
Proofs-Programs correspondance and Security

Jean-Baptiste Joinet

Université de Lyon
&

Centre Cavaillès, École Normale Supérieure, Paris

Third Cybersecurity Japanese-French meeting
Formal methods session

Keiô University
24/04/2017

Jean-Baptiste Joinet Keiô, 18/04/2017 1 / 9

Simple aims of this 15 minutes talk :

to advocate the relevance of
the Proofs as Programs paradigm
to understand programs behavior

with in view applications
to security questions

“Proofs-as-Programs” paradigm

I 1969. “Curry-Howard isomorphism” :

The process of analytization of Proofs
in Intuitionistic Natural Deduction

=
The process of computation

in Simply typed Lambda Calculus

The conclusion of a proof
=

The type of the
corresponding program

I 2017. Generalized to almost all parts of Logic (including Set theory)
I Second-order quantification (Polymorphic types, Girard’s System F. . .)
I Generalization to Classical Logic (e.g. Lambda-Mu-calculus. . .)
I Subsystems of Classical Logic with a lightened complexity (designed through

Linear Logic’s decomposition of computation), etc. . .

“Proofs-as-Programs” paradigm

I 1969. “Curry-Howard isomorphism” :

The process of analytization of Proofs
in Intuitionistic Natural Deduction

=
The process of computation

in Simply typed Lambda Calculus

The conclusion of a proof
=

The type of the
corresponding program

I 2017. Generalized to almost all parts of Logic (including Set theory)
I Second-order quantification (Polymorphic types, Girard’s System F. . .)
I Generalization to Classical Logic (e.g. Lambda-Mu-calculus. . .)
I Subsystems of Classical Logic with a lightened complexity (designed through

Linear Logic’s decomposition of computation), etc. . .

Propositions-as-Types : a first approach

I First approach of types (the “external” one) :
I types are given by an additional “second level” grammar
I used to externally submit the construction of programs to constraints

I Typing then is a way to avoid :
I some programs
I thus some particular computational dynamics
I thus some undesired properties of computation :

I typically non termination
I termination within a too long runtime

Propositions-as-Types : a first approach

I First approach of types (the “external” one) :
I types are given by an additional “second level” grammar
I used to externally submit the construction of programs to constraints

I Typing then is a way to avoid :
I some programs
I thus some particular computational dynamics
I thus some undesired properties of computation :

I typically non termination
I termination within a too long runtime

Propositions-as-Types : methodological use of the first approach

The program extraction methodology (to guarantee to get a correct program wrt
an equational specification)

I Data types : second order types whose shape determines all the terms of that
type

I Define equationally a recursive function on data in first order logic
I Prove the formula that states that the function is terminating
I We then know that the program corresponding to the proof does satisfy the

specification

What about other (non arithmetical functional) theorems ?

Propositions-as-Types : methodological use of the first approach

The program extraction methodology (to guarantee to get a correct program wrt
an equational specification)

I Data types : second order types whose shape determines all the terms of that
type

I Define equationally a recursive function on data in first order logic
I Prove the formula that states that the function is terminating
I We then know that the program corresponding to the proof does satisfy the

specification

What about other (non arithmetical functional) theorems ?

Propositions-as-Types : a second approach

Slogan :

a type
=

a set of programs
with some common behavior

with respect to
some set of tests

How to characterize abstractly which set of programs are types :
I idea : a type is a set of programs “orthogonal” to some set of programs (i.e.

which is closed by bi-orthogonality)
I types constructors are operations on sets of programs that preserve the fact

to be a type

Propositions-as-Types : a second approach

Slogan :

a type
=

a set of programs
with some common behavior

with respect to
some set of tests

How to characterize abstractly which set of programs are types :
I idea : a type is a set of programs “orthogonal” to some set of programs (i.e.

which is closed by bi-orthogonality)
I types constructors are operations on sets of programs that preserve the fact

to be a type

Krivine’s specification methodology

Goal : prove that all programs of a given type have a given common behavior

Krivine’s classical realizability could be used as a device to infer behaviors from
the type :

I a classical typing discipline is needed : second order (classical) predicate
calculus, formalized by adding Peirce law to the intuitionistic natural
deduction

I then, in order to realize classical proofs :
I a “classical” extension of Lambda-calculus (means : with control, exceptions

treatment)
I Behaviors described in terms of three categories (coming from ¬¬-translation

of intuitionistic logic into itself !) :
1. terms,
2. stacks (of terms),
3. executables (pairs made of a term and a stack)

I and w.r.t. a particular evaluation strategy (Call-by-name weak head evaluation
with a stack-save-and-restore abstract machine) which preserves this
description in three categories.

Krivine’s specification methodology

Goal : prove that all programs of a given type have a given common behavior

Krivine’s classical realizability could be used as a device to infer behaviors from
the type :

I a classical typing discipline is needed : second order (classical) predicate
calculus, formalized by adding Peirce law to the intuitionistic natural
deduction

I then, in order to realize classical proofs :
I a “classical” extension of Lambda-calculus (means : with control, exceptions

treatment)
I Behaviors described in terms of three categories (coming from ¬¬-translation

of intuitionistic logic into itself !) :
1. terms,
2. stacks (of terms),
3. executables (pairs made of a term and a stack)

I and w.r.t. a particular evaluation strategy (Call-by-name weak head evaluation
with a stack-save-and-restore abstract machine) which preserves this
description in three categories.

Krivine’s specification methodology

Solving specification problems :
I Interpretation of atomic formulas by set of terms : | X |
I | ⊥ | is a chosen set of executables closed by retro-reduction
I define | A |− (orthogonal) as the set of stacks that will form nice executables

when paired with terms in | A | with respect to | ⊥ |
I define inductively the interpretation “as usual”, but through a ¬¬ translation
I adequacy theorem : for any | ⊥ |⊆ {terms} × {stacks} : it the term t is of

type A and π is a stack in the orthogonal of A, then the executable (t, π) is
in the interpretation of ⊥.

I adequacy theorem is then used to prove that a particular common behavior is
shared by all terms :

I introduce a new combinator
I describe its postulated computational behavior in terms of

stack-save-and-restore manipulations (within the frame of the chosen cbn
evaluation)

I show that it is a realizer of the corresponding type, i.e. choose a relevant | ⊥ |
and show the combinator belongs to the interpretation of the corresponding
type.

Fin

