the constraints

• Sometimes we can 

• Sometimes we need to relax standards

• The pruning may be suboptimal

• The pruning make take exponential time



Example: sudoku

1 2 9

9 3 1

8 6

3

6 2

7 9 1 6

8 6 7

4 1 9

4 2



Example: sudoku



Example: sudoku

1 2 9

9 3 1

8 6

3

6 2

7 9 1 6

8 6 7

4 1 9

4 2



Example: sudoku

1 2 9

9 3 1

8 6

3

6 2

7 9 1 6

8 6 7

4 2 1 9

4 2



Example: sudoku

8 3 6 1 2 9 4

2 4 6 9 3 8 1

9 3 4 8 2 6

8 3 6

6 2 1

7 9 1 6 4

9 2 8 5 6 1 4 3 7

6 5 4 7 2 3 1 9 8

7 1 3 9 8 4 2 5



Example: sudoku

8 3 6 1 5 2 9 4

2 4 6 9 3 8 1

9 3 4 8 2 6

8 3 6

6 2 1

7 9 1 6 4

9 2 8 5 6 1 4 3 7

6 5 4 7 2 3 1 9 8

7 1 3 9 8 4 2 5



Example: sudoku

8 3 6 1 5 2 9 7 4

2 4 5 6 9 7 3 8 1

1 9 7 3 4 8 2 5 6

8 1 3 7 6

6 2 7 1

7 9 1 6 4

9 2 8 5 6 1 4 3 7

6 5 4 7 2 3 1 9 8

7 1 3 9 8 4 6 2 5



Example: sudoku

8 3 6 1 5 2 9 7 4

2 4 5 6 9 7 3 8 1

1 9 7 3 4 8 2 5 6

4 8 1 3 7 6

6 2 7 1

7 9 1 6 4

9 2 8 5 6 1 4 3 7

6 5 4 7 2 3 1 9 8

7 1 3 9 8 4 6 2 5



Example: sudoku

8 3 6 1 5 2 9 7 4

2 4 5 6 9 7 3 8 1

1 9 7 3 4 8 2 5 6

4 8 1 2 3 5 7 6 9

5 6 2 4 7 9 8 1 3

3 7 9 8 1 6 5 4 2

9 2 8 5 6 1 4 3 7

6 5 4 7 2 3 1 9 8

7 1 3 9 8 4 6 2 5



Global constraints: table constraints

The simplest global constraint

Example: X {1, 2},  Y {1, 2},  Z {3, 4, 5}

Total possibilities: |{1,2}| × |{1, 2}| × |{3, 4, 5}| = 12

Table constraint X Y Z

Combination 1 1 1 5

Combination 2 1 2 4

Combination 3 2 2 3

Combination 4 1 2 3



Global constraints: table constraints

The simplest global constraint

Example: X {1, 2},  Y {1, 2},  Z {3, 4, 5}

Total possibilities: |{1,2}| × |{1, 2}| × |{3, 4, 5}| = 12

Table constraint X Y Z

Combination 1 1 1 5

Combination 2 1 2 4

Combination 3 2 2 3

Combination 4 1 2 3

Given Z ≠ 5
=> 
Y = 2



How to implement global constraints?

Two types of global constraints:

• knapsack

• alldifferent

Significant area of research:

• over 100 global constraints proposed so far



The Gold Standard for Pruning

• After pruning

if value v is in the domain of variable x, then there exists a 
solution to the constraint with value v assigned to variable x

• Optimal pruning

cannot prune more if only domains are considered

• Complexity

in general, can’t be enforced in polynomial time



Binary knapsack

• The constraint

• Example

• Feasibility

• Can we find a solution satisfying the constraint?

• Pruning

• Can we eliminate values from the domains?



Binary knapsack

• The constraint

• Feasibility

• Use dynamic programming (pseudo-polynomial)

• Pruning

• Exploit the dynamic programming table to prune the search

• Forward phase (keep dependency links)

• Backward phase (update dependency links to keep only 
feasible values)

• Combine feasibility with pruning



• The constraint

Binary knapsack: forward phase
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• The constraint

Binary knapsack: forward phase
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• The constraint

Binary knapsack: backward phase
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• The constraint

Binary knapsack: backward phase
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• The constraint

Binary knapsack: backward phase
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• The constraint

Binary knapsack: backward phase
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• The constraint

Binary knapsack: backward phase
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Alldifferent constraint

• The constraint

• Alldifferent(x1, …, xn)

• Feasibility

• can we find values in the domains of the variables so that each 
two variables are assigned a different value?

• Pruning

• are there values in the domain of a variable that the variable 
cannot take, i.e., if the variable takes that value, then there is 
no solution.



Alldifferent representation

x1

x2

x3

x4

x5

x6

 {1, 2}

 {2, 3}

 {1, 3}

 {2, 4}

 {3, 4, 5, 6}

 {6, 7}

If all the variables take different values 
can x4 take the value 2?  



Alldifferent representation

x1
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 {1, 2}

 {2, 3}

 {1, 3}

 {2, 4}

 {3, 4, 5, 6}

 {6, 7}
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Can x4 take the value 2?  



Alldifferent feasibility
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Alldifferent feasibility

x1

x2
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x6

1

2

3

4

5

6

7

Created a bipartite graph
• nodes for variables
• nodes for values
• edges between 

variables and values



Alldifferent and matching

• A matching for a graph G=(V,E) is a set of edges in E such 
that no two edges in E share a vertex.

• A maximum matching M for a graph G is a matching with 
the largest number of edges.

• Feasibility

• finding a maximum matching in a bipartite graph.

• if the maximum matching has a size equal to the number of 
variables, then the constraint is feasible; otherwise, it is not 
feasible



Alldifferent feasibility
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Alldifferent feasibility
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Alldifferent and matching

• How to find a maximum matching?

• Start with any matching

• Improve the matching

• When no improvement is possible 

• We have a maximum matching



Maximum matching

• How to find a maximum matching?

• Start with any matching

• Improve the matching

• How to find an improvement?

1. Start from a free vertex x

2. If there us an edge (x,v) where v is not matched, then insert 
(x,v) in the matching

3. Otherwise, take a vertex v matched to y. 

remove (y, v) and add (x,v) from the matching and restart at 
step 2 with y instead of x



Maximum matching
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Maximum matching
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Maximum matching
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Select x2 and 2

Remove edge x4 – 2

Start again with x4



Maximum matching
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Start with a matching

Select x2 and 2

Remove edge x4 – 2

Start again with x4

Add x4 - 4



Alternating path

• An alternating path P for a matching M is a path from a 
vertex x in X to a vertex v in V (both of which are free) 
such that the edges in the path are alternatively in E\M 
and M

• Alternating path has odd number of edges

• Alternating path improves a matching



Finding an alternating path

• Create a directed graph

• Edges in the matching are oriented from right to left

• Edges not in the matching are oriented from left to right

• An alternating path is thus a path starting from a free 
vertex x and ending in another free vertex v

• Find such a path with Depth-First Search

• Complexity O(|V| + |E|) where V is the set of vertices and E is 
the set of edges
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Maximum matching
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Change the direction



Maximum matching
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Maximum matching
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Maximum matching
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An alternating path

Change the direction

Repeat
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Feasibility of the Alldifferent constraint

• Use a bipartite graph

• Vertex set for the variables

• Vertex set for the values

• Edge (x,v) if v is in D(x)

• Feasibility

• Alldifferent is feasible iff the size of the maximum matching 
equals the number of variables

• Finding a maximum matching

• Improve a matching using alternating paths in the directed 
graph obtained by the proper orientation of the edges



Alldifferent constraint: pruning

• The constraint
• Alldifferent(x1, …, xn)

• How to prune?
• v must be removed from the domain of x if the edge (x, v) 

appears in no maximum matching

• Only need to look at the edges not present in the 
maximum matching

• Naïve approach
• Force the edge (x,v) in the matching, i.e., remove all other 

edges (x,w)

• Search for a maximum matching

• If it is smaller than the number of vars, 

v can be removed from D(x)



Alldifferent constraint: pruning

• Basic property (Berge, 1970)

• An edge belongs to some but not all maximum matchings iff, 
given a maximum matching M, it belongs to either
• An even alternative path starting at a free vertex

• An even alternating cycle

• Note that

• The edges not in the maximum matching do not belong to all 
maximum matchings

• The above property tells us whether they belong to at least 
one maximum matching

• The free vertices are the values



Alldifferent constraint: pruning

• Create a directed graph like before but reverse the 
direction of the edges

• Given a matching

• Edges in the matching are oriented from left to right

• Edges not in the matching are oriented from bottom to top
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Maximum matching
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Alldifferent constraint: pruning

• Given a maximum matching M, create a directed graph 
like before but reverse the direction of edges

• Search for even alternating path starting from a free 
label vertex: P

• Search for all  loops and collect all the edges belonging 
to them: C

• Remove all edges belonging to M, P, C
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Search in constraint programming



Computational paradigm

Search
Constraint 

Store

X = 5

Success

Y ≠ 2

Failure



Search in constraint programming

• Key idea

• Use feasibility information for branching

• First-fail principle

• Try first where you are the most likely to fail

• Why first-fail principle?

• Do not spend time doing easy stuff first and avoid redoing 
the difficult path

• The ultimate goal

• Creating small search trees



First-fail search in 8 queens

Hard position
only one option



Trial and error

• When a constraint fails

• that is, when adding a constraint to the constraint store 
returns a failure

• The solver goes back to the last guess

• and assigns a value that has not been tried before

• If no such value is left, the system backtracks to an earlier 
guessing instruction



Trial and error



Trial and error



Search strategies

Active research area. Some approaches:

• Variable/value labeling

• Value/variable labeling

• Symmetry breaking during search

• Randomization and restarts

• Domain splitting

• Focusing on the objective

• …

• …

• …



Variable/value labeling

• Two steps

• Choose the variable to assign next

• Choose the value to assign

• First-fail principle

• Choose the variable with the smallest domain

• The variable ordering is dynamic

• Reconsider the selection after each choice



Variable/value labeling

• Two steps

• Choose the variable to assign next

• Choose the value to assign

• First-fail principle

• Choose the variable to with the smallest domain

• Choose the most constrained variable

• Use a lexicographic criterion

• First the domain size

• Next the proximity to the middle of the board



Variable/value labeling

• Two steps

• Choose the variable to assign next

• Choose the value to assign



Variable/value labeling

• Two steps

• Choose the value to assign next

• Choose the variable to assign to this value

• Why it is useful?

• You may know that a value must be assigned

• Often the case in scheduling and resource allocation 
problems



The perfect square problem

Task: arrange small squares into a big square 



The perfect square problem

• What are the decision variables?

• x and y-coordinates of the bottom-left corner of every 
square

• What are the constraints?

• The squares fit in the larger square

• The squares do not overlap



The value/variable labeling

• Why a value/variable labeling

• We know that there is no empty space in the square to be 
filled



The value/variable labeling

• Why a value/variable labeling

• We know that there is no empty space in the square to be 
filled

• What is the labeling doing?

• Choose a x-coordinate p

• For all square i, decide whether to place i at coordinate p
• That is, whether the bottom-left corner of i has x-coordinate p

• Repeat for all x-coordinates

• Repeat for all y-coordinates



Scene allocation problem

• Shooting scenes for a movie

• an actor plays in some of the scenes

• at most k scenes can be shot per day

• each actor is paid by the day

• scenes are different, actors are different

• Objective

• Minimize the total cost

• Symmetries

• What kind of symmetries do we have here?

Symmetry breaking during search



Symmetry breaking: scene allocation

• Value symmetries

• the days are interchangeable

• How do we eliminate these symmetries?

• For each scene we consider only the used days and one 
new day

• Side effect

• Interferes with the search heuristics

• Can we avoid this?

• Symmetry-breaking during search

• Dynamically impose the symmetry-breaking constraints

• Same constraints, the order is different and discovered 
dynamically



Symmetry breaking: scene allocation

• Choose a scene to shoot

• Use good heuristics
• First-fail

• Expensive scene

• Consider existing days + 1 new day

• To label the scene

• Advantages

• Break symmetries

• Does not interfere with the search heuristics



Randomization and restarts

• Sometimes there is no obvious search ordering

• But there exist some good ones

• How to find them?

• Brute force

• Randomization and restarts

• Key idea

• Try a random ordering

• If no solution is found after some limit, restart the search

• and possibly increase the limit


