
Discrete	Optimization
MA2827

Fondements de	l’optimisation discrète

https://project.inria.fr/2015ma2827/

Approximate	methods:	local	search

Material	based	on	the	lectures	of	Pascal	Van	Hentenryck at	Coursera



Introduction

• Many	important	problems	are	provably	not	solvable	in	
polynomial	time	(NP	and	harder)

• But,	these	results	are	based	on	the	worst-case	analysis

• Practical	instances	are	often	easier

• Approximate	methods	can	often	obtain	good	solutions



Approximate	methods

• Local	search	(today)

• Relaxation

• Constraint	programming



Outline
• Simple	neighborhoods

- queens	on	the	chess	board
- warehouse	location

• Travelling	salesman	problem
• Escaping	local	minima

- randomization
- tabu search

• Graph	coloring
• Complex	neighborhoods

- sports	scheduling
- image	segmentation



Local	search

• Moves	between	configurations	by	performing	local	
moves

• Works	with	complete	assignments	of	the	variables
• Optimization	problems:	

• Start	from	a	suboptimal	configuration
• Move	towards	better	solutions

• Satisfaction	problems:
• Start	from	an	infeasible	configuration
• Move	towards	feasibility

• No	guarantees
• Can	work	great	in	practice!



Neighborhood

• Optimizing	a	function	f

• Local	moves	define	a	neighborhood	
• Configuration	that	are	close
• N:	C	->	2C

• Local	search	is	a	graph	exploration



Example:	satisfaction	problem

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Good Bad



Example:	satisfaction	problem

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Representation:	the	row	of	the	queen	in	each	column

Local	steps:	move	one	of	the	queens	in	its	column



Example:	satisfaction	problem

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Representation:	the	row	of	the	queen	in	each	column

Local	steps:	move	one	of	the	queens	in	its	column

Local	search:	
– start	with	infeasible	configuration
– move	towards	feasibility



8	queens

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Max/min	conflict:
Count	constraint	violations



8	queens

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Count	constraint	violations



8	queens

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Count	constraint	violations

1



8	queens

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Count	constraint	violations

1 2



8	queens

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Count	constraint	violations

1 2 2 3 2 2 2 0 7



8	queens

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Count	constraint	violations

Queen	with	most	violations

1 2 2 3 2 2 2 0 7



8	queens

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Count	constraint	violations

Queen	with	most	violations

Possible	moves

1 2 2 3 2 2 2 0 7



8	queens

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Count	constraint	violations

Queen	with	most	violations

Possible	moves

-1
0
-1
0
0
-2
-2
-2

1 2 2 3 2 2 2 0 7



8	queens

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Count	constraint	violations

Queen	with	most	violations

Possible	moves

Find	the	best	move

-1
0
-1
0
0
-2
-2
-2

1 2 2 3 2 2 2 0 7



8	queens

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Count	constraint	violations

Queen	with	most	violations

Possible	moves

Find	the	best	move



8	queens

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Count	constraint	violations

0 1 1 1 2 2 2 1 5



8	queens

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Count	constraint	violations

Queen	with	most	violations

0 1 1 1 2 2 2 1 5



8	queens

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Count	constraint	violations

Queen	with	most	violations

Possible	moves

0
0
0
0
0
0
-1
0

0 1 1 1 2 2 2 1 5



8	queens

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Count	constraint	violations

Queen	with	most	violations

Possible	moves

Find	the	best	move

0
0
0
0
0
0
-1
0

0 1 1 1 2 2 2 1 5



8	queens

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Count	constraint	violations

Queen	with	most	violations

Possible	moves

Find	the	best	move



8	queens

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Count	constraint	violations

0 1 1 2 1 1 1 1 4



8	queens

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Count	constraint	violations

Queen	with	most	violations

0 1 1 2 1 1 1 1 4



8	queens

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Count	constraint	violations

Queen	with	most	violations

Possible	moves

-1
0
0
1
1
0
0
0

0 1 1 2 1 1 1 1 4



8	queens

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Count	constraint	violations

Queen	with	most	violations

Possible	moves

Find	the	best	move

-1
0
0
1
1
0
0
0

0 1 1 2 1 1 1 1 4



8	queens

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Count	constraint	violations

Queen	with	most	violations

Possible	moves

Find	the	best	move



8	queens

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Count	constraint	violations

0 1 1 1 0 1 2 0 3



8	queens

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Count	constraint	violations

Queen	with	most	violations

0 1 1 1 0 1 2 0 3



8	queens

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Count	constraint	violations

Queen	with	most	violations

Possible	moves

0
0
-1
0
1
-1
0
0

0 1 1 1 0 1 2 0 3



8	queens

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Count	constraint	violations

Queen	with	most	violations

Possible	moves

Find	the	best	move

0
0
-1
0
1
-1
0
0

0 1 1 1 0 1 2 0 3



8	queens

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Count	constraint	violations

Queen	with	most	violations

Possible	moves

Find	the	best	move



8	queens

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Count	constraint	violations

0 1 1 0 0 1 1 0 2



8	queens

Task:	place	8	queens	on	the	chess	board	such	that	they	
do	not	attack	each	other

Count	constraint	violations

Local	minimum!

0 1 1 0 0 1 1 0 2



Local	search:	no	guarantees

Local	minima:
no	step	improves	the	objective

No	guarantees	for	global	optimality

Escaping	local	optima	is	a	critical	issue	in	local	search



Example:	optimization	problem
Task:	where	to	place	warehouses?
– Cost	for	opening	warehouse	at	position	w:	fw
– Cost	for	transportation	from	w	to	c:	tw,c

– warehouse	possibility	 																						– customer



Warehouse	location
Task:	where	to	place	warehouses?
– Cost	for	opening	warehouse	at	position	w:	fw
– Cost	for	transportation	from	w	to	c:	tw,c

– warehouse	possibility	 																						– customer



Warehouse	location
Task:	where	to	place	warehouses?
– Cost	for	opening	warehouse	at	position	w:	fw
– Cost	for	transportation	from	w	to	c:	tw,c

– warehouse	possibility	 																						– customer



Warehouse	location

Task:	where	to	place	warehouses?					(	input:	fw	,		tw,c	)

Decision	variables:
– owÎ {0,	1}	:		whether	warehouse	w	is	open
– a[c]	Î {1,	…,	W}		:	the	warehouse	assigned	to	customer	c

Objective:

Constraints:
customers	can	be	assigned	only	to	open	warehouses



Warehouse	location

Task:	where	to	place	warehouses?					(	input:	fw	,		tw,c	)

Key	observation:
– once	the	warehouse	locations	have	been	chosen,	the	problem	
is	easy

– it’s	enough	to	assign	customers	to	warehouses	minimizing	the	
transportation	costs

Objective:



Warehouse	location

Task:	where	to	place	warehouses?					(	input:	fw	,		tw,c	)

Neighborhood:
– open/close	warehouses	(flip	the	value	of	ow)
– swap	warehouses	(close	one	and	open	the	other)
– simultaneous	swap	of	k	warehouses



Travelling	salesman	problem	(TSP)

Task:	find	the	shortest	path	to	visit	all cities	exactly	once
– Hamiltonian	cycle	in	a	graph
– simplification:	cities	are	points	in	2D



Travelling	salesman	problem	(TSP)

Task:	find	the	shortest	path	to	visit	all	cities	exactly	once
– Hamiltonian	cycle	in	a	graph
– simplification:	cities	are	points	in	2D



Travelling	salesman	problem	(TSP)

Task:	find	the	shortest	path	to	visit	all cities	exactly	once
– Hamiltonian	cycle	in	a	graph
– simplification:	cities	are	points	in	2D



Travelling	salesman	problem	(TSP)

Task:	find	the	shortest	path	to	visit	all	cities	exactly	once
– Hamiltonian	cycle	in	a	graph
– simplification:	cities	are	points	in	2D

Decision	variables:
where	to	go	next	after	every	city

TSP	if	probably	the	most	well-studied	combinatorial	
problem!



Local	search	for	TSP:	2-OPT

Task:	find	the	shortest	path	to	visit	all	cities	exactly	once

Local	move:
select	two	edges	and	replace	them	by	two	other	edges



Local	search	for	TSP:	2-OPT

Task:	find	the	shortest	path	to	visit	all	cities	exactly	once

Local	move:
select	two	edges	and	replace	them	by	two	other	edges

Crossings	are	bad!



Local	search	for	TSP:	2-OPT

Task:	find	the	shortest	path	to	visit	all	cities	exactly	once

Local	move:
select	two	edges	and	replace	them	by	two	other	edges



Local	search	for	TSP:	2-OPT

Task:	find	the	shortest	path	to	visit	all	cities	exactly	once

Local	move:
select	two	edges	and	replace	them	by	two	other	edges



Local	search	for	TSP:	3-OPT

Task:	find	the	shortest	path	to	visit	all	cities	exactly	once

Local	move:
select	three	edges	and	replace	them	by	three	other	
edges



Local	search	for	TSP:	3-OPT

Task:	find	the	shortest	path	to	visit	all	cities	exactly	once

Local	move:
select	three	edges	and	replace	them	by	three	other	
edges



Local	search	for	TSP:	3-OPT

Task:	find	the	shortest	path	to	visit	all	cities	exactly	once

Local	move:
select	three	edges	and	replace	them	by	three	other	
edges



Local	search	for	TSP

Task:	find	the	shortest	path	to	visit	all	cities	exactly	once

2-OPT:
– the	neighborhood	is	a	set	of	all	tours	that	can	be	
reached	by	swapping	two	edges

3-OPT:
– the	neighborhood	is	a	set	of	all	tours	that	can	be	
reached	by	swapping	three	edges

– much		better	than	2-OPT	in	quality	but	more	expensive
4-OPT?
– marginally	better	but	even	more	expensive



Local	search	for	TSP:	K-OPT

Task:	find	the	shortest	path	to	visit	all	cities	exactly	once

K-OPT:
– replace	the	notion	of	one	favorable	swap	by	a	
sequence	of	favorable	swaps

– do	not	search	for	the	entire	set	of	sequences	but	build	
them	incrementally



Local	search	for	TSP:	K-OPT

Task:	find	the	shortest	path	to	visit	all	cities	exactly	once

K-OPT:
– replace	the	notion	of	one	favorable	swap	by	a	
sequence	of	favorable	swaps

– do	not	search	for	the	entire	set	of	sequences	but	build	
them	incrementally



Task:	find	the	shortest	path	to	visit	all	cities	exactly	once

K-OPT:
– Choose	a	vertex	t1 and	an	edge	(t1,	t2)
– Choose	a	vertex	t3 with	d(t2,	t3)	<	d(t1,	t2)
– If	non	exist,	restart
– Consider	solution	by	removing	(t3,	t4)	and	adding	(t1,	t4)
– Compute	the	cost	but	do	not	connect

Local	search	for	TSP:	K-OPT



Task:	find	the	shortest	path	to	visit	all	cities	exactly	once

K-OPT:

Local	search	for	TSP:	K-OPT

t1
t2



Task:	find	the	shortest	path	to	visit	all	cities	exactly	once

K-OPT:

Local	search	for	TSP:	K-OPT

t1
t2

t3

t4



Task:	find	the	shortest	path	to	visit	all	cities	exactly	once

K-OPT:

Local	search	for	TSP:	K-OPT

t1
t2

t3

t4



Task:	find	the	shortest	path	to	visit	all	cities	exactly	once

K-OPT:

Local	search	for	TSP:	K-OPT

t1
t2

t3

t4



Task:	find	the	shortest	path	to	visit	all	cities	exactly	once

K-OPT:

Local	search	for	TSP:	K-OPT

t1
t2

t3

t4



Task:	find	the	shortest	path	to	visit	all	cities	exactly	once

K-OPT:
– Choose	a	vertex	t1 and	an	edge	(t1,	t2)
– Choose	a	vertex	t3 with	d(t2,	t3)	<	d(t1,	t2)
– If	non	exist,	restart
– Consider	solution	by	removing	(t3,	t4)	and	adding	(t1,	t4)
– Compute	the	cost	but	do	not	connect
– Restart	with	t1 and	edge	(t1,	t4)

Local	search	for	TSP:	K-OPT



Task:	find	the	shortest	path	to	visit	all	cities	exactly	once

K-OPT:

Local	search	for	TSP:	K-OPT

t1
t2

t3

t4



Task:	find	the	shortest	path	to	visit	all	cities	exactly	once

K-OPT:

Local	search	for	TSP:	K-OPT

t1
t2

t3

t4t5

t6



Task:	find	the	shortest	path	to	visit	all	cities	exactly	once

K-OPT:

Local	search	for	TSP:	K-OPT

t1
t2

t3

t4t5

t6



Task:	find	the	shortest	path	to	visit	all	cities	exactly	once

K-OPT:

Local	search	for	TSP:	K-OPT

t1
t2

t3

t4t5

t6



Task:	find	the	shortest	path	to	visit	all	cities	exactly	once

K-OPT:
– Choose	a	vertex	t1 and	an	edge	(t1,	t4)
– Choose	a	vertex	t5 with	d(t4,	t5)	<	d(t1,	t4)
– If	non	exist,	restart
– Consider	solution	by	removing	(t6,	t5)	and	adding	(t1,	t6)
– Compute	the	cost	but	do	not	connect
– Restart	with	t1 and	edge	(t1,	t6)

Local	search	for	TSP:	K-OPT



Task:	find	the	shortest	path	to	visit	all	cities	exactly	once

K-OPT:

Local	search	for	TSP:	K-OPT

t1
t2

t3

t4t5

t6



Task:	find	the	shortest	path	to	visit	all	cities	exactly	once

K-OPT:

Local	search	for	TSP:	K-OPT

t1
t2

t3

t4t5

t6
t7

t8



Task:	find	the	shortest	path	to	visit	all	cities	exactly	once

K-OPT:

Local	search	for	TSP:	K-OPT

t1
t2

t3

t4t5

t6
t7

t8



Task:	find	the	shortest	path	to	visit	all	cities	exactly	once

K-OPT:

Local	search	for	TSP:	K-OPT

t1
t2

t3

t4t5

t6
t7

t8
A	good	move!



Task:	find	the	shortest	path	to	visit	all	cities	exactly	once

– Start	with	simple	ideas
– Use	common	sense

• Which	moves	are	likely	to	be	good?
• Which	moves	are	likely	to	be	bad?
• What	connections	do	you	need?

– Visualize	the	path
– Profile	code	before	running	for	long
– Escape	local	minima

Local	search	for	TSP:	hints



How	to	make	local	search	work?

Local	search	has	no	guarantees.

How	to	make	local	search	work	well?

• Connectivity

• Escaping	local	minima



Local	search



Connectivity

Important	property	of	local	neighborhoods

A	neighborhood	N	is	connected	if,	from	every	
configuration	S,	some	optimal	solution	O	can	be	
reached	by	a	sequence	of	moves



Connectivity

Connectivity	does	not	guarantee	optimality



Connectivity	of	8-queens

Any	two	configurations	can	be	linked	in	at	most	8	moves



Connectivity	of	TSP

Is	2-OPT	connected?

Simple	algorithm:
loop	other	the	points	along
the	optimal	path	and	fix
edges	of	the	initial	path
one	by	one



Local	minima

Greedy	local	search	can	easily	get	stuck	in	local	minima.
How	to	find	a	good	one?		



Local	search

• States
- configurations

• Moving	from	state	s	to	one	of	its	neighbors
- N(s):	neighborhood	of	s

• Some	neighbors	are	legal;	others	are	not
- L(	N(s),	s	):	set	of	legal	neighbors

• Select	one	of	the	legal	neighbors
- S(	L(N(s),	s),	s	);	selection	function

• Objective	function
- minimizing	f(s)



Basic	local	search

Example:
• Legal	moves:	local	improvements

- L(N,	s)	=	{n	in	N			|				f(n)		<	f(s)	}
• Selection	function:	greedy	selection

- S(L,	s)	=	argminn	in	L f(n)



Heuristics	and	Metaheuristics

Heuristics
• choose	the	next	neighbor
• use	local	information	(state	s	and	its	neighborhood)
• drive	the	search	towards	a	local	minimum

Metaheuristics
• aim	at	escaping	local	minima
• drive	the	search	towards	a	global	minimum
• typically	include	some	memory	of	learning



Properties	of	the	neighbors

• Legal	neighbors
conditions	on	the	value	of	the	objective	function

• Local	improvement
L(N,	s)	=	{		n	in	N		|		f(n)	<	f(s)		}

• No	degradation
L(N,	s)	=	{		n	in	N		|		f(n)	<=	f(s)		}

• Potential	degradation
L(N,	s)	=	N



Selecting	a	neighbor

• How	to	select	the	neighbor?
exploring	the	whole	or	part	of	the	neighborhood

• Best	neighbor
select	“the”	best	neighbor	in	the	neighborhood

• First	neighbor
select	the	first	“legal”	neighbor
avoid	scanning	the	entire	neighborhood

• Multi-stage	selection
first,	select	one	“part”	of	neighborhood
second,	select	from	the	remaining	“part”	of	neighborhood



Multi-stage	selection

1. Select	the	variable	
with	the	most	violations

2. Select	the	position	with
the	fewest	resulting	violations

O(	n	)	runtime	against	O(	n2 )	of	the	full	search

-1
0
-1
0
0
-2
-2
-2

1 2 2 3 2 2 2 0 7



Escaping	local	minima

• Randomization
• Random	restarts

generic,	can	be	always	tried

• Metropolis	scheme
• Simulated	annealing

• Tabu search



Metropolis	heuristics

• Basic	idea
• accept	a	move	if	it	improves	the	objective	value
• accept	“bad	moves”	as	well	with	some	probability
• the	probability	depends	on	how	“bad”	the	move	is
• inspired	by	statistical	physics

• How	to	choose	the	probability?
• t is	a	scaling	parameter	(called	temperature)
• Δ	is	the	difference		f(n)	– f(s)
• a degrading	move	is	accepted	with	probability



Metropolis	heuristics

• What	happens	for	a	large	t	?
• probability	of	accepting	a	degrading	move	is	large

• What	happens	for	a	small	t	?
• probability	of	accepting	a	degrading	move	is	small

• Finding	the	correct	temperature	is	hard

• Let	us	gradually	change	the	temperature
simulated	annealing



Simulated	annealing

• Based	on	statistical	physics
• Heating	and	cooling	schedules	of	crystals

• Key	idea
• Use	Metropolis	algorithm	but	adjust	the	temperature	
dynamically
• Start	with	a	high	temperature	(random	moves)
• Decrease	the	temperature
• When	the	temperature	is	low	becomes	a	local	search



Simulated	annealing

• Guaranteed	to	converge	to	a	global	optimum
• connected	neighborhood
• slow	cooling	schedule

slower	than	the	exhaustive	search

• In	practice
• can	give	excellent	results
• need	to	tune	a	temperature	schedule
• default	choice:			tk+1 =	α tk

• Additional	tools
• restarts
• reheats



Tabu search

• Key	idea
• maintain	the	sequence	of	nodes	already	visited

tabu lists	and	tabu nodes



Tabu search

• Key	idea
• maintain	the	sequence	of	nodes	already	visited

tabu lists	and	tabu nodes

Tabu nodes				:			nodes	already	visited	



Tabu search

• Key	idea
• maintain	the	sequence	of	nodes	already	visited

tabu lists	and	tabu nodes

• Select	the	best	configurations	that	is	not	tabu,
i.e.,	has	not	been	visited	before



Tabu search

• Key	idea
• maintain	the	sequence	of	nodes	already	visited

tabu lists	and	tabu nodes

Tabu nodes				:			nodes	already	visited	



Tabu search

• Key	idea
• maintain	the	sequence	of	nodes	already	visited

tabu lists	and	tabu nodes

Tabu nodes				:			nodes	already	visited	



Tabu search

• Key	idea
• maintain	the	sequence	of	nodes	already	visited

tabu lists	and	tabu nodes

Tabu nodes				:			nodes	already	visited	



Tabu search

• Key	idea
• maintain	the	sequence	of	nodes	already	visited

tabu lists	and	tabu nodes

Tabu nodes				:			nodes	already	visited	



Tabu search

• Key	idea
• maintain	the	sequence	of	nodes	already	visited

tabu lists	and	tabu nodes

Tabu nodes				:			nodes	already	visited	



Tabu search

• Key	idea
• maintain	the	sequence	of	nodes	already	visited

tabu lists	and	tabu nodes

Tabu nodes				:			nodes	already	visited	



Tabu search

• Key	idea
• maintain	the	sequence	of	nodes	already	visited

tabu lists	and	tabu nodes

Tabu nodes				:			nodes	already	visited	



Tabu search

• Key	issue	with	tabu search
• expensive	to	maintain	all	the	visited	nodes

• Short-term	memory
• only	keep	a	small	set	of	recently	visited	nodes	(tabu list)

• Keep	an	abstraction	of	the	nodes
• many	possibilities
• store	the	transitions	instead	of	the	states
• store	the	transitions	and	the	objective	values



Optimization	under	constrains

Task:	color	the	nodes	of	the	graph	such	that	the	
neighboring	nodes	are	colored	differently



Graph	coloring

Task:	color	the	nodes	of	the	graph	such	that	the	
neighboring	nodes	are	colored	differently



Graph	coloring

Task:	color	the	nodes	of	the	graph	such	that	the	
neighboring	nodes	are	colored	differently

Two	aspects:
• optimization:	reducing	the	number	of	colors
• feasibility:	two	adjacent	vertices	must	be	colored	differently

How	to	combine	them	in	local	search?
• sequence	of	feasibility	problems
• staying	in	the	space	of	solutions
• considering	feasible	and	infeasible	configurations



Graph	coloring

Task:	color	the	nodes	of	the	graph	such	that	the	
neighboring	nodes	are	colored	differently

Sequence	of	feasibility	problems:
• find	an	initial	solution	with	k	colors	(e.g.	greedy	method)
• remove	one	color	(randomly	reassign	the	nodes)
• find	a	feasible	solution	with	k-1	colors
• repeat

How	to	find	a	solution	with	k-1	colors?
• minimize	the	violations



Graph	coloring

Task:	color	the	nodes	of	the	graph	such	that	the	
neighboring	nodes	are	colored	differently

Staying	in	the	feasible	Space:
• simple	neighborhood

change	the	color	of	a	vertex

• objective	function
minimizing	the	number	of	colors

• how	to	guide	the	search?



Staying	in	the	feasible	space

Task:	color	the	nodes	of	the	graph	such	that	the	
neighboring	nodes	are	colored	differently

How	to	drive	the	search?
use	a	proxy	as	objective	function
favor	large	classes

Objective:

Ci is	the	set	of	vertices	colored	with	i



Staying	in	the	feasible	space

Task:	color	the	nodes	of	the	graph	such	that	the	
neighboring	nodes	are	colored	differently

Richer	neighborhoods:
chains	of	variables



Staying	in	the	feasible	space

Task:	color	the	nodes	of	the	graph	such	that	the	
neighboring	nodes	are	colored	differently

Richer	neighborhoods:
chains	of	variables



Staying	in	the	feasible	space

Task:	color	the	nodes	of	the	graph	such	that	the	
neighboring	nodes	are	colored	differently

Richer	neighborhoods:
chains	of	variables



Staying	in	the	feasible	space

Task:	color	the	nodes	of	the	graph	such	that	the	
neighboring	nodes	are	colored	differently

Richer	neighborhoods:
chains	of	variables



Feasible	and	infeasible	colorings

Task:	color	the	nodes	of	the	graph	such	that	the	
neighboring	nodes	are	colored	differently

Explore	both	feasible	and	infeasible	colorings

Search	must	focus	on	reducing	the	number	of	colors	and	on	
ensuring	feasibility

Use	an	objective	function	than	balances	feasibility	and	optimality



Feasible	and	infeasible	colorings

Task:	color	the	nodes	of	the	graph	such	that	the	
neighboring	nodes	are	colored	differently

Use	an	objective	function	than	balances	feasibility	and	optimality

Decreasing	the	number	of	colors

Removing	violations

Bi is	a	set	of	bad	edges	between	vertices	colored	with	i



Feasible	and	infeasible	colorings

Task:	color	the	nodes	of	the	graph	such	that	the	
neighboring	nodes	are	colored	differently

Use	an	objective	function	than	balances	feasibility	and	optimality

Why?
All	local	minima	of	this	objective	are	legal	colorings	
Neighborhood:	changing	the	color	of	one	node

If	there	is	a	bad	edge	with	color	i
The	left	term:
The	right	term:



Examples	of	complex	neighborhoods



Sports	scheduling

• Practical	applications
• football,	hockey,	basketball,	baseball
• radio	and	TV:	€€€

• The	travelling	tournament	problem	(TTP)
• abstraction	of	major	league	tournament
• proposed	by	Easton,	Nemhauser,	and	Trick



Travelling	Tournament	Problem	(TTP)	

• Input
• n	teams
• a	matrix	d	of	distances	between	teams

• Output:	a	double	all-play-all	schedule
• each	team	plays	each	home	and	away
• minimize	travel	distance



Travelling	Tournament	Problem	(TTP)	



Travelling	Tournament	Problem	(TTP)	

Moves:
• swap	homes
• swap	rounds
• swap	teams
• partial	swap	rounds
• partial	swap	teams



TTP:	swap	homes



TTP:	swap	rounds



TTP:	swap	teams



TTP:	swap	teams



TTP:	swap	teams



TTP:	swap	partial	rounds



TTP:	swap	partial	rounds



TTP:	swap	partial	rounds



TTP:	swap	partial	teams



TTP:	swap	partial	teams



TTP:	swap	partial	teams



TTP:	swap	partial	teams



TTP:	swap	partial	teams



TTP:	swap	partial	teams



TTP:	swap	partial	teams



Image	segmentation

Image Segmentation

Following	slides	based	on	the	tutorial	by	P.	Kohli



Image	segmentation

Image Construct	a	graph
T

S



Image	segmentation

Set	the	edge	weights

T

S



Image	segmentation

Image Segmentation

What	if	we	have	multiple	objects?

Minimization	is	NP-hard	if	
P	>	2	and	the	graph	is	cyclic



Image	segmentation

Task:	assign	label	to	each	pixel	of	an	image

Local	search:
maintain	labeling	x
make	a	move	such	that	the	objective	decreases



Image	segmentation

Task:	assign	a	label	to	each	pixel	of	the	input	image

Simple	moves:

• change	value	of	a	variable	xi

• change	values	of	several	variables
exponential	in	the	number	of	variables

• global	moves:	α-expansion



MRF-based	segmentation



α-expansion



α-expansion



α-expansion

Task:	assign	label	to	each	pixel	of	an	image

Expansion	move:
allow	 all	the	variables	to	take	label	α



α-expansion

Task:	assign	label	to	each	pixel	of	an	image

Expansion	move:	allow	all	the	variables	to	take	label	α

Convert	function	E(x)	into	F(y)	where	y	are	binary:
yi =	1		when	xi =	α



α-expansion

Task:	assign	label	to	each	pixel	of	an	image

Expansion	move:	allow	all	the	variables	to	take	label	α

Build	a	graph	to	minimize	F(y)	with	s-t	min-cut

Unary	potentials	as	in	the	binary	case yi yj

Sink	(1)

Source	(0)	

Ui(α) Uj(α)

Ui(xi) Uj(xj)



α-expansion

Task:	assign	label	to	each	pixel	of	an	image

Expansion	move:	allow	all	the	variables	to	take	label	α

Build	a	graph	to	minimize	F(y)	with	s-t	min-cut

Arc	j	->	i:		cij [α ≠	xj]

Arc	i ->	j:		cij [xi	≠	α]

yi yj

Sink	(1)

Source	(0)	

Ui(α) Uj(α)

Ui(xi) Uj(xj)



α-expansion

Task:	assign	label	to	each	pixel	of	an	image

Expansion	move:	allow	all	the	variables	to	take	label	α

Build	a	graph	to	minimize	F(y)	with	s-t	min-cut

Arc	j	->	i:		cij [α ≠	xj]

Arc	i ->	j:		cij [xi	≠	α]	– cij [xi ≠	xj]						
positive	if	xi	≠	α and	cij ≥	0

yi yj

Sink	(1)

Source	(0)	

cij[xi ≠	xj]	+ Ui(α) Uj(α)

Ui(xi) Uj(xj)


