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Fully Homomorphic Encryption

Usual encryption : SSL (Internet), Credit Cards, . . .

Encrypted Communication

Data in clear

Usual Computation

Fully Homomorphic Encryption [FHE] : Since 2009, we know how to
evaluate polynomials (= Boolean circuits = programs) on encrypted data
(since 1978 we only knew how to add OR to multiply, not both).

Encrypted Communication

Encrypted Data

Hom. Computation
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Homomorphic Encryption : we are dreaming of . . .

A revolution : data and/or services outsourcing without losing confidentiality !
Impact : citizens, administrations, companies, military, . . .
Domains : health care, power plants, multimedia content delivery, . . .
Computations : comparing, sorting/filtering, clustering, compressing, . . .
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Program’s output = Circuit Eval = Polynomial Eval

Fi (x) = xixi+8 i = 1. . . . , 7
F0(x) = x8(x16 + 1)
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It has been a long quest to handle polynomials

1980 1990 2000 2010 2020

lattices

“classical”

approach
[RSA 78] ×
///////////IND-CPA

[ElGamal 85] × [CGS 97] +

[GM 84] + [Paillier 99] +
[DJ 01&03] +

[G 02] +

[C 07] +

///+,///×
[BGN 05]

+, ×deg ≤ 2

[HF 17]

+, ×deg ≤ 4

[Gentry 09]

+, ×

[AGH 08-10]

+, × ≤

[vDGHV 10] [SR10] [SV 10]

+, ×

[BV 11]

+, ×
[BGV 12] [B 12]

+, ×(≤)

[BLLN 13] [DS 16]

[GSW 13] [KGV 15]

[CGGI 16] +, ×(≤)

[FV12]

+, × ≤
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Lattice based S/FHE in a nutshell . . .

Ex : FHE over the integers [vDGHV 10]

Secret key (symmetric version here) : s

Encryption of m ∈ {0, 1} : α, β random c = m + 2α + βs

Decryption : c mod s = m + 2α m = (c mod s) mod 2

Homomorphic addition : c + c ′ = m + m′ + 2(α + α′) + (β + β′)s

Condition :

To ensure a coherent decryption, we need : m + m′ + 2(α + α′) < s

If 2α < s/2, 2α′ < s/2, and if c and c ′ are fresh ciphertexts, then it is ok.

If ci is not a fresh ciphertext, we might not be able to decrypt it properly
(too much noise) !

And it is even worse in the case of homomorphic multiplication !

The challenge is to keep control of this noise during computation.
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How to handle this noise ? (1/2)

1980 1990 2000 2010 2020

[Gentry 09]

+, ×

[vDGHV 10] [SR10] [SV 10]

+, ×

[BV 11]

+, ×
[BGV 12] [B 12]

+, ×(≤)

[BLLN 13] [DS 16]

[GSW 13] [KGV 15]

[CGGI 16] +, ×(≤)

FHE : × unbounded → using bootstrapping

once the setting is fixed, ”any” circuit can be evaluated
2009-2014 : too complex to be used in practice
BUT recent improvements, e.g. [PV15] to optimize
bootstrapping use, [CGGI16] to accelerate it
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How to handle this noise ? (2/2)

1980 1990 2000 2010 2020

[AGH 08-10]

+, × ≤

[BGV 12] [B 12]

+, ×(≤)

[BLLN 13] [DS 16]

[GSW 13] [KGV 15]

[CGGI 16] +, ×(≤)

[FV12]

+, × ≤

SHE schemes : × bounded → without bootstrapping

a limited (but often sufficient) number of multiplications
maximum mult. depth is related to the setting
(cannot be modified afterwards)
a lower complexity
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PoC : Outsourcing of (medical) diagnosis

Simple threshold tests in cardio-
logy diagnosis executed in the en-
crypted domain

Outsourced medical diagnosis
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Some recent experimental results
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“Intelligent” and “Evolving” algorithms

IP concerns and software update
for the service provider :

Targeted advertising

Access Control with respect
to user profile

Biometric authentication

Medical Diagnosis

Cloud-based biochemical
reactor control

Machine Learning
(deep learning)
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Want to play ? (1/2)

2011 : open-source implementation of [SV10] by [PBS11]

http://www.hcrypt.com

2012 : private implem. of [BGV12] dedicated to AES homo. eval. [GHS12]

2013-16 : private platform at CEA [AFFGS13,FSFAG13] ,
home-made implem. of [BGV12] (vect and poly) and [FV12] ,
+ HElib and more recent open-source libraries

2013 : open-source implementation of [vDGHV10] with the improvements
from [CNT12] : https://github.com/coron/fhe

2013 : private implementation in [CLT 13] dedicated to AES homomorphic
evaluation using an improved version of [vDGHV10]

2013 : private implementation of [BLLN 13] , with good performances with
2 or 3 multiplicative depth

http://www.hcrypt.com
https://github.com/coron/fhe
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Want to play ? (2/2)

2013 : open-source implem. of [SV10] and [BGV12] called HElib by Halevi et
al. http://shaih.github.io/HElib/

2014 : open-source implem. of [FV12] and [BLLN13] YASHE, compared in
[LN14] https://github.com/tlepoint/homomorphic-simon

2015 : open-source library called SEAL1.0, based on YASHE’ http://

sealcrypto.codeplex.com/

2016 : open-source library to efficiently handle polynomials, called NFLlib
https://github.com/quarkslab/NFLlib

2016 : open-source implementation of [FV12] based on NFLlib https://

github.com/CryptoExperts/FV-NFLlib

2016 open-source multi-precision moduli library, called HElib-MP https:

//github.com/tricosset/HElib-MP, based on HElib
2016 : SEAL1.0 is replaced by SEAL2.1, based on another implementation

of [FV12] http://sealcrypto.codeplex.com/

”soon” : FV with RNS from [BEHZ16] ; NFLlib based implementation of
SHIELD [KGV15] ; library related with [CGGI16]

alse see common API http://bristolcrypto.blogspot.jp/2017/
02/homomorphic-encryption-api-software.html (work in progress)

http://shaih.github.io/HElib/
https://github.com/tlepoint/homomorphic-simon
http://sealcrypto.codeplex.com/
http://sealcrypto.codeplex.com/
https://github.com/quarkslab/NFLlib
https://github.com/CryptoExperts/FV-NFLlib
https://github.com/CryptoExperts/FV-NFLlib
https://github.com/tricosset/HElib-MP
https://github.com/tricosset/HElib-MP
http://sealcrypto.codeplex.com/
http://bristolcrypto.blogspot.jp/2017/02/homomorphic-encryption-api-software.html
http://bristolcrypto.blogspot.jp/2017/02/homomorphic-encryption-api-software.html
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Security

Which kind of security ?

Semantic Security

Semantic security is necessary !
(and as S/FHE schemes are malleable, IND-CCA2 can never be
achievable).

⇒ probabilistic encryption

⇒ expansion (ciphertexts are longer than plaintexts)
and parameters setting has a huge impact on expansion !

e.g. expansion is equal to (without batching) :

equal to 2 with Paillier cryptosystem (only +)

around 5, 000 with elliptic curve based solution [HF17]
(+,×deg ≤ 4)

between 500, 000 and 1, 000, 000 for lattice-based S/FHE
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Security

Which security level ?

Security Analysis of elliptic curve based schemes

Computational Security (w.r.t. DLP). Well understood and studied.

Security Analysis of lattice based
schemes

Computational Security (w.r.t. hard
problems as LWE, R-LWE,. . . )
Theoretical studies essentially focus
on asymptotic and generic
estimations (may be not so close to
real S/FHE situations).
Some experiments (based on LLL,
BKZ,. . . ) provide estimations (but
may remain too optimistic today).

See e.g. [Alb15,ABD16][Peik16][BF16][Alb17][AN17] .
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Security

Which security level for lattice based S/FHE ?

See the (online) estimator provided by Martin Albrecht (always evolving) :

⇒ it is really hard today to know how to choose the right parameters to
ensure a given security level (e.g. 128) and we really need more targeted
attacks and studies to derive precise guidelines for the choice of
parameters (see [MBF16] for a first attempt, based on the current
state-of-the-art).
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How to express high-level algorithms ?

Applications : we are dreaming of . . .

A revolution : data and/or services outsourcing without losing confidentiality !
Impact : citizens, administrations, companies, military, . . .
Domains : health care, power plants, multimedia content delivery, . . .
Computations : comparing, sorting/filtering, clustering, compressing, . . .



Context and Introduction Applications and Practical Issues Conclusion

How to express high-level algorithms ?

How to help programers ?

Our goal

To help programers (not crypto specialists !) to use S/FHE in the
development of their software/hardware stuff [AFF+13][FAR+13][CS14]

1 Cryptographers are necessary to help choosing the most appropriate
S/FHE scheme & data encoding & parameters :

Application

requirements

time
constraints

space
constraints

security
constraints

several choices (and trade-offs)

FHE scheme
& data enco-
ding

parameters

real life

speed

memory

security level

2 This being done, programers must be able to go further alone,
without interacting with cryptographers !
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How to express high-level algorithms ?

With cryptographers : choosing data encoding (1/2)

Your (sliced) data ←→

Each piece of (sliced) data has to be related with one plaintext (a point
of the lattice, i.e. integers or polynomials)
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How to express high-level algorithms ?

With cryptographers : choosing data encoding (2/2)

Your data : managing bits or integers ? (slicing)

Processing integers may seem more interesting at a first glance, BUT in
some cases using integers will reduce the set of algorithms one can
execute in the encrypted domain, e.g. if-then-else implies a
management at the bit-level.

In case we choose an encoding at the bit-level, we need to redefine
integers encoding to get operators on integers (based on those on bits,
with 2’s complement, sign bit, . . . ), for :

addition multiplication substraction << >>

Batching (packing several plaintext into one)

To process several bits (resp. integers) at the same time, e.g. using
Chinese Remaining Theorem.
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How to express high-level algorithms ?

Programers are not obliged to implem. S/FHE

From Armadillo platform [AFF+13][FAR+13][CS14] :

Definition of C++ classes ClearBit and CryptoBit written with the
help of cryptographers (link with data encoding and S/FHE scheme) :

class C++ template<typename bit, int size>

Any programer can then use them :

Example

Applying a bubble sort on data in clear :
bsort<Integer<ClearBit,8> >(arr,n);

Applying the same bubble sort on encrypted data :
bsort<Integer<CryptoBit,8> >(arr,n);
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How to express high-level algorithms ?

Software Compilation Process and Optimization

initial algorithm

equivalent algorithm in C++
using ClearBit/CryptoBit
templates

equivalent Boolean circuit

optimized Boolean circuit
(especially with decreased
multiplicative depth)

C++ code for sequential or
parallel execution

code modification by the programer

data slicing

optimization module

Choosing the right algorithm

It is important to choose the algorithm with the
best worst-case complexity (not usual!) if tests
have to been performed over the encrypted data.
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templates

equivalent Boolean circuit

optimized Boolean circuit
(especially with decreased
multiplicative depth)

C++ code for sequential or
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code modification by the programer
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C++ classes ClearBit and CryptoBit

Applying a bubble sort on data in clear :
bsort<Integer<ClearBit,8> >(arr,n);

Applying the same bubble sort on encr. data :
bsort<Integer<CryptoBit,8> >(arr,n);
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How to express high-level algorithms ?

Software Compilation Process and Optimization

initial algorithm

equivalent algorithm in C++
using ClearBit/CryptoBit
templates

equivalent Boolean circuit

optimized Boolean circuit
(especially with decreased
multiplicative depth)

C++ code for sequential or
parallel execution

code modification by the programer

data slicing

optimization module

Going down at the Boolean level

Data slicing & conversion Pgm → Boolean circuit.

Use XOR and AND for ClearBit
Use HE-ADD and HE-MULT for CryptoBit
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How to express high-level algorithms ?

Program → Boolean circuit

Comparisons of Encrypted Data

How to perform tests and express if-then-else ?

Boolean bitwise operators :

 a < b : MSB of a+(-b)
a > b : MSB of b+(-a)
a = b : (a < b) NOR (a > b)

“if c then x = a else x = b” can be achieved through the

following operator : x = select(c,a,b) =

{
a if c=1
b otherwise

x = select(c,a,b) = (c AND a) XOR ((NOT c) AND b)

no data leakage ;-)

BUT bit-level encoding + worst-case complexity as we have to
evaluate the whole circuit (all the branches of the circuit)
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How to express high-level algorithms ?

Bubble sort : a meaningful example

Classical bubble sort :

void bsort(int *arr,int n)

{
for(int i=0;i<n-1;i++)

{
for(int j=1;j<n-i;j++)

if(arr[j-1]>arr[j])

{
int t=arr[j-1];

arr[j-1]=arr[j];

arr[j]=t;

}
}

}

Rewritten bubble sort :

void bsort(int *arr,int n)

{
for(int i=0;i<n-1;i++)

{
for(int j=1;j<n-i;j++)

{
int gt=arr[j-1]>arr[j];

int t=gt*arr[j-1]^(!gt*arr[j]);

arr[j-1]=gt*arr[j]^(!gt*arr[j-1]);

arr[j]=t;

}
}

}
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How to express high-level algorithms ?

Software Compilation Process and Optimization

initial algorithm

equivalent algorithm in C++
using ClearBit/CryptoBit
templates

equivalent Boolean circuit

optimized Boolean circuit
(especially with decreased
multiplicative depth)

C++ code for sequential or
parallel execution

code modification by the programer

data slicing

optimization module

Optimization

Minimization of the multiplicative length (also
taking care of the width of the circuit and the
total number of multiplications and additions).
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How to express high-level algorithms ?

Optimizing the Boolean circuit

Characterization of # add, # mul, × depth

Estimation and optimization possible with the help of ClearBit.

Some values for classical algorithms (before optimization) :∑10
i=1 t[i ] threshold b2 − 4ac bubble sort FFT

(4 bits) (4 bits) (4 bits) (10x4 bits) (256x32 bits)
# add 99 390 126 2372 7291592
# mul 27 60 32 238 5296128
× depth 4 5 7 69 166

(16 bits) (16 bits) (10x8 bits)
# add 423 1188 3240
# mul 279 1126 2790
× depth 16 32 136

⇒ ClearBit class helps to debug the implementation and to optimize it !
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How to express high-level algorithms ?

The trick : Program = Circuit = Polynomial

Fi (x) = xixi+8 i = 1. . . . , 7
F0(x) = x8(x16 + 1)
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Huge expansion of ciphertexts

An awful expansion factor !

Expansion (without batching)

Current estimations of security parameters lead to an expansion factor

equal to 2 with Paillier cryptosystem (only +)

around 5, 000 with elliptic curve based solution [HF17]
(+,×deg ≤ 4)

between 500, 000 and 1, 000, 000 for lattice-based S/FHE

⇒ pb to store and process, and to transmit data encrypted with S/FHE !

1 it would be very nice to design new schemes with a lower expansion,

2 we can help by choosing a good data representation and pack
several plaintexts together (batching : CRT, SIMD, RNS),

3 we also have to do our best to manage huge ciphertexts, e.g.
properly combining classical symmetric encryption with S/FHE.
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Huge expansion of ciphertexts

Applications : we are dreaming of . . .

A revolution : data and/or services outsourcing without losing confidentiality !
Impact : citizens, administrations, companies, military, . . .
Domains : health care, power plants, multimedia content delivery, . . .
Computations : comparing, sorting/filtering, clustering, compressing, . . .
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Huge expansion of ciphertexts

How to efficiently upload S/FHE ciphertext ?

[NLV11]

k HEpk(·) HEpk(k)

m E

Ek(m) Ek(m)
no ciphertext expansion

C HEpk(m)

C = HE.EvalE−1

What kind of symmetric encryption is the most appropriate ?
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Huge expansion of ciphertexts

HE-friendly ciphers ? (1/2)

Main goal

To minimize the multiplicative depth of the decryption function.

First concrete proposals have been block ciphers

Already existing block ciphers :

Optimized implementations of AES [GHS12][CCKL+13][DHS14]

→ but AES’s × depth remains too large (→ too slow)
Lightweight block ciphers : SIMON [LN14] , PRINCE [DSES14]

→ SIMON behaves better than AES
→ PRINCE behaves better than SIMON, but remains too slow

Dedicated block cipher : Low-MC-80 and Low-MC-128
[ARSTZ15]

→ but subject to some interpolation attacks (sparse ANF)
⇒ a tweaked version has been presented at FSE 2016’s rump
session (more rounds), but security remains not clear (≤ 118)
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Huge expansion of ciphertexts

Ciphertext decompression with IV-based encryption

A new approach [CCF+16]

to reduce the online phase to a minimum . . .

k HEpk(·) HEpk(k)

IVm E

Ek(m)

key setup

IV

Ek(m)

offline phase

online phase HEpk(m)

offline
online
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Huge expansion of ciphertexts

Ciphertext decompression with IV-based encryption

. . . with an additive stream cipher ;-)

k

IV

HEpk(·)

Z

G
x1 xt

F F F · · · F

z1 z2 z3 · · · ztkeystream =

offline
online

m ⊕ m ⊕ keystream

HEpk(k)

IV

G
x1 xt

CF CF CF · · · CF

HEpk(keystream)

C⊕ HEpk(m)
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Huge expansion of ciphertexts

HE-friendly ciphers ? (2/2)

Using a stream cipher reduces on-line phase to the minimum.
Current candidates for function F are :
[CCCF+16] :

Trivium : coming from eSTREAM (2008), firmly established
security, 80 bits security

Kreyvium : based on Trivium, same security confidence, 128
bits security

[MJSC 16] :

Flip : lower complexity, but security should be more deeply
analyzed [DLR 16]

According to today’s state-of-the-art, Kreyvium seems to be the
best available solution (but may be replaced by Flip if new security
analysis is good).
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Complexity

Complexity issues

Complexity

High computation complexity related to the noise management.

Cryptographic issues :
⇒ it should be nice to have less complex S/FHE schemes, even if a huge
effort has still been done and complexity already decreased a lot, and to
optimize the use of bootstrapping, modulus switching, re-linearization,
etc (e.g. see [PV15] for bootstrapping opt.).

Application related issues :
⇒ for a given target, we need to carefully choose the right algorithm
(with the best worst-case complexity !)

⇒ we need to optimize the implementation (circuit optimization,
bits/integers & batching, software/hardware implementation).
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Conclusion

Nice

Very nice applications + post-quantum encryption :-)
A lot of efforts and progresses (everything is moving really fast).
Quite a lot of implementations available now.

Making small applications affordable ! We are on the right way :-)

BUT still a lot of (theoretical and practical) work to be done :

security (to be better understood)

expansion (to be better decreased and managed)

complexity (worst-case complexity, bootstrapping optimization, etc)

implementation optimization (Boolean circuit, software & hardware)

help programers to choose the right scheme with an adapted setting
(and do not forget ”classical” crypto solutions)
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How to choose the right solution and implementation ?

Several implementations have been publicly released,
BUT they are often tested separately :-(

There are very few attemps of comparisons based on public
implementations : [LN14] + more recent experiments to be published in
the next weeks/months (couldn’t finish before this talk :-()

Why is it difficult to FAIRLY compare schemes ?

Security : it is difficult today to precisely link parameters setting
with a given security level (hence difficult to be sure to
compare the same security level for several schemes).

Expansion : batching has been proposed for some schemes, not all.

Complexity : we should compare implementations with the same
optimization level.

Data encoding : some schemes work on bits/integers/polynomials.
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How to choose the right solution and implementation ?

Hence, choosing among lattice based schemes like BGV, FV, SHIELD, or
even more classical schemes like BGN or BGN2 based on elliptic curves is
not easy.

And even for a given scheme, implementations may use

different lattice structures,

different noise generation strategy,

different optimization level,

different batching techniques.

Ex : FV from SEAL 2.1 and from FV-NFLlib are very different !

⇒ Hence we should provide very precise benchmarks to be fair.
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Questions ?

Thanks to all co-authors and collaborators (academic & industry)

French activities :

design (S/FHE +
friendly symmetric)

security analysis

batching

compilation : software,
hardware

benchmarking and
parameters setting
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Announcement : IEEE WIFS in Rennes, Dec 4-7 2017
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