Discrete Optimization

MA2827

Fondements de l'optimisation discrète

https://project.inria.fr/2015ma2827/

Outline

Preliminaries (Recap)

Menger's Theorem for Disjoint Paths

Path Packing

Directed Graphs (Digraphs)

'n' vertices or nodes V

'm' arcs A: ordered pairs from V

Indegree of a Vertex

Number of arcs entering the vertex.

 $indeg(v_0) = 1$, $indeg(v_1) = 1$, $indeg(v_4) = 2$, ...

Indegree of a Subset of Vertices

Number of arcs entering the subset.

indeg($\{v_0, v_1\}$) = 1, indeg($\{v_1, v_4\}$) = 3, ...

Outdegree of a Vertex

Number of arcs leaving the vertex.

outdeg(v_0) = 1, outdeg(v_1) = 1, outdeg(v_2) = 2, ...

Outdegree of a Subset of Vertices

Number of arcs leaving the subset.

outdeg($\{v_0, v_1\}$) = 1, outdeg($\{v_1, v_4\}$) = 2, ...

s-t Path

Sequence P = $(s=v_0, a_1, v_1, ..., a_k, t=v_k)$, $a_i = (v_{i-1}, v_i)$

Vertices $s=v_0, v_1, ..., t=v_k$ are distinct

S-T Path

D = (V, A)

S and T are subsets of V

Any st-path where $s \in S$ and $t \in T$

S-T Path

D = (V, A)

S and T are subsets of V

Any st-path where $s \in S$ and $t \in T$

Outline

Preliminaries

Menger's Theorem for Disjoint Paths

Path Packing

Internally Vertex Disjoint s-t Paths

Set of s-t Paths with no common internal vertex

Internally Vertex Disjoint s-t Paths

Set of s-t Paths with no common internal vertex

Internally Vertex Disjoint s-t Paths

Set of s-t Paths with no common internal vertex

Arc Disjoint s-t Paths

Set of s-t Paths with no common arcs

Arc Disjoint s-t Paths

Set of s-t Paths with no common arcs

Arc Disjoint s-t Paths

Set of s-t Paths with no common arcs

Outline

Preliminaries

- Menger's Theorem for Disjoint Paths
 - Vertex Disjoint S-T Paths
 - Internally Vertex Disjoint s-t Paths
 - Arc Disjoint s-t Paths

Path Packing

Maximum number of disjoint paths?

Minimum size of S-T disconnecting vertex set !!

Connection

Maximum number of disjoint paths

 \leq

Minimum size of S-T disconnecting vertex set !!

Maximum number of disjoint paths

=

Minimum size of S-T disconnecting vertex set !!

Proof?

True for |A| = 0

Assume it is true for |A| < m

Consider |A| = m

Let minimum size disconnecting vertex set = k

Remove an arc (u,v)

Minimum disconnecting vertex set = U. |U| = k

Proved by induction

Remove an arc (u,v)

Minimum disconnecting vertex set U. |U| = k-1

 $U' = U union \{u\}$

 $U'' = U union \{v\}$

U' is an S-T disconnecting vertex set of size k in D

Any S-U' disconnecting vertex set has size ≥ k

Graph contains k disjoint S-U' paths (induction)

U' is an S-T disconnecting vertex set of size k in D

Any S-U' disconnecting vertex set has size ≥ k

Graph contains k disjoint S-U' paths (induction)

U" is an S-T disconnecting vertex set of size k in D

Any U"-T disconnecting vertex set has size ≥ k

Graph contains k disjoint U"-T paths (induction)

U" is an S-T disconnecting vertex set of size k in D

Any U"-T disconnecting vertex set has size ≥ k

Graph contains k disjoint U"-T paths (induction)

Add arc (u,v) back

Add arc (u,v) back

(k-1) disjoint pairs of paths intersecting in U

1 disjoint pair of paths now connected by (u,v)

Total k disjoint paths

Hence proved

Outline

Preliminaries

- Menger's Theorem for Disjoint Paths
 - Vertex Disjoint S-T Paths
 - Internally Vertex Disjoint s-t Paths
 - Arc Disjoint s-t Paths

Path Packing

Internally Vertex Disjoint s-t Paths

Maximum number of disjoint paths?

Minimum size of s-t vertex-cut!!

Set of s-t Paths with no common internal vertex

Connection

Maximum number of disjoint paths?

 \leq

Minimum size of s-t vertex-cut!!

Maximum number of disjoint paths?

=

Minimum size of s-t vertex-cut!!

Proof?

Theorem for vertex disjoint S-T paths

implies

Theorem for internally vertex disjoint s-t paths

Theorem for vertex disjoint S-T paths

is implied by

Theorem for internally vertex disjoint s-t paths

Left As Exercise !!!

Outline

Preliminaries

- Menger's Theorem for Disjoint Paths
 - Vertex Disjoint S-T Paths
 - Internally Vertex Disjoint s-t Paths
 - Arc Disjoint s-t Paths

Path Packing

Arc Disjoint s-t Paths

Maximum number of disjoint paths?

Minimum size of s-t cut !!

Set of s-t Paths with no common arcs

s-t Cut

C = out-arcs(U)

s in U

t not in U

s-t Cut

C = out-arcs(U)

s in U

t not in U

s-t Cut

C = out-arcs(U)

s in U

t not in U

Connection

Maximum number of disjoint paths?

 \leq

Minimum size of s-t cut !!

Minimum set of arcs intersecting all s-t paths is a cut

Maximum number of disjoint paths?

=

Minimum size of s-t cut !!

Proof?

Line Digraph

L(D) is a line digraph of D

Node n_{ij} of L(D) corresponds to arc (v_i,v_j) in D

Arc (n_{ij}, n_{kl}) exists if and only if j = k

Vertex disjoint S-T path in L(D)

implies

Arc disjoint s-t path in D

Minimum size S-T disconnecting vertex set

implies

s-t cut

Theorem for vertex disjoint S-T paths

implies

Theorem for arc disjoint s-t paths

Theorem for vertex disjoint S-T paths

is implied by

Theorem for arc disjoint s-t paths

Left As Exercise !!!

Outline

Preliminaries

Menger's Theorem for Disjoint Paths

- Path Packing (todo)
 - Description of the Algorithm
 - Analysis of the Algorithm