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— Random Access Machine (RAM)
— Polynomial-time Algorithm
— Decision Problems

* P, NP, and NP-Complete Problems



Random Access Machine

e Given an array f with elements =0, 1 strings

e RAM executes a set of instructions

* Each instruction can
— Read entries from prescribed positions
— Perform arithmetic operation on read entries
— Write answers to prescribed positions



Random Access Machine

Given an array f with elements =0, 1 strings

Finite set of variables z,, z,, ..., 7,

Initially, z, = 0 and f contains input

Instructions numbered O, 1, ..., t

Variable z, stores the instruction to execute



Random Access Machine

Given an array f with elements =0, 1 strings

Finite set of variables z,, z,, ..., 7,

Initially, z, = 0 and f contains input

Instructions numbered O, 1, ..., t

Stop if z;> t



Random Access Machine

Given an array f with elements =0, 1 strings

Finite set of variables z,, z,, ..., 7,

Initially, z, = 0 and f contains input

Read instruction
—2Z = f(zj)



Random Access Machine

Given an array f with elements =0, 1 strings

Finite set of variables z,, z,, ..., 7,

Initially, z, = 0 and f contains input

Write instruction
—f(z,) := Z



Random Access Machine

Given an array f with elements =0, 1 strings

Finite set of variables z,, z,, ..., 7,

Initially, z, = 0 and f contains input

Add instruction



Random Access Machine

Given an array f with elements =0, 1 strings

Finite set of variables z,, z,, ..., 7,

Initially, z, = 0 and f contains input

Subtract instruction



Random Access Machine

Given an array f with elements =0, 1 strings

Finite set of variables z,, z,, ..., 7,

Initially, z, = 0 and f contains input

Multiply instruction



Random Access Machine

Given an array f with elements =0, 1 strings

Finite set of variables z,, z,, ..., 7,

Initially, z, = 0 and f contains input

Divide instruction

—-2,:=2/ 7



Random Access Machine

Given an array f with elements =0, 1 strings

Finite set of variables z,, z,, ..., 7,

Initially, z, = 0 and f contains input

Increment instruction

—z:=z,+1



Random Access Machine

Given an array f with elements =0, 1 strings

Finite set of variables z,, z,, ..., 7,

Initially, z, = 0 and f contains input

Binarize instruction
—z:=1,ifz>0

—z.:= 0, otherwise



z,=0
z,=0
z;=0
z,=0
Array f

Random Access Machine

¢ z,:=f(z)

* z,:=72;%1

¢ z,:=1(z)

* 7,:1=2,+1,

* z,:=2,+1

¢ f(zy) =2z,




z,=0
z, =10
z;=0
z,=0
Array f

Random Access Machine

¢ z,:=f(z)

* z,:=72;%1

¢ z,:=1(z)

* 7,:1=2,+1,

* z,:=2,+1

¢ f(zy) =2z,




z,=0
z, =10
z;=0
z,=0
Array f

Random Access Machine

¢ z,:=f(z)

* z,:=72;%1

¢ z,:=1(z)

* 7,:1=2,+1,

* z,:=2,+1

¢ f(zy) =2z,
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Random Access Machine

¢ z,:=f(z)

* z,:=72;%1

¢ z,:=1(z)

* 7,:1=2,+1,

* z,:=2,+1

¢ f(zy) =2z,




z,=1
z, =10
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Array f

Random Access Machine

¢ z,:=f(z)

* z,:=72;%1

¢ z,:=1(z)

* 7,:1=2,+1,

* z,:=2,+1

¢ f(zy) =2z,




z,=1
z, =10
Z3 =3
z,=0
Array f

Random Access Machine

¢ z,:=f(z)

* z,:=72;%1

¢ z,:=1(z)

* 7,:1=2,+1,

* z,:=2,+1

¢ f(zy) =2z,




z,=1
z, =10
Z3 =3
z,=0
Array f

Random Access Machine

¢ z,:=f(z)

* z,:=72;%1

¢ z,:=1(z)

* 7,:1=2,+1,

* z,:=2,+1

¢ f(zy) =2z,




z,=1
z, =10
Z3 =3
z,=13
Array f

Random Access Machine

¢ z,:=f(z)

* z,:=72;%1

¢ z,:=1(z)

* 7,:1=2,+1,

* z,:=2,+1

¢ f(zy) =2z,




z,=1
z, =10
Z3 =3
z,=13
Array f

Random Access Machine

¢ z,:=f(z)

* z,:=72;%1

¢ z,:=1(z)

* 7,:1=2,+1,

* z,:=2,+1

¢ f(zy) =2z,




z,=2
z, =10
Z3 =3
z,=13
Array f

Random Access Machine

¢ z,:=f(z)

* z,:=72;%1

¢ z,:=1(z)

* 7,:1=2,+1,

* z,:=2,+1

¢ f(zy) =2z,




z,=2
z, =10
Z3 =3
z,=13
Array f

Random Access Machine

¢ z,:=f(z)

* z,:=72;%1

¢ z,:=1(z)

* 7,:1=2,+1,

* z,:=2,+1

¢ f(zy) =2z,




z,=2
z, =10
Z3 =3
z,=13
Array f

Random Access Machine

Z, :=f(z,)

z,:=2,+1

z, = f(z,)

Z, =2, %2,

z,:=2,+1

f(zy) =z,
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* Preliminaries
— Random Access Machine (RAM)
— Polynomial-time Algorithm
— Decision Problems

* P, NP, and NP-Complete Problems



Polynomial Time Algorithm

* |[nput size = Number of bits b

e Polynomial time algorithm
— Number of instructions =t
— tis bounded by a polynomial in b
— Good algorithm
— Efficient algorithm



Outline

* Preliminaries
— Random Access Machine (RAM)
— Polynomial-time Algorithm
— Decision Problems (Answered by ‘yes’ or ‘no’)

* P, NP, and NP-Complete Problems

e Reduction



Decision Problem

* Finite set 2 called alphabet of size > 2
—{a,b,c,d,e,...,x,y,z}

e Set 2* of all finite length strings (called words)
-0, 1, 00,01, 10, 11, 00Q,....
— discrete, optimization

* Size of word size(w) = number of letters
— size(00) =2
— size(discrete) = 8



Decision Problem

* Problem I is a subset of 2*
— All words with the answer “yes”

* Informal problem
— Given input word x € 2*, does x & 1 ?

* Polynomial-time solvable problem I

— There exists a polynomial-time algorithm for the
informal problem

— Polynomial in size(x)



Shortest Path

Vo,V,Vy oV E 2
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Shortest Path

Vo,V,Vy oV E 2

{e2 1Ee2 , &2

0,,2,..N&2

Given graph G and path P, is P a shortest path in G?

{V0)V11V2;V3)V4) V5 })
{{VOIV]_}I {V01V3}1 {V]_IVZ}I {V21V3}1 {V2/V4}/ {V3)V4}}1 E I_I
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{Vg,V3,V,}



Hamiltonian Circuit

Circuit consisting of all vertices




Hamiltonian Graph

Has a Hamiltonian Circuit




Hamiltonian Graph

Has a Hamiltonian Circuit

Given graph G, is the graph Hamiltonian?



Hamiltonian Graph
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* Preliminaries

* P, NP, and NP-Complete Problems



P

* Polynomial-time solvable problem I

— There exists a polynomial-time algorithm that decides
whether x € Z* belongs to I or not.

— Polynomial in size(x)

 P={all N, Mis polynomial time solvable}

* For example
— Shortest path with +ve lengths € P
— Shortest path with no —ve length circuit € P



NP

* [TENP

— There exists a problem " € P
— There exists a polynomial p

— There exists an x, size(x) < p(size(w)) such that
—weETNifandonly ifwxe& v’

* Polynomial-time checkable ‘certificate’

* For example
— Hamiltonian graph problem & NP



NP

* Relationship between P and NP?

e Pisasubset of NP

— “P =NP or not” is an open problem
— One of Clay Institute’s Millennium Prize problems

* For example
— Shortest path with +ve lengths € NP
— Shortest path with no —ve length circuit € NP



NP-Complete

 Hardest problems in NP

— All problems in NP can be reduced to an NP-complete
problem

* 1is reducible to A
— There exists a polynomial time algorithm
— Given w, returns X
—weETNifandonlyifx&eA

e fAEPthenM&EP



NP-Complete

 Hardest problems in NP

— All problems in NP can be reduced to an NP-complete
problem

* 1is reducible to A
— There exists a polynomial time algorithm
— Given w, returns X
—weETNifandonlyifx&eA

e fAE NPthenll1& NP



NP-Complete

 Hardest problems in NP

— All problems in NP can be reduced to an NP-complete
problem

* 1is reducible to A
— There exists a polynomial time algorithm
— Given w, returns X
—weETNifandonlyifx&eA

* |f A& NP-completeand A& P, then P =NP



P, NP, EXP, etc.

EXP-complete

NP-hard
NP—compIN EXP-hard
. \ . - . T computational

difficulty

N N N A

P Tetris Chess

-— . uncomputable/
EXP undecidable

Image Courtesy of E. Demaine



Outline

* Reduction
— “SAT” is reducible to “3-SAT”
— “3-SAT” is reducible to “Partition”
— “Partition” is reducible to “Hamiltonian Path”

e NP-hard Problems

* NP-completeness of SAT



Boolean Expression

Alphabet Z containing variables x,,x,,...,X,
And special symbols (,), A,V,~
And not containing 0 and 1

A variable is a Boolean expression



Boolean Expression

Alphabet Z containing variables x,,x,,...,X,
And special symbols (,), A,V,~
And not containing 0 and 1

If vand w are Boolean expressions then
— (v A\ w) is a Boolean expression



Boolean Expression

Alphabet Z containing variables x,,x,,...,X,
And special symbols (,), A,V,~
And not containing 0 and 1

If vand w are Boolean expressions then
— (v V w) is a Boolean expression



Boolean Expression

Alphabet Z containing variables x,,x,,...,X,
And special symbols (,), A,V,~
And not containing 0 and 1

If vand w are Boolean expressions then
— ~v is a Boolean expression

— ~W is a Boolean expression



Boolean Expression

Alphabet Z containing variables x,,x,,...,X,
And special symbols (,), A,V,~
And not containing 0 and 1

For example, f(x,,X,,...,X,)
—((%, A X3) V ~(x3 V x5) A x,) V ~(x, A xc)
—~(~x, V ~x3) A ~x,



Satisfiability

* f(xy,%,,...,x,) is satisfiable if
— there exists an assignment x, = a,, ..., X, = d
— where o, €10,1}

— such that f(x,x,,...,x, ) = 1

n

* The following identities hold
—0A0=0,0A1=0,1A0=0,1A1=1
-0V0=0,0V1=1,1V0=1,1V1=1
—-~0=1,~1=0
—(0)=0,(1)=1



SAT

Given the alphabet 2

Given the identities for 0 and 1

SAT is a subset of 2* that is satisfiable

Informal Problem
— Given a Boolean expression w, is w satisfiable



3-SAT

* A special case of SAT

* Given variables x;,x,,...,x, €2
— B, consists of X;,~Xy,...,X,,,~X,,
— B, consists of (w, V..Vw,), w, € B;, 1<k<3
— B, consists of w, Aw, A..Aw_, w, € B,

—e.g, (X, V% Vx) A (X, V%3 Vx,) A (™%, V™x,)

* 3-SAT is the subset of B, that is satisfiable



SAT is reducible to 3-SAT

* X; =X, V X,
— (X, V%) A (X, V~%x3) A (™%, VX,V x,)

* X; =%, A\ Xq
— ("%, VX)) A (™%, Vx3) A (x, V™%,V ~x,)

* Xy = ~X2

— (X, Vx,) A (™%, V~x,)



SAT is reducible to 3-SAT

 Example on the board

(X, AX,) V ~(("%, V x3) Ax,A~x) A ~x,



SAT is reducible to 3-SAT

 Example on the board

(X, AX,) V ~(("%, V x3) Ax,A~x) A ~x,

e (Using new variables + truth table)



Outline

* Reduction
— “SAT” is reducible to “3-SAT”
— “3-SAT” is reducible to “Partition”
— “Partition” is reducible to “Hamiltonian Path”

e NP-hard Problems

* NP-completeness of SAT



3-SAT

* A special case of SAT

* Given variables x;,x,,...,x, €2
— B, consists of X;,~Xy,...,X,,,~X,,
— B, consists of (w, V..Vw,), w, € B;, 1<k<3
— B, consists of w, Aw, A..Aw_, w, € B,

—e.g, (X, V% Vx) A (X, V%3 Vx,) A (™%, V™x,)

* 3-SAT is the subset of B, that is satisfiable



Partition

e A finite set X

e Partition of X is a collection of subsets

— Mutually exclusive
— Collectively exhaustive

* For example, X ={a,b,c,d,e,f}
— {{a,b},{c},{d,e,f}} is a partition
— {{a,b},{a,c},{d,e,f}} is not a partition
— {{a,b},{c},{d,e}} is not a partition



Partition

e A finite set X

e Partition of X is a collection of subsets

— Mutually exclusive
— Collectively exhaustive

* Problem: Given collection of subsets C

— Does C contain a partition of X?
— Or not?



3-SAT is reducible to Partition

e f=w, Aw, A ...w_

* Bipartite undirected graph withV =V, UV,
— V, are variables x,,x,,...,X,
—V, are words w,,w,,...,W

 EdgesE=E, UE,
—E, = {(wi,xj)}, X, E W,
—E, = {(prj)}; ij S



3-SAT is reducible to Partition

* Collection C, of sets {w,} U E,
— E; is non-empty
— E. is a subset of edge set incident with w,

* Collection C, of sets {x;} U E; and {x;} U E’,
— E; is the set of all edges in E; incident with x;
— E'; is the set of all edges in E, incident with x;

* fis satisfiable iff C, U C, contains a partition



Outline

* Reduction
— “SAT” is reducible to “3-SAT” (review)
— “3-SAT” is reducible to “Partition”
— “Partition” is reducible to “Hamiltonian Path”

e NP-hard Problems

* NP-completeness of SAT



Partition

e A finite set X

e Partition of X is a collection of subsets

— Mutually exclusive
— Collectively exhaustive

* Problem: Given collection of subsets C

— Does C contain a partition of X?
— Or not?



Hamiltonian Path

* Digraph D =(V, A)

e Path P is Hamiltonian if
— It traverses each vertex in V
— All vertices in the path are distinct

e Problem: Given D

— Does it contain a Hamiltonian Path?
— Or not?

Connection to Shortest Path?



Partition is reducible to Hamiltonian

e Partition Problem: Set X, Collection C
- X=11,2,...,k}
-c={c,C,,..,C_}

* Let C ={j,,.. ¢}

J -1 1 S] Sjﬁ,-l S.] 1
° / ° / e o
/X—g —e —e—e - ______ — Z.‘/—:T.\ozg—.\z

Introduce ryand s,. Connect r , to s,.



Partition is reducible to Hamiltonian

e Partition Problem: Set X, Collection C
- X=11,2,...,k}
-c={c,C,,..,C_}

* Let C ={j,,.. ¢}

‘/f 1 1 Sj7 Sj7‘1 S.]l
° / ° / o "o @
/X—g —¢ e e A —32.2.‘!-\.2.2

C has a partition iff G has Hamiltonian rg-s, path



Partition is reducible to Hamiltonian

e Partition Problem: Set X, Collection C
- X=11,2,...,k}
-c={c,C,,..,C_}

* Let C ={j,,.. ¢}

‘/f 1 1 Sj7 Sjﬁ‘l S.]l
° / ° / o o e
[ VA VU — O/ N

Left as Exercise !!



Outline

e Reduction

e NP-hard Problems

* NP-completeness of SAT



NP-hard

* Need not be in NP
— No polynomial-time checkable certificate
— Not even a decision problem (e.g. optimization)

* At least as hard as NP-complete problems

e A\ & NP-hard

— There exists 1 € NP-complete
— M is reducible to A



NP-hard

NP-Hard

NP-Complete

P=NP=
NP-Complete

Complexity

Image Courtesy of Wikipedia



Examples of NP-complete problems

3-Partition: given n integers, can you divide them
into triples of equal sum?

Travelling salesman problem
Tetris

Minesweeper, Sudoku

SAT

Knapsack (pseudopoly, not poly)



Outline

e Reduction

e NP-hard Problems

 NP-completeness of SAT (todo)



