# Discrete Optimization

MA2827

Fondements de l'optimisation discrète

https://project.inria.fr/2015ma2827/

### Outline

- Preliminaries
  - Random Access Machine (RAM)
  - Polynomial-time Algorithm
  - Decision Problems

P, NP, and NP-Complete Problems

Given an array f with elements = 0, 1 strings

RAM executes a set of instructions

- Each instruction can
  - Read entries from prescribed positions
  - Perform arithmetic operation on read entries
  - Write answers to prescribed positions

• Given an array f with elements = 0, 1 strings

Finite set of variables z<sub>0</sub>, z<sub>1</sub>, ..., z<sub>k</sub>

• Initially,  $z_i = 0$  and f contains input

• Instructions numbered 0, 1, ..., t

• Variable  $z_0$  stores the instruction to execute

• Given an array f with elements = 0, 1 strings

Finite set of variables z<sub>0</sub>, z<sub>1</sub>, ..., z<sub>k</sub>

• Initially,  $z_i = 0$  and f contains input

• Instructions numbered 0, 1, ..., t

• Stop if  $z_0 > t$ 

• Given an array f with elements = 0, 1 strings

Finite set of variables z<sub>0</sub>, z<sub>1</sub>, ..., z<sub>k</sub>

• Initially,  $z_i = 0$  and f contains input

Read instruction

$$-z_i := f(z_j)$$

• Given an array f with elements = 0, 1 strings

Finite set of variables z<sub>0</sub>, z<sub>1</sub>, ..., z<sub>k</sub>

• Initially,  $z_i = 0$  and f contains input

Write instruction

$$-f(z_i) := z_i$$

• Given an array f with elements = 0, 1 strings

Finite set of variables z<sub>0</sub>, z<sub>1</sub>, ..., z<sub>k</sub>

• Initially,  $z_i = 0$  and f contains input

Add instruction

$$-z_i := z_j + z_k$$

• Given an array f with elements = 0, 1 strings

Finite set of variables z<sub>0</sub>, z<sub>1</sub>, ..., z<sub>k</sub>

• Initially,  $z_i = 0$  and f contains input

Subtract instruction

$$-z_i := z_j - z_k$$

• Given an array f with elements = 0, 1 strings

Finite set of variables z<sub>0</sub>, z<sub>1</sub>, ..., z<sub>k</sub>

• Initially,  $z_i = 0$  and f contains input

Multiply instruction

$$-z_i := z_i z_k$$

• Given an array f with elements = 0, 1 strings

Finite set of variables z<sub>0</sub>, z<sub>1</sub>, ..., z<sub>k</sub>

• Initially,  $z_i = 0$  and f contains input

Divide instruction

$$-z_i := z_i / z_k$$

• Given an array f with elements = 0, 1 strings

Finite set of variables z<sub>0</sub>, z<sub>1</sub>, ..., z<sub>k</sub>

• Initially,  $z_i = 0$  and f contains input

Increment instruction

$$-z_{i} := z_{i} + 1$$

• Given an array f with elements = 0, 1 strings

Finite set of variables z<sub>0</sub>, z<sub>1</sub>, ..., z<sub>k</sub>

• Initially,  $z_i = 0$  and f contains input

Binarize instruction

$$-z_{i} := 1$$
, if  $z_{i} > 0$ 

 $-z_i := 0$ , otherwise

$$z_1 = 0$$

$$z_2 = 0$$

$$z_3 = 0$$

$$z_4 = 0$$

| 10 | 3 | 0 |
|----|---|---|
|    |   |   |

• 
$$z_2 := f(z_1)$$

• 
$$z_1 := z_1 + 1$$

• 
$$z_3 := f(z_1)$$

• 
$$z_4 := z_2 + z_3$$

• 
$$z_1 := z_1 + 1$$

• 
$$f(z_1) := z_4$$

$$z_1 = 0$$

$$z_2 = 10$$

$$z_3 = 0$$

$$z_4 = 0$$

| 10 | 3 | 0 |
|----|---|---|
|    |   |   |

• 
$$z_2 := f(z_1)$$

• 
$$z_1 := z_1 + 1$$

• 
$$z_3 := f(z_1)$$

• 
$$z_4 := z_2 + z_3$$

• 
$$z_1 := z_1 + 1$$

• 
$$f(z_1) := z_4$$

$$z_1 = 0$$

$$z_2 = 10$$

$$z_3 = 0$$

$$z_4 = 0$$

| 10 | 3 | 0 |
|----|---|---|
|    |   |   |

• 
$$z_2 := f(z_1)$$



• 
$$z_3 := f(z_1)$$

• 
$$z_4 := z_2 + z_3$$

• 
$$z_1 := z_1 + 1$$

• 
$$f(z_1) := z_4$$

$$z_1 = 1$$

$$z_2 = 10$$

$$z_3 = 0$$

$$z_4 = 0$$

| 10   | <b>1</b>   |          |
|------|------------|----------|
| 1 () | <b>∖</b> ≺ | ( )      |
| 10   | <b>-</b>   | <b>O</b> |
|      |            |          |

• 
$$z_2 := f(z_1)$$



• 
$$z_3 := f(z_1)$$

• 
$$z_4 := z_2 + z_3$$

• 
$$z_1 := z_1 + 1$$

• 
$$f(z_1) := z_4$$

$$z_1 = 1$$

$$z_2 = 10$$

$$z_3 = 0$$

$$z_4 = 0$$

| 10 | 3 | 0 |
|----|---|---|
|    |   |   |

• 
$$z_2 := f(z_1)$$

• 
$$z_1 := z_1 + 1$$



• 
$$z_4 := z_2 + z_3$$

• 
$$z_1 := z_1 + 1$$

• 
$$f(z_1) := z_4$$

$$z_1 = 1$$

$$z_2 = 10$$

$$z_3 = 3$$

$$z_4 = 0$$

| 10 | 3 | 0 |
|----|---|---|
|    |   |   |

• 
$$z_2 := f(z_1)$$

• 
$$z_1 := z_1 + 1$$



• 
$$z_4 := z_2 + z_3$$

• 
$$z_1 := z_1 + 1$$

• 
$$f(z_1) := z_4$$

$$z_1 = 1$$

$$z_2 = 10$$

$$z_3 = 3$$

$$z_4 = 0$$

| <b>a</b> |      |
|----------|------|
|          | 1 () |
| <b>9</b> |      |
|          | 3    |

• 
$$z_2 := f(z_1)$$

• 
$$z_1 := z_1 + 1$$

• 
$$z_3 := f(z_1)$$



• 
$$z_1 := z_1 + 1$$

• 
$$f(z_1) := z_4$$

$$z_1 = 1$$

$$z_2 = 10$$

$$z_3 = 3$$

$$z_4 = 13$$

| 10 | 3 | 0 |
|----|---|---|
|----|---|---|

• 
$$z_2 := f(z_1)$$

• 
$$z_1 := z_1 + 1$$

• 
$$z_3 := f(z_1)$$

• 
$$z_4 := z_2 + z_3$$

• 
$$z_1 := z_1 + 1$$

• 
$$f(z_1) := z_4$$

$$z_1 = 1$$

$$z_2 = 10$$

$$z_3 = 3$$

$$z_4 = 13$$

|--|

• 
$$z_2 := f(z_1)$$

• 
$$z_1 := z_1 + 1$$

• 
$$z_3 := f(z_1)$$

• 
$$z_4 := z_2 + z_3$$

• 
$$z_1 := z_1 + 1$$

• 
$$f(z_1) := z_4$$

$$z_1 = 2$$

$$z_2 = 10$$

$$z_3 = 3$$

$$z_4 = 13$$

| 10 | 3 | 0 |
|----|---|---|
|    |   |   |

• 
$$z_2 := f(z_1)$$

• 
$$z_1 := z_1 + 1$$

• 
$$z_3 := f(z_1)$$

• 
$$z_4 := z_2 + z_3$$

• 
$$z_1 := z_1 + 1$$

• 
$$f(z_1) := z_4$$

$$z_1 = 2$$

$$z_2 = 10$$

$$z_3 = 3$$

$$z_4 = 13$$

| 10 | 3 | 0 |
|----|---|---|
|    |   |   |

• 
$$z_2 := f(z_1)$$

• 
$$z_3 := f(z_1)$$

• 
$$z_4 := z_2 + z_3$$

• 
$$z_1 := z_1 + 1$$

• 
$$f(z_1) := z_4$$

$$z_1 = 2$$

$$z_2 = 10$$

$$z_3 = 3$$

$$z_4 = 13$$

• 
$$z_2 := f(z_1)$$

• 
$$z_1 := z_1 + 1$$

• 
$$z_3 := f(z_1)$$

• 
$$z_4 := z_2 + z_3$$

• 
$$z_1 := z_1 + 1$$

• 
$$f(z_1) := z_4$$

#### Outline

- Preliminaries
  - Random Access Machine (RAM)
  - Polynomial-time Algorithm
  - Decision Problems

P, NP, and NP-Complete Problems

## Polynomial Time Algorithm

Input size = Number of bits b

- Polynomial time algorithm
  - Number of instructions = t
  - t is bounded by a polynomial in b
  - Good algorithm
  - Efficient algorithm

### Outline

- Preliminaries
  - Random Access Machine (RAM)
  - Polynomial-time Algorithm
  - Decision Problems (Answered by 'yes' or 'no')
- P, NP, and NP-Complete Problems

Reduction

#### **Decision Problem**

- Finite set  $\Sigma$  called alphabet of size  $\geq 2$ 
  - $-\{0,1\}$
  - {a,b,c,d,e,...,x,y,z}
- Set Σ\* of all finite length strings (called words)
  - 0*,* 1*,* 00*,* 01*,* 10*,* 11*,* 000*,....*
  - discrete, optimization
- Size of word size(w) = number of letters
  - size(00) = 2
  - size(discrete) = 8

### **Decision Problem**

- Problem Π is a subset of Σ\*
  - All words with the answer "yes"

- Informal problem
  - Given input word  $x ∈ Σ^*$ , does x ∈ Π?

- Polynomial-time solvable problem Π
  - There exists a polynomial-time algorithm for the informal problem
  - Polynomial in size(x)



$$V_0, V_1, V_2 \dots V_n \subseteq \Sigma$$

$$\{ \in \Sigma \} \in \Sigma , \in \Sigma$$

$$0,1,2,...\ N \in \Sigma$$

$$\begin{aligned} \{v_0, v_1, v_2, v_3, v_4, v_5\}, \\ \{\{v_0, v_1\}, \{v_0, v_3\}, \{v_1, v_2\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_3, v_4\}\}, \\ \{3, 5, 5, 4, 6, 1\}, \\ \{v_0, v_3, v_4, v_2\} \end{aligned} \in \Sigma^*$$



$$V_0, V_1, V_2 \dots V_n \subseteq \Sigma$$

$$\{ \in \Sigma \} \in \Sigma , \in \Sigma$$

$$0,1,2,...\ N \in \Sigma$$

$$\begin{aligned} \{\mathsf{v}_0,\mathsf{v}_1,\mathsf{v}_2,\mathsf{v}_3,\mathsf{v}_4,\mathsf{v}_5\}, \\ \{\{\mathsf{v}_0,\mathsf{v}_1\}, \{\mathsf{v}_0,\mathsf{v}_3\}, \{\mathsf{v}_1,\mathsf{v}_2\}, \{\mathsf{v}_2,\mathsf{v}_3\}, \{\mathsf{v}_2,\mathsf{v}_4\}, \{\mathsf{v}_3,\mathsf{v}_4\}\}, \\ \{3,5,5,4,6,1\}, \\ \{\mathsf{v}_0,\mathsf{v}_3,\mathsf{v}_2\} \end{aligned} \in \Sigma^*$$



$$V_0, V_1, V_2 \dots V_n \subseteq \Sigma$$

$$\{ \in \Sigma \} \in \Sigma , \in \Sigma$$

$$0,1,2,...\ N \in \Sigma$$

$$\begin{aligned} \{\mathsf{v}_0, \mathsf{v}_1, \mathsf{v}_2, \mathsf{v}_3, \mathsf{v}_4, \mathsf{v}_5\}, \\ \{\{\mathsf{v}_0, \mathsf{v}_1\}, \{\mathsf{v}_0, \mathsf{v}_3\}, \{\mathsf{v}_1, \mathsf{v}_2\}, \{\mathsf{v}_2, \mathsf{v}_3\}, \{\mathsf{v}_2, \mathsf{v}_4\}, \{\mathsf{v}_3, \mathsf{v}_4\}\}, \\ \{3, 5, 5, 4, 6, 1\}, \\ \{\mathsf{v}_0, \mathsf{v}_1, \mathsf{v}_2\} \end{aligned} \in \Sigma^*$$



$$V_0, V_1, V_2 \dots V_n \subseteq \Sigma$$

$$\{ \in \Sigma \} \in \Sigma , \in \Sigma$$

$$0,1,2,...\ N \in \Sigma$$

$$\{v_0, v_1, v_2, v_3, v_4, v_5\}, \\ \{\{v_0, v_1\}, \{v_0, v_3\}, \{v_1, v_2\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_3, v_4\}\}, \\ \{3, 5, 5, 4, 6, 1\}, \\ \{v_0, v_1, v_2\}$$



$$V_0, V_1, V_2 \dots V_n \subseteq \Sigma$$

$$\{ \in \Sigma \} \in \Sigma , \in \Sigma$$

$$\} \subseteq \Sigma$$

$$, \in \Sigma$$

$$0,1,2,...N \subseteq \Sigma$$

#### Given graph G and path P, is P a shortest path in G?

$$\{v_0, v_1, v_2, v_3, v_4, v_5\}, \\ \{\{v_0, v_1\}, \{v_0, v_3\}, \{v_1, v_2\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_3, v_4\}\}, \\ \{3, 5, 5, 4, 6, 1\}, \\ \{v_0, v_3, v_4\}$$

### Hamiltonian Circuit



Circuit consisting of all vertices



Has a Hamiltonian Circuit





Has a Hamiltonian Circuit



Given graph G, is the graph Hamiltonian?



$$V_0, V_1, V_2 \dots V_n \subseteq \Sigma$$

$$\{ \in \Sigma \} \in \Sigma , \in \Sigma$$

$$0,1,2,...\ N \in \Sigma$$



$$V_0, V_1, V_2 \dots V_n \subseteq \Sigma$$

$$\{ \in \Sigma \} \in \Sigma , \in \Sigma$$

$$0,1,2,...\ N \in \Sigma$$



$$V_0, V_1, V_2 \dots V_n \subseteq \Sigma$$

$$\{ \in \Sigma \} \in \Sigma , \in \Sigma$$

$$0,1,2,...\ N \in \Sigma$$

$$\{v_0, v_1, v_2, v_3, v_4, v_5\}, \\ \{\{v_0, v_3\}, \{v_1, v_0\}, \{v_2, v_1\}, \{v_3, v_0\}, \{v_3, v_4\}, \{v_4, v_2\}\},$$

### Outline

Preliminaries

• P, NP, and NP-Complete Problems

- Polynomial-time solvable problem Π
  - There exists a polynomial-time algorithm that decides whether  $x \in \Sigma^*$  belongs to  $\Pi$  or not.
  - Polynomial in size(x)
- $P = \{all \Pi, \Pi \text{ is polynomial time solvable}\}$

- For example
  - Shortest path with +ve lengths ∈ P
  - Shortest path with no –ve length circuit ∈ P

#### NP

- Π ∈ NP
  - There exists a problem  $\Pi' \subseteq P$
  - There exists a polynomial p
  - There exists an x, size(x)  $\leq$  p(size(w)) such that
  - $w \in \Pi$  if and only if  $wx \in \Pi'$

Polynomial-time checkable 'certificate'

- For example
  - Hamiltonian graph problem ∈ NP

#### NP

Relationship between P and NP?

- P is a subset of NP
  - "P = NP or not" is an open problem
  - One of Clay Institute's Millennium Prize problems

- For example
  - Shortest path with +ve lengths ∈ NP
  - Shortest path with no –ve length circuit ∈ NP

## NP-Complete

- Hardest problems in NP
  - All problems in NP can be reduced to an NP-complete problem

- Π is reducible to Λ
  - There exists a polynomial time algorithm
  - Given w, returns x
  - $w \in \Pi$  if and only if  $x \in \Lambda$

• If  $\Lambda \subseteq P$  then  $\Pi \subseteq P$ 

## NP-Complete

- Hardest problems in NP
  - All problems in NP can be reduced to an NP-complete problem

- Π is reducible to Λ
  - There exists a polynomial time algorithm
  - Given w, returns x
  - $w \in \Pi$  if and only if  $x \in \Lambda$

• If  $\Lambda \subseteq NP$  then  $\Pi \subseteq NP$ 

## NP-Complete

- Hardest problems in NP
  - All problems in NP can be reduced to an NP-complete problem

- Π is reducible to Λ
  - There exists a polynomial time algorithm
  - Given w, returns x
  - $w \in \Pi$  if and only if  $x \in \Lambda$

• If  $\Lambda \subseteq NP$ -complete and  $\Lambda \subseteq P$ , then P = NP

## P, NP, EXP, etc.



#### Outline

- Reduction
  - "SAT" is reducible to "3-SAT"
  - "3-SAT" is reducible to "Partition"
  - "Partition" is reducible to "Hamiltonian Path"

NP-hard Problems

NP-completeness of SAT

Alphabet Σ containing variables x<sub>1</sub>,x<sub>2</sub>,...,x<sub>n</sub>

• And special symbols (, ),  $\Lambda$ ,  $\vee$ ,~

And not containing 0 and 1

A variable is a Boolean expression

Alphabet Σ containing variables x<sub>1</sub>,x<sub>2</sub>,...,x<sub>n</sub>

• And special symbols (, ),  $\Lambda$ ,  $\vee$ ,~

- If v and w are Boolean expressions then
  - (v  $\wedge$  w) is a Boolean expression

Alphabet Σ containing variables x<sub>1</sub>,x<sub>2</sub>,...,x<sub>n</sub>

• And special symbols (, ),  $\Lambda$ ,  $\vee$ ,~

- If v and w are Boolean expressions then
  - (v  $\vee$  w) is a Boolean expression

Alphabet Σ containing variables x<sub>1</sub>,x<sub>2</sub>,...,x<sub>n</sub>

• And special symbols (, ),  $\wedge$ ,  $\vee$ ,  $\sim$ 

- If v and w are Boolean expressions then
  - ~v is a Boolean expression
  - ~w is a Boolean expression

Alphabet Σ containing variables x<sub>1</sub>,x<sub>2</sub>,...,x<sub>n</sub>

• And special symbols (, ),  $\Lambda$ ,  $\vee$ ,~

- For example,  $f(x_1, x_2, ..., x_n)$ 
  - $-((x_2 \land x_3) \lor \sim (x_3 \lor x_5) \land x_2) \lor \sim (x_2 \land x_5)$
  - $-\sim(\sim x_2 \vee \sim x_3) \wedge \sim x_1$

# Satisfiability

- $f(x_1,x_2,...,x_n)$  is satisfiable if
  - there exists an assignment  $x_1 = \alpha_1, ..., x_n = \alpha_n$
  - where  $\alpha_i \in \{0,1\}$
  - such that  $f(x_1, x_2, ..., x_n) = 1$

The following identities hold

$$-0 \land 0 = 0, 0 \land 1 = 0, 1 \land 0 = 0, 1 \land 1 = 1$$

$$-0 \lor 0 = 0, 0 \lor 1 = 1, 1 \lor 0 = 1, 1 \lor 1 = 1$$

$$-~^{\sim}0 = 1, ~^{\sim}1 = 0$$

$$-(0) = 0, (1) = 1$$

#### SAT

Given the alphabet Σ

Given the identities for 0 and 1

• SAT is a subset of  $\Sigma^*$  that is satisfiable

- Informal Problem
  - Given a Boolean expression w, is w satisfiable

#### 3-SAT

A special case of SAT

- Given variables  $x_1, x_2, ..., x_n \in \Sigma$ 
  - $-B_1$  consists of  $x_1, x_1, ..., x_n, x_n$
  - $-B_2$  consists of  $(w_1 \lor ... \lor w_k)$ ,  $w_i ∈ B_1$ ,  $1 \le k \le 3$
  - $-B_3$  consists of  $W_1 \wedge W_2 \wedge ... \wedge W_m$ ,  $W_i \in B_2$
  - e.g.,  $(x_1 \lor ~x_2 \lor x_3) \land (x_2 \lor ~x_3 \lor x_4) \land (~x_1 \lor ~x_2)$

• 3-SAT is the subset of B<sub>3</sub> that is satisfiable

#### SAT is reducible to 3-SAT

• 
$$x_1 = x_2 \lor x_3$$
  
-  $(x_1 \lor ^{\sim} x_2) \land (x_1 \lor ^{\sim} x_3) \land (^{\sim} x_1 \lor x_2 \lor x_3)$ 

• 
$$x_1 = x_2 \wedge x_3$$
  
 $-(^{\sim}x_1 \vee x_2) \wedge (^{\sim}x_1 \vee x_3) \wedge (x_1 \vee ^{\sim}x_2 \vee ^{\sim}x_3)$ 

• 
$$x_1 = {}^{\sim}x_2$$
  
-  $(x_1 \lor x_2) \land ({}^{\sim}x_1 \lor {}^{\sim}x_2)$ 

### SAT is reducible to 3-SAT

Example on the board

$$(x_1 \wedge x_2) \vee \sim ((\sim x_1 \vee x_3) \wedge x_4 \wedge \sim x_5) \wedge \sim x_2$$

#### SAT is reducible to 3-SAT

Example on the board

$$(x_1 \wedge x_2) \vee \sim ((\sim x_1 \vee x_3) \wedge x_4 \wedge \sim x_5) \wedge \sim x_2$$

(Using new variables + truth table)

#### Outline

- Reduction
  - "SAT" is reducible to "3-SAT"
  - "3-SAT" is reducible to "Partition"
  - "Partition" is reducible to "Hamiltonian Path"

NP-hard Problems

NP-completeness of SAT

#### 3-SAT

A special case of SAT

- Given variables  $x_1, x_2, ..., x_n \in \Sigma$ 
  - $-B_1$  consists of  $x_1, x_1, ..., x_n, x_n$
  - $-B_2$  consists of  $(w_1 \lor ... \lor w_k)$ ,  $w_i ∈ B_1$ ,  $1 \le k \le 3$
  - $-B_3$  consists of  $W_1 \wedge W_2 \wedge ... \wedge W_m$ ,  $W_i \in B_2$
  - e.g.,  $(x_1 \lor ~x_2 \lor x_3) \land (x_2 \lor ~x_3 \lor x_4) \land (~x_1 \lor ~x_2)$

• 3-SAT is the subset of B<sub>3</sub> that is satisfiable

#### **Partition**

A finite set X

- Partition of X is a collection of subsets
  - Mutually exclusive
  - Collectively exhaustive

- For example, X = {a,b,c,d,e,f}
  - {{a,b},{c},{d,e,f}} is a partition
  - {{a,b},{a,c},{d,e,f}} is not a partition
  - {{a,b},{c},{d,e}} is not a partition

#### **Partition**

A finite set X

- Partition of X is a collection of subsets
  - Mutually exclusive
  - Collectively exhaustive

- Problem: Given collection of subsets C
  - Does C contain a partition of X?
  - Or not?

### 3-SAT is reducible to Partition

• 
$$f = W_1 \wedge W_2 \wedge ... W_m$$

- Bipartite undirected graph with V = V<sub>1</sub> U V<sub>2</sub>
  - $-V_1$  are variables  $x_1, x_2, ..., x_n$
  - $-V_2$  are words  $W_1, W_2, ..., W_m$
- Edges  $E = E_1 \cup E_2$ 
  - $E_1 = \{(w_i, x_j)\}, x_j \in w_i$
  - $E_2 = \{(w_i, x_j)\}, \ ^\sim x_j \in w_i$

#### 3-SAT is reducible to Partition

- Collection C<sub>1</sub> of sets {w<sub>i</sub>} U E<sub>i</sub>
  - E<sub>i</sub> is non-empty
  - E<sub>i</sub> is a subset of edge set incident with w<sub>i</sub>

- Collection C<sub>2</sub> of sets {x<sub>j</sub>} U E<sub>j</sub> and {x<sub>j</sub>} U E'<sub>j</sub>
  - $-E_j$  is the set of all edges in  $E_1$  incident with  $x_j$
  - $-E'_{j}$  is the set of all edges in  $E_{2}$  incident with  $x_{j}$
- f is satisfiable iff C<sub>1</sub> U C<sub>2</sub> contains a partition

#### Outline

- Reduction
  - "SAT" is reducible to "3-SAT" (review)
  - "3-SAT" is reducible to "Partition"
  - "Partition" is reducible to "Hamiltonian Path"

NP-hard Problems

NP-completeness of SAT

#### **Partition**

A finite set X

- Partition of X is a collection of subsets
  - Mutually exclusive
  - Collectively exhaustive

- Problem: Given collection of subsets C
  - Does C contain a partition of X?
  - Or not?

#### Hamiltonian Path

Digraph D = (V, A)

- Path P is Hamiltonian if
  - It traverses each vertex in V
  - All vertices in the path are distinct

- Problem: Given D
  - Does it contain a Hamiltonian Path?
  - Or not?

**Connection to Shortest Path?** 

### Partition is reducible to Hamiltonian

Partition Problem: Set X, Collection C

$$-X = \{1,2,...,k\}$$

$$-C = \{C_1, C_2, ..., C_m\}$$

• Let  $C_i = \{j_1,...,j_t\}$ 



Introduce  $r_0$  and  $s_0$ . Connect  $r_m$  to  $s_0$ .

### Partition is reducible to Hamiltonian

Partition Problem: Set X, Collection C

$$-X = \{1,2,...,k\}$$

$$-C = \{C_1, C_2, ..., C_m\}$$

• Let  $C_i = \{j_1,...,j_t\}$ 



C has a partition iff G has Hamiltonian r<sub>0</sub>-s<sub>k</sub> path

#### Partition is reducible to Hamiltonian

Partition Problem: Set X, Collection C

$$-X = \{1,2,...,k\}$$

$$-C = \{C_1, C_2, ..., C_m\}$$

• Let  $C_i = \{j_1, ..., j_t\}$ 



#### Left as Exercise!!

### Outline

Reduction

NP-hard Problems

NP-completeness of SAT

#### **NP-hard**

- Need not be in NP
  - No polynomial-time checkable certificate
  - Not even a decision problem (e.g. optimization)

At least as hard as NP-complete problems

- $\Lambda \subseteq NP$ -hard
  - There exists  $\Pi \in NP$ -complete
  - Π is reducible to Λ

## NP-hard



## Examples of NP-complete problems

- 3-Partition: given n integers, can you divide them into triples of equal sum?
- Travelling salesman problem
- Tetris
- Minesweeper, Sudoku
- SAT
- Knapsack (pseudopoly, not poly)
- ...

### Outline

Reduction

NP-hard Problems

NP-completeness of SAT (todo)