
Pip: A Minimal OS Kernel
with Provable Isolation1

David Nowak

CRIStAL, CNRS & Lille 1 University

Third French-Japanese Meeting on Cybersecurity
April 24, 2017

1Joint work with the 2XS team (Lille), partially supported by the Celtic-Plus
European Project ODSI C2014/2-12

1 / 18

Memory isolation between applications

Why? For safety and security

How? By software (OS kernel), and hardware (MMU, kernel mode)

Correct? Ensured by a formal proof in Coq

Doable? By reducing the trusted computing base to its bare bone

2 / 18

Outline

What is the Pip protokernel?

How does Pip work?

How are Pip isolation properties proved?

3 / 18

Outline

What is the Pip protokernel?

How does Pip work?

How are Pip isolation properties proved?

4 / 18

The Pip protokernel: a minimal OS kernel
I A kernel runs in the privileged mode of the CPU.

I Therefore it is highly critical.

I With Pip, the trusted computing base (TCB) is minimal:
I Scheduling and IPC are done in user mode.

unlike a microkernel

I Multiplexing is also done in user mode.

unlike a hypervisor or an exokernel

I Kernel mode is only for:
I multi-level MMU configuration (virtual memory),

I context switching.

I minimal TCB =
less risk
of bug

+
more feasibility
of formal proof

5 / 18

Partition tree

The memory is organized into hierarchical partitions.

Example

user space
multiplexer

Linux

p1 p2 p3

FreeRTOS

t1 t2

kernel space Pip

I FreeRTOS is a real-time OS that does not isolate its tasks.

I by porting it on Pip, we easily secured it with task isolation.

6 / 18

Horizontal isolation and vertical sharing

user space
Proot

P1

P1.1 P1.2 P1.3

P2

P2.1 P2.2

kernel space Pip

7 / 18

Outline

What is the Pip protokernel?

How does Pip work?

How are Pip isolation properties proved?

8 / 18

Software layers

 Hardware

Memory Abstraction Layer Interruption Abstraction Layer

Pip

A sub-partition

Root partition

Another sub-partition

A sub-sub-partition Another
sub-sub-partition

Kernel mode

User mode

C and assembly language

Gallina (the language of the Coq proof assistant)

Any language

9 / 18

The API of Pip

9 system calls can be called by the code of any partition

createPartition create a partition

deletePartition delete a partition

addVAddr map an address

removeVAddr remove a mapping

pageCount
return the number of indirections to map an
address

prepare add the indirections to map an address

collect delete all empty indirections

dispatch send a signal to a child partition

resume return control to another partition

10 / 18

Some Pip internals

I Pip redirects:
I a sofware interrupt to the parent of the caller,
I a hardware interrupt to the root partition.

I Data structures
I The MMU pages tables (used by Pip and MMU)

for translation of a virtual address into a physical address

I two shadow MMUs and a linked list (used by Pip only).
I for storing additional information about of virtual addresses
I for optimization

I The kernel is always mapped but not accessible in user mode.

for efficient system calls

11 / 18

Outline

What is the Pip protokernel?

How does Pip work?

How are Pip isolation properties proved?

12 / 18

The hardware monad

I Gallina is a purely functional language.

I But, in order to access hardware, we need imperative features:

I updatable state;

I undefined behaviors:
I out-of-bound physical address,
I type error,
I . . . ;

I halting.

I We wrap those imperative features in a monad.

I We define a Hoare logic on top of this monad.

13 / 18

Memory isolation (1/2)

I not from the point of view of information flow

I but at the lower level of page table management

I A state is isolated iff, for any two distinct processes P1 and
P2, any page used by P1 is not used by P2.

I By pages used by a process Pi , we mean the pages referenced
in its page table ptp(Pi) and the page ptp(Pi) itself.

I By two distinct processes P1 and P2, we mean
ptp(P1) 6= ptp(P2)

I Our goal is to show that this property is preserved.

14 / 18

Memory isolation (2/2)

I We would be satisfied if we could prove the following triple for
each system call c :

{Isolated} c {Isolated}

I But it is false in general:

I The precondition must be strenghened with consistency
properties.

I Those consistency properties must also be preserved.

{Isolated ∧ Consistent} c {Isolated ∧ Consistent}

I consistency ≈ well-formedness of Pip’s data structures

15 / 18

Translating Gallina into C

I Word-for-word translation: possible because of monadic style

I Example: In Gallina, we write:

1Definition getFstShadow (partition : page) : page :=
2perform idx := getSh1idx in

3perform idxSucc := MALInternal.Index.succ idx in

4readPhysical partition idxSucc.

Its translation in C is:

1uintptr t getFstShadow(const uintptr t part it ion) {
2const uint32 t idx = getSh1idx () ;
3const uint32 t idxSucc = succ(idx) ;
4return readPhysical (partition , idxSucc) ; }

I Work in progress: proving the correctness of this translation

16 / 18

Applications

I Supported by the European project ODSI
I PhD students:

Quentin Bergougnoux, Narjes Jomaa, Mahieddine Yaker

I Postdoc:
Paolo Torrini

I Case studies by industrial partners: IoT, M2M, SCADA

I Discussion with the European branch of a Japanese company

Isolate the CAN network and the Ethernet network in a car

17 / 18

Conclusions

I A new design of OS kernel amenable to formal proof

I An implementation: the Pip protokernel

I To find out more:

http://pip.univ-lille1.fr

18 / 18

http://pip.univ-lille1.fr

	What is the Pip protokernel?
	How does Pip work?
	How are Pip isolation properties proved?

