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“Computationally Complete Symbolic Attacker”
Project for automated verification/attack finding of complexity 
theoretic properties (provable security) of security protocols

First Order Logic

“Unconditionally” computationally sound
2
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Modern cryptography: security properties are defined in terms of 
complexity theory - “computational model”

Agents, adversary are modeled by probabilistic polynomial-time algorithms

Security relies on hardness assumptions (discrete log problem etc)

For automated proof we need symbolic techniques

Computationally sound symbolic verification: no symbolic adversary 
—> No PPT adversary

 Computationally complete symbolic attacker: covers all PPT 
adversaries symbolically
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Relating attacker models: “Dolev-Yao Computational Soundness” (Tamarin, 
ProVerif etc tools,        Backes, Cortier, Warinschi etc)

Dolev-Yao symbolic security sometimes means Computational Security

Relied on strong restrictions on computational model, not good for algebraic operations

Proofs (partly automated) in the computational model: No symbolic attacker, 
security property derived directly

CryptoVerif (Bruno Blanchet, INRIA) 

F7 (Fournet et al. Microsoft, INRIA) 

EasyCrypt (Barthe et al. IMDEA) 

Many good results, but for either tools: 

No attack is found, incomplete proof may mean weak tool, weak user, or insecure protocol

Hard to use effectively for others than developers

Various hidden assumptions



Our Aim

6



Our Aim

6

Symbolic method convenient for automation



Our Aim

6

Symbolic method convenient for automation

Computational (complexity theoretic) guarantees 



Our Aim

6

Symbolic method convenient for automation

Computational (complexity theoretic) guarantees 

Symbolic verification ⇒ No computational attack



Our Aim

6

Symbolic method convenient for automation

Computational (complexity theoretic) guarantees 

Symbolic verification ⇒ No computational attack

Based on a simple language - Intuitive, easy to use



Our Aim

6

Symbolic method convenient for automation

Computational (complexity theoretic) guarantees 

Symbolic verification ⇒ No computational attack

Based on a simple language - Intuitive, easy to use

Transparent - no hidden assumptions



Our Aim

6

Symbolic method convenient for automation

Computational (complexity theoretic) guarantees 

Symbolic verification ⇒ No computational attack

Based on a simple language - Intuitive, easy to use

Transparent - no hidden assumptions

 Failure of proof delivers attack



Our Aim

6

Symbolic method convenient for automation

Computational (complexity theoretic) guarantees 

Symbolic verification ⇒ No computational attack

Based on a simple language - Intuitive, easy to use

Transparent - no hidden assumptions

 Failure of proof delivers attack

Algebraic operations, Standard hardness assumptions (DDH, etc) 
and security notions of primitives (CPA, CCA, etc) are easy to 
formalize
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Instead: attacker computations represented by function symbols: f0   
f1   f2 … 

No rules about what the attacker can do

Instead: (first-order logic) rules on the messages that attacker 
cannot violate: axiom

Attackers are allowed to complete everything (f0   f1   f2 … can satisfy 
anything) except what is forbidden

Security proofs:  security property is derived from the axioms using 
FOL

Attack model: Negation of security property consistent with axioms
7
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Proof Method
First order language on the terms produced by the protocol execution. (Actions in 
the protocol execution(s) are not part of the first order language)

First-order logic with a single predicate 

t1,...,tn ~ u1,...,un ; semantics: computational indistinguishability of PPT algorithms 
t1,...,tn from u1,...,un

Attempt to first-order derive security property of the protocol from:

Computationally sound core Axioms, independent of primitives

Computationally sound axioms for the primitives or hardness assumptions: 
E.g. CCA2, Discrete Logarithm, etc

If axioms not enough: attack is given by a branch of the proof tree not leading to 
axiom (concrete model of function symbols)

Add properties needed for the implementation until you avoid all attacks

At the end: A list of properties that if satisfied by the implementation, then secure.  
8
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More Than Computational

A verification of protocol P results a set S of 
axioms 

additional necessary properties 

For any model M, not necessarily computational, 
if    M ⊨ S, 

then the protocol P is secure in M.

I.e. implementation should satisfy the properties in S

9
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Computational 
Attacks

Computationally sound axioms

Idea works for other than computational

Why computational: 

Lot of work on computational model

We want to compare

Our Attacker

Computational
AttacksDY
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Encryptions - CPA, CCA1, CCA2

13

L is length.  

Depending on conditions on u, u', t', it covers various standard notions of 
security: 

Secure against Chosen Plaintext Attack 

Secure against Chosen Ciphertext Attack 1 

Secure against Chosen Ciphertext Attack 2



History
Initial version G. Bana - K. Hasebe - M. Okada 2008 (Franco-Japanese): Derive security with FOL  

New momentum G. Bana - H. Comon POST'12: Computationally complete symbolic attacker (trace 
properties)  

Followup: G. Bana - P. Adao - H. Sakurada FSTTCS'12, Bana-Hasebe-Okada CCS'13 

Library of axioms, analyzed several protocols for agreement, authentication for arbitrary number of 
sessions by hand, found new attacks 

Hubert Comon student Guillaume Scerri's PhD thesis - simple verification tool Scary 

Indistinguishability G. Bana - H. Comon CCS’14: - basics with simple anonymity 

Followup: G. Bana - R. Chadha (Univ. of Missouri) eprint'15 

Library of axioms digital signatures, CPA, CCA security, exponentiation, DDH assumption, various 
versions of Diffie-Hellman key exchange for arbitrary number of sessions by hand, NSL protocol, real-or 
random secrecy, anonymity, agreement, authentication 

G. Scerri - R. Stanley-Oakes (Bristol) CCS'16: Security of Key Wrapping API’s 

H. Comon - A. Koutsos CSF’17: proving unlinkability and authentication of RFID protocols (XOR) 

Recently completed with student of R. Chadha: Various versions of DH key exchange, Station-to-Station 
protocol proofs in COQ

14
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