
Symbolic Verification of Complexity-Theoretic
Properties of Cryptographic Protocols and
Attack Discovery Using First Order Logic

Gergei Bana
University of Luxembourg

with
Hubert Comon-Lundh (ENS Cachan), Mitsuhiro Okada (Keio University)

Symbolic Verification of Complexity-Theoretic
Properties of Cryptographic Protocols and
Attack Discovery Using First Order Logic

Gergei Bana
University of Luxembourg

with
Hubert Comon-Lundh (ENS Cachan), Mitsuhiro Okada (Keio University)

and
Pedro Adão (Lisbon), Koji Hasebe (Tsukuba), Hideki Sakurada (NTT), Rohit Chadha (University

of Missouri), Guillaume Scerri (ENS Cachan, Bristol), Adrien Koutsos (ENS Cachan)

2

Computationally Sound Cryptographic
Protocol Verification Project

Participants:
Mitsuhiro Okada (Keio University)

Hubert Comon (École Normale Supérieure de Cachan)

Gergei Bana (University of Luxembourg)

2

Computationally Sound Cryptographic
Protocol Verification Project

Participants:
Mitsuhiro Okada (Keio University)

Hubert Comon (École Normale Supérieure de Cachan)

Gergei Bana (University of Luxembourg)

“Computationally Complete Symbolic Attacker”
Project for automated verification/attack finding of complexity
theoretic properties (provable security) of security protocols

First Order Logic

“Unconditionally” computationally sound
2

Computationally Sound Cryptographic
Protocol Verification Project

What is an Attacker of a Crypto Protocol

3

What is an Attacker of a Crypto Protocol
To prove there is no attack, we need to model attacks:

3

What is an Attacker of a Crypto Protocol
To prove there is no attack, we need to model attacks:

Symbolic Attacker (Dolev, Yao 1983)

Symbolic operations K , x ⊢ {x}K ; K , {x}K ⊢ x ; x , y ⊢ ⟨x,y⟩

3

What is an Attacker of a Crypto Protocol
To prove there is no attack, we need to model attacks:

Symbolic Attacker (Dolev, Yao 1983)

Symbolic operations K , x ⊢ {x}K ; K , {x}K ⊢ x ; x , y ⊢ ⟨x,y⟩

Computational attacker (Micali, Goldwasser, etc. 1980’s)

Complexity theory

PPT algorithms, asymptotic properties

3

What is an Attacker of a Crypto Protocol
To prove there is no attack, we need to model attacks:

Symbolic Attacker (Dolev, Yao 1983)

Symbolic operations K , x ⊢ {x}K ; K , {x}K ⊢ x ; x , y ⊢ ⟨x,y⟩

Computational attacker (Micali, Goldwasser, etc. 1980’s)

Complexity theory

PPT algorithms, asymptotic properties

Explicit probabilities

3

What is an Attacker of a Crypto Protocol
To prove there is no attack, we need to model attacks:

Symbolic Attacker (Dolev, Yao 1983)

Symbolic operations K , x ⊢ {x}K ; K , {x}K ⊢ x ; x , y ⊢ ⟨x,y⟩

Computational attacker (Micali, Goldwasser, etc. 1980’s)

Complexity theory

PPT algorithms, asymptotic properties

Explicit probabilities

Add side-channel attacks

3

What is an Attacker of a Crypto Protocol
To prove there is no attack, we need to model attacks:

Symbolic Attacker (Dolev, Yao 1983)

Symbolic operations K , x ⊢ {x}K ; K , {x}K ⊢ x ; x , y ⊢ ⟨x,y⟩

Computational attacker (Micali, Goldwasser, etc. 1980’s)

Complexity theory

PPT algorithms, asymptotic properties

Explicit probabilities

Add side-channel attacks

etc.

3

What is an Attacker of a Crypto Protocol
To prove there is no attack, we need to model attacks:

Symbolic Attacker (Dolev, Yao 1983)

Symbolic operations K , x ⊢ {x}K ; K , {x}K ⊢ x ; x , y ⊢ ⟨x,y⟩

Computational attacker (Micali, Goldwasser, etc. 1980’s)

Complexity theory

PPT algorithms, asymptotic properties

Explicit probabilities

Add side-channel attacks

etc.

3

more
precise

but
more

complex

4

Computationally Complete Symbolic
Attacker

G. Bana - H. Comon: POST’2012

4

Computationally Complete Symbolic
Attacker

G. Bana - H. Comon: POST’2012

Modern cryptography: security properties are defined in terms of
complexity theory - “computational model”

Agents, adversary are modeled by probabilistic polynomial-time algorithms

Security relies on hardness assumptions (discrete log problem etc)

4

Computationally Complete Symbolic
Attacker

G. Bana - H. Comon: POST’2012

Modern cryptography: security properties are defined in terms of
complexity theory - “computational model”

Agents, adversary are modeled by probabilistic polynomial-time algorithms

Security relies on hardness assumptions (discrete log problem etc)

For automated proof we need symbolic techniques

4

Computationally Complete Symbolic
Attacker

G. Bana - H. Comon: POST’2012

Modern cryptography: security properties are defined in terms of
complexity theory - “computational model”

Agents, adversary are modeled by probabilistic polynomial-time algorithms

Security relies on hardness assumptions (discrete log problem etc)

For automated proof we need symbolic techniques

Computationally sound symbolic verification: no symbolic adversary
—> No PPT adversary

4

Computationally Complete Symbolic
Attacker

G. Bana - H. Comon: POST’2012

Modern cryptography: security properties are defined in terms of
complexity theory - “computational model”

Agents, adversary are modeled by probabilistic polynomial-time algorithms

Security relies on hardness assumptions (discrete log problem etc)

For automated proof we need symbolic techniques

Computationally sound symbolic verification: no symbolic adversary
—> No PPT adversary

 Computationally complete symbolic attacker: covers all PPT
adversaries symbolically

4

Computationally Complete Symbolic
Attacker

Attempts to Automatically Verify Computational
Properties

5

Attempts to Automatically Verify Computational
Properties

5

Relating attacker models: “Dolev-Yao Computational Soundness” (Tamarin,
ProVerif etc tools, Backes, Cortier, Warinschi etc)

Dolev-Yao symbolic security sometimes means Computational Security

Relied on strong restrictions on computational model, not good for algebraic operations

Attempts to Automatically Verify Computational
Properties

5

Relating attacker models: “Dolev-Yao Computational Soundness” (Tamarin,
ProVerif etc tools, Backes, Cortier, Warinschi etc)

Dolev-Yao symbolic security sometimes means Computational Security

Relied on strong restrictions on computational model, not good for algebraic operations

Proofs (partly automated) in the computational model: No symbolic attacker,
security property derived directly

CryptoVerif (Bruno Blanchet, INRIA)

F7 (Fournet et al. Microsoft, INRIA)

EasyCrypt (Barthe et al. IMDEA)

Attempts to Automatically Verify Computational
Properties

5

Relating attacker models: “Dolev-Yao Computational Soundness” (Tamarin,
ProVerif etc tools, Backes, Cortier, Warinschi etc)

Dolev-Yao symbolic security sometimes means Computational Security

Relied on strong restrictions on computational model, not good for algebraic operations

Proofs (partly automated) in the computational model: No symbolic attacker,
security property derived directly

CryptoVerif (Bruno Blanchet, INRIA)

F7 (Fournet et al. Microsoft, INRIA)

EasyCrypt (Barthe et al. IMDEA)

Many good results, but for either tools:

No attack is found, incomplete proof may mean weak tool, weak user, or insecure protocol

Hard to use effectively for others than developers

Various hidden assumptions

Our Aim

6

Our Aim

6

Symbolic method convenient for automation

Our Aim

6

Symbolic method convenient for automation

Computational (complexity theoretic) guarantees

Our Aim

6

Symbolic method convenient for automation

Computational (complexity theoretic) guarantees

Symbolic verification ⇒ No computational attack

Our Aim

6

Symbolic method convenient for automation

Computational (complexity theoretic) guarantees

Symbolic verification ⇒ No computational attack

Based on a simple language - Intuitive, easy to use

Our Aim

6

Symbolic method convenient for automation

Computational (complexity theoretic) guarantees

Symbolic verification ⇒ No computational attack

Based on a simple language - Intuitive, easy to use

Transparent - no hidden assumptions

Our Aim

6

Symbolic method convenient for automation

Computational (complexity theoretic) guarantees

Symbolic verification ⇒ No computational attack

Based on a simple language - Intuitive, easy to use

Transparent - no hidden assumptions

 Failure of proof delivers attack

Our Aim

6

Symbolic method convenient for automation

Computational (complexity theoretic) guarantees

Symbolic verification ⇒ No computational attack

Based on a simple language - Intuitive, easy to use

Transparent - no hidden assumptions

 Failure of proof delivers attack

Algebraic operations, Standard hardness assumptions (DDH, etc)
and security notions of primitives (CPA, CCA, etc) are easy to
formalize

Our View of Attacker

7

Our View of Attacker
Keep the notion of symbolic attacker

7

Our View of Attacker
Keep the notion of symbolic attacker

No explicit symbolic attacker computation
K , x ⊢ {x}K ; K , {x}K ⊢ x ; x , y ⊢ ⟨x,y⟩

7

Our View of Attacker
Keep the notion of symbolic attacker

No explicit symbolic attacker computation
K , x ⊢ {x}K ; K , {x}K ⊢ x ; x , y ⊢ ⟨x,y⟩

Instead: attacker computations represented by function symbols: f0
f1 f2 …

7

Our View of Attacker
Keep the notion of symbolic attacker

No explicit symbolic attacker computation
K , x ⊢ {x}K ; K , {x}K ⊢ x ; x , y ⊢ ⟨x,y⟩

Instead: attacker computations represented by function symbols: f0
f1 f2 …

No rules about what the attacker can do

7

Our View of Attacker
Keep the notion of symbolic attacker

No explicit symbolic attacker computation
K , x ⊢ {x}K ; K , {x}K ⊢ x ; x , y ⊢ ⟨x,y⟩

Instead: attacker computations represented by function symbols: f0
f1 f2 …

No rules about what the attacker can do

Instead: (first-order logic) rules on the messages that attacker
cannot violate: axiom

7

Our View of Attacker
Keep the notion of symbolic attacker

No explicit symbolic attacker computation
K , x ⊢ {x}K ; K , {x}K ⊢ x ; x , y ⊢ ⟨x,y⟩

Instead: attacker computations represented by function symbols: f0
f1 f2 …

No rules about what the attacker can do

Instead: (first-order logic) rules on the messages that attacker
cannot violate: axiom

Attackers are allowed to complete everything (f0 f1 f2 … can satisfy
anything) except what is forbidden

7

Our View of Attacker
Keep the notion of symbolic attacker

No explicit symbolic attacker computation
K , x ⊢ {x}K ; K , {x}K ⊢ x ; x , y ⊢ ⟨x,y⟩

Instead: attacker computations represented by function symbols: f0
f1 f2 …

No rules about what the attacker can do

Instead: (first-order logic) rules on the messages that attacker
cannot violate: axiom

Attackers are allowed to complete everything (f0 f1 f2 … can satisfy
anything) except what is forbidden

Security proofs: security property is derived from the axioms using
FOL

7

Our View of Attacker
Keep the notion of symbolic attacker

No explicit symbolic attacker computation
K , x ⊢ {x}K ; K , {x}K ⊢ x ; x , y ⊢ ⟨x,y⟩

Instead: attacker computations represented by function symbols: f0
f1 f2 …

No rules about what the attacker can do

Instead: (first-order logic) rules on the messages that attacker
cannot violate: axiom

Attackers are allowed to complete everything (f0 f1 f2 … can satisfy
anything) except what is forbidden

Security proofs: security property is derived from the axioms using
FOL

Attack model: Negation of security property consistent with axioms
7

Proof Method

8

Proof Method
First order language on the terms produced by the protocol execution. (Actions in
the protocol execution(s) are not part of the first order language)

First-order logic with a single predicate

t1,...,tn ~ u1,...,un ; semantics: computational indistinguishability of PPT algorithms
t1,...,tn from u1,...,un

8

Proof Method
First order language on the terms produced by the protocol execution. (Actions in
the protocol execution(s) are not part of the first order language)

First-order logic with a single predicate

t1,...,tn ~ u1,...,un ; semantics: computational indistinguishability of PPT algorithms
t1,...,tn from u1,...,un

Attempt to first-order derive security property of the protocol from:

Computationally sound core Axioms, independent of primitives

Computationally sound axioms for the primitives or hardness assumptions:
E.g. CCA2, Discrete Logarithm, etc

8

Proof Method
First order language on the terms produced by the protocol execution. (Actions in
the protocol execution(s) are not part of the first order language)

First-order logic with a single predicate

t1,...,tn ~ u1,...,un ; semantics: computational indistinguishability of PPT algorithms
t1,...,tn from u1,...,un

Attempt to first-order derive security property of the protocol from:

Computationally sound core Axioms, independent of primitives

Computationally sound axioms for the primitives or hardness assumptions:
E.g. CCA2, Discrete Logarithm, etc

If axioms not enough: attack is given by a branch of the proof tree not leading to
axiom (concrete model of function symbols)

8

Proof Method
First order language on the terms produced by the protocol execution. (Actions in
the protocol execution(s) are not part of the first order language)

First-order logic with a single predicate

t1,...,tn ~ u1,...,un ; semantics: computational indistinguishability of PPT algorithms
t1,...,tn from u1,...,un

Attempt to first-order derive security property of the protocol from:

Computationally sound core Axioms, independent of primitives

Computationally sound axioms for the primitives or hardness assumptions:
E.g. CCA2, Discrete Logarithm, etc

If axioms not enough: attack is given by a branch of the proof tree not leading to
axiom (concrete model of function symbols)

Add properties needed for the implementation until you avoid all attacks

8

Proof Method
First order language on the terms produced by the protocol execution. (Actions in
the protocol execution(s) are not part of the first order language)

First-order logic with a single predicate

t1,...,tn ~ u1,...,un ; semantics: computational indistinguishability of PPT algorithms
t1,...,tn from u1,...,un

Attempt to first-order derive security property of the protocol from:

Computationally sound core Axioms, independent of primitives

Computationally sound axioms for the primitives or hardness assumptions:
E.g. CCA2, Discrete Logarithm, etc

If axioms not enough: attack is given by a branch of the proof tree not leading to
axiom (concrete model of function symbols)

Add properties needed for the implementation until you avoid all attacks

At the end: A list of properties that if satisfied by the implementation, then secure.
8

More Than Computational

9

More Than Computational

A verification of protocol P results a set S of

9

More Than Computational

A verification of protocol P results a set S of
axioms

additional necessary properties

9

More Than Computational

A verification of protocol P results a set S of
axioms

additional necessary properties

For any model M, not necessarily computational,

9

More Than Computational

A verification of protocol P results a set S of
axioms

additional necessary properties

For any model M, not necessarily computational,
if M ⊨ S,

9

More Than Computational

A verification of protocol P results a set S of
axioms

additional necessary properties

For any model M, not necessarily computational,
if M ⊨ S,

then the protocol P is secure in M.

9

More Than Computational

A verification of protocol P results a set S of
axioms

additional necessary properties

For any model M, not necessarily computational,
if M ⊨ S,

then the protocol P is secure in M.

I.e. implementation should satisfy the properties in S

9

Core Axioms 1

10

Axioms Limit the Attacker

11

Computational
Attacks

Axioms Limit the Attacker

11

Computational
Attacks

DY

Axioms Limit the Attacker

11

Computational
AttacksDY

Axioms Limit the Attacker

11

Computational
AttacksDY

Axioms Limit the Attacker

11

Computational
Attacks

Our Attacker

Computational
AttacksDY

Axioms Limit the Attacker

11

Computational
Attacks

Computationally sound axioms

Our Attacker

Computational
AttacksDY

Axioms Limit the Attacker

11

Computational
Attacks

Computationally sound axioms

Idea works for other than computational

Why computational:

Lot of work on computational model

We want to compare

Our Attacker

Computational
AttacksDY

Decisional Diffie-Hellman Assumption

12

Encryptions - CPA, CCA1, CCA2

13

L is length.

Depending on conditions on u, u', t', it covers various standard notions of
security:

Secure against Chosen Plaintext Attack

Secure against Chosen Ciphertext Attack 1

Secure against Chosen Ciphertext Attack 2

History
Initial version G. Bana - K. Hasebe - M. Okada 2008 (Franco-Japanese): Derive security with FOL

New momentum G. Bana - H. Comon POST'12: Computationally complete symbolic attacker (trace
properties)

Followup: G. Bana - P. Adao - H. Sakurada FSTTCS'12, Bana-Hasebe-Okada CCS'13

Library of axioms, analyzed several protocols for agreement, authentication for arbitrary number of
sessions by hand, found new attacks

Hubert Comon student Guillaume Scerri's PhD thesis - simple verification tool Scary

Indistinguishability G. Bana - H. Comon CCS’14: - basics with simple anonymity

Followup: G. Bana - R. Chadha (Univ. of Missouri) eprint'15

Library of axioms digital signatures, CPA, CCA security, exponentiation, DDH assumption, various
versions of Diffie-Hellman key exchange for arbitrary number of sessions by hand, NSL protocol, real-or
random secrecy, anonymity, agreement, authentication

G. Scerri - R. Stanley-Oakes (Bristol) CCS'16: Security of Key Wrapping API’s

H. Comon - A. Koutsos CSF’17: proving unlinkability and authentication of RFID protocols (XOR)

Recently completed with student of R. Chadha: Various versions of DH key exchange, Station-to-Station
protocol proofs in COQ

14

Current Main Focuses

15

Current Main Focuses
With Hubert Comon:

15

Current Main Focuses
With Hubert Comon:

efficient decision procedures

further examples by hand

15

Current Main Focuses
With Hubert Comon:

efficient decision procedures

further examples by hand

Hubert's student Adrien Koutsos works on automation

15

Current Main Focuses
With Hubert Comon:

efficient decision procedures

further examples by hand

Hubert's student Adrien Koutsos works on automation

With Mitsu Okada:

15

Current Main Focuses
With Hubert Comon:

efficient decision procedures

further examples by hand

Hubert's student Adrien Koutsos works on automation

With Mitsu Okada:

Completeness theorems - found attacks are real?

15

Current Main Focuses
With Hubert Comon:

efficient decision procedures

further examples by hand

Hubert's student Adrien Koutsos works on automation

With Mitsu Okada:

Completeness theorems - found attacks are real?

Exploring the connection with Fitting

15

Current Main Focuses
With Hubert Comon:

efficient decision procedures

further examples by hand

Hubert's student Adrien Koutsos works on automation

With Mitsu Okada:

Completeness theorems - found attacks are real?

Exploring the connection with Fitting

At University of Luxembourg (with Peter Ryan)

15

Current Main Focuses
With Hubert Comon:

efficient decision procedures

further examples by hand

Hubert's student Adrien Koutsos works on automation

With Mitsu Okada:

Completeness theorems - found attacks are real?

Exploring the connection with Fitting

At University of Luxembourg (with Peter Ryan)

e-voting

15

