A Multi-Round Side Channel Attack on AES using Belief Propagation

Hélène Le Bouder¹ **Ronan Lashermes**¹ Yanis Linge² Gaël Thomas³ Jean Yves Zie

¹ INRIA Rennes, LHS/PEC

² STMicroelectronics

³ Orange Labs Issy Les Moulineaux

January 26-27th, 2017

Context

Evaluate the power of Side-Channels Analyses.

A Multi-Round Side Channel Attack on AES using Belief Propagation Le Bouder et al. January 26-27th, 2017

- Side Channel Attacks on block ciphers : physical values of a device leak information about intermediate state of the cipher.
- Typical SCA links texts and measurements.
- Restricted on the first or last round.

- Case of an attacker who can just observe leakages.
- No access to the device input and output.
- No template.

Divide-and-Conquer (DC) methods

- Attack one key byte at a time
- E.g. DPA, CPA, MIA,...
- Enumeration to combine different key bytes

Global methods

- Model whole algorithm and leakages
- Solve using SAT-solver, Gröbner bases or Belief Propagation (BP)

- New side channel attack.
- The attacker only knows AES is running and is able to synchronize.
- No plain/ciphertexts, no template.
- No SPA on the Key Expansion, Round keys have already been precomputed.
- DC approach with two leakages to find a round key byte.
- Possible on any middle round of AES.
- Combine information over multiple rounds using BP.

- 128-bit block cipher with 128-bit key.
- SB non-linear S-box, SR and MC linear layer.
- 11 rounds keys K_r, r ∈ [[0, 10]].
- *K*₀ master key, *K*_{r+1} derived from *K*_r using KeyExpansion.

- Find two leakages for each round key.
- Chose the most leaking functions.
- Output of MC at round *r*.
- Output of SB at round r + 1.

Use the Hamming Weight (HW) model.

- Denote \hat{k} the correct key byte.
- For a pair of HW (*h_x*, *h_y*), let K<sub>(*h_x*, *h_y*) be the set of possible keys for that pair.
 </sub>
- Repeat for every input value *x*, and build $\mathbb{K}(\hat{k}) = \bigcap_{x=0}^{255} \mathbb{K}_{(h_x,h_y)}.$
- The 256 sets $\mathbb{K}(\hat{k})$ are pair-wise different.

$$\mathbb{K}_{(h_x,h_y)} = \{k \text{ s.t. } \exists x \in HW^{-1}(h_x) \text{ and } HW(SB(k \oplus x)) = h_y\}$$

Noisy Case

 Leakage considered as Hamming Weight (HW) with Gaussian noise

$$h'_z = h_z + d$$

with δ sampled from $\mathcal{N}(\mathbf{0}, \sigma_Z^2)$.

• Goal: given *n* measurements $\{(h'_x, h'_y)\}_n$, estimate

$$A_k = \Pr\left[\mathcal{K} = k | \{(h'_x, h'_y)\}_n\right].$$

• Use Bayesian inference to derive it from $\Pr[(h_x, h_y)|\mathcal{K} = k]$ and pdf of $\mathcal{N}(0, \sigma_z^2)$.

$$A_k \propto \prod_{i=1}^{''} \sum_{(h_x,h_y)} \mathcal{F}_{\sigma_X} \left(h'_{x,i} - h_x \right) \cdot \mathcal{F}_{\sigma_Y} \left(h'_{y,i} - h_y \right) \cdot \Pr\left[(h_x,h_y) | \mathcal{K} = k \right]$$

10/17

- Previous analysis can be conducted on every byte of every middle round key.
- Round keys linked by the relations of KeyExpansion (KE).
- Use BP to tie information together.
- Expected to work well because of KE sparse structure.
- Good at handling errors (inspired from coding theory).

BP in a nutshell

- BP relies on a bipartite graph: key bytes and equations of KE.
- To each node in the graph is associated some information.
- Nodes exchange information with their neighbours.
- Use Bayesian inference to improve their own knowledge.
- Iterate process to propagate information through the graph.

A Multi-Round Side Channel Attack on AES using Belief Propagation Le B

Le Bouder et al. January 26-27th, 2017

Simulation Results 1: on a single byte

- Randomly generated HW pairs with Gaussian noise $\mathcal{N}(0, \sigma^2)$.
- Different noise values σ , different numbers of traces n.
- Average rank of the good key byte k, for 100 simulated attacks and for each possible value of k, without BP.

$n \setminus \sigma$	0.1	0.2	0.3	0.5	1.0	1.5	2.0	3.0
100	1.2	1.3	2.3	14	66	96	107	119
1000	1	1	1	1	7.1	35	66	97
10000	1	1	1	1	1	2.2	12	48
100000	1	1	1	1	1	1	1.1	7.3

Simulation Results 2: on the whole cipher using BP

• Minimum (over the 9 round keys) Hamming distance between the guessed round key and the correct round key, with BP.

$n \setminus \sigma$	0.1	0.2	0.3	0.5	1.0	1.5	2.0	3.0
100	0	0	0	0	59	51	53	54
1000	0	0	0	0	0	39	46	51
10000	0	0	0	0	0	0	0	40
100000	0	0	0	0	0	0	0	0

Improvement due to BP

$n \setminus \sigma$	0.1	0.2	0.3	0.5	1.0	1.5	2.0	3.0
100	\checkmark	\checkmark	\checkmark	\checkmark	×	×	×	×
1000	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	×	×
10000	\checkmark	×						
100000	\checkmark							

- New SCA with only leakage measurements, no text, no template.
- Combine the divide-and-conquer (DC) and global strategies.
- DC to score each round-key byte separately.
- Global using Belief Propagation to aggregate the knowledge on the round-key bytes.
- Simulation results shows the attack is effective.
- The hybrid approach, DC on key bytes, BP on KE, yield a good trade-off in efficiency vs computation cost.
- Beware of the amount of information that can be extracted from side-channels.

- The elephant in the room: is a noisy-leakage gaussian? Is it a good approximation?
- Requires practical experiments for confirmation.
- May the attack be adapted to accept other noise distribution?
- Future of SCA: take into account all leakages, not only one moment (the time dimension should not have a special treatment).

Thank you!

Any questions?

Our logo collection:

A Multi-Round Side Channel Attack on AES using Belief Propagation

Le Bouder et al. Ja

I. January 26-27th, 2017

