Name-Anomaly Detection in ICN Information-leakage in NDN

Daishi Kondo^{1,2}, <u>Thomas Silverston³</u>, Hideki Tode⁴, Tohru Asami⁵ and Olivier Perrin^{1,2}

¹Université de Lorraine, LORIA (CNRS UMR 7503) ²Inria Nancy – Grand Est

³National Institute for information and Communication Technology ⁴Graduate School of Engineering, Osaka Prefecture University ⁵Graduate School of Information Science & Technology, University of Tokyo

3rd FRA-JPN meeting, April 24-26 2017, Tokyo

Information-leakage

- One of the main security threat in Internet
 - IT Security Risks Survey 2014: A Business Approach to Managing http://media.kaspersky.com/en/IT_Security_Risks_Survey_2014_Global_r http://media.kaspersky.com/en/IT_Security_Risks_Survey_2014_Global_r
- Cyber Espionage
 - Targeted Attacks (malware, website, external memory device)
- Examples: Sony, Target
 - \$100 M upgrading systems
 - 46% drop in benefits [Understanding Targeted Attacks: The Impact of Targeted Attacks]

Targeted Attacks

Information-Centric Networking

- Internet is mostly used to access content
 - Video: 80% of global consumer traffic by 2019
 - [Cisco VNI 2015]
 - TCP/IP: host-to-host communication paradigm
- Users are interested with content not location
- Information-Centric Networking
 - Named-Data Networking (NDN) [CoNext 2009]
 - Host-to-content communication
 - Packet address *refers* to **content name** and not location (*host*)

Month

- New « Network layer » for Future Internet
 - Data at the core of the communication

67% of Internet traffic was video traffic in 2014

NDN Overview

- Packet address *refers* to *content name* not location
 - Named-Data Networking
- Two primitives
 - Interest, user requests content by issuing an Interest message
 - Data, a node having the content answer with a Data message
- In-Network Caching
- Data at the *core* of the communication
- New 'Network Layer' for Content Delivery

Overview of Named-Data Networking (NDN)

Information-leakage with Data Packets

Information-Leakage through Data Packet

- Data packet includes
 - Data, content name, etc.
- Characteristic of Data packet
 - Data packet cannot be sent if not a reply from Interest packet

Only Interest packets can leak information from network

Information-leakage with Interest

Summary : Information-leakage through NDN packets

- Interest/Data packets are "Request/Reply"
 - Content name, etc.
- Data packets can be filtered out out by admin.
 - White/Black lists of (un)authorized content names
 - CustomerList, BankingInfo, etc.
- Interest packets are sent out the network to external publishers as requests ("free" names)
 - Malwares can use *Interest* to leak Information through Targeted Attacks (steganography-embedded)

Risk Analysis of Information-Leakage through Interest Packets in NDN

- Performing information-leakage with names in NDN Interest packets
- Prevent information-leakage in NDN (Interest)
 - Major threat in the Internet
 - Named-Data Networking: architecture for Future Internet
- Proposal
 - Interest (Packet) filtering based on anomalous names
 - firewall
- Methodology
 - Study Names in the Internet with URLs
- Assumption
 - NDN Names will be based on URLs
 - Easy to translate current URL Names into NDN names

Attack Model and Countermeasure

Attack model

Malware builds anomalous names to leak information

Steganography-embedded

Countermeasures

- 1. Name-based filters using Name statistics
- 2. Name-based filter using one-class SVM

Assumption

 NDN names will be extension of URLs in the current Internet

URLs Dataset

• Web Crawling of 7 main organizations

– Amazon, Ask, Stackoverflow, BBC, CNN, Google, Yahoo

• 1 million URLs for each organization

/(Organization)/(Directory 1)/.../(Directory n)/(File)?(Query)#(Fragment)

Character Frequencies in URLs

URLs Statistics

URLs Statistics

URL attributes and computed percentiles

Attributes	Percentiles			
Attributes	90%	95%	99%	
Path Length (L_P)	81	98	147	
Query Length (L_O)	108	171	236	
Directory Length (L_D)	19	34	72	
File Name Length (L_{FN})	47	72	106	
Number of "/" in Path $(N_{/})$	4	5	7	
Number of "=" in Query $(N_{=})$	4	6	13	
Number of "&" in Query $(N_{\&})$	3	5	13	

 similarity of averaged frequencies of alphabets in Path and Query compared to typical English text [6]

[6] Frequency analysis, https://en.wikipedia.org/wiki/Frequency_analysis

TLD	com	net	org	info	jp	fr	uk
Path	0.970	0.957	0.960	0.968	0.976	0.975	0.975
Query	0.930	0.889	0.936	0.928	0.922	0.944	0.947

High similarity with typical English text => Using WordNet [7] for steganography
[7] G. A. Miller, "WordNet: A Lexical Database for English," Commun. ACM, vol. 38, no. 11, pp. 39–41, Nov. 1995.

URLs Similarity

Names Filtering Heuristics

- Filter based on measured URL parameters
 - Length (Path , Query, Fragment, Direction, File), #/
 - 95th percentile
 - 33% anomalous URLs (67% are legitimate names)
- Filter with Similarity measure
 - Previous extended filter
 - Character frequencies w.r.t. average frequencies in URLs dataset (Path, Query, Fragment)
 - 15% anomalous URLs (85% legitimate names)

Attacker

[9] ITU-T, http://www.itu.int/en/ITU-T/publications/Pages/latest.aspx

- Leaked data
 - 3.4 MB Zip file compressing 3 Pdf files from latest ITU-T recommendations [9]
- Threshold for each attribute in anomalous

	v = 0.4					
	L_P	L_Q	$N_{/}$	$N_{=}$		
com	15	112	2	4		
net	20	76	2	3		
org	17	98	2	4		
info	16	80	2	1		
јр	190	0	4	0		
fr	26	178	3	14		
uk	12	132	2	7		

Dictionary coding with 65,536 dictionary words from WordNet [7]

Table with each dictionary word and 4 hexadecimal digits to each word (one word is equal to 2 Bytes)

Name-Based Filter Using One-Class SVM

One-class SVM [4] is unsupervised method to perform anomaly detection

>Adapted if not many samples

[4] B. Scholkopf, et al., "Estimating the Support of a High-Dimensional Distribution." Neural Comput., vol. 13, no. 7, pp. 1443–1471, Jul. 2001.

- Regarding NDN architecture, there are currently not anomalous traffic nor names available
 - \blacktriangleright Extracting URL properties as characteristics of legitimate names and applying them for one-class SVM filter

Filter using one-class SVM inspects names dropped by filter using search engine information

Performance Evaluation

- Performance metric
 - Per-packet throughput of information-leakage (Bytes/Interest_packet)
- Each TLD dataset is separated into two sets to create name-based filter using one-class SVM
 - ➤ Training set for each TLD: 800,000 URLs
 - ➤ Testing set for each TLD: 200,000 URLs
- Assumption
 - Defending knows attack method (i.e., steganographyembedded Interest packets) but not its parameters
 - Attacker knows countermeasure but not its parameters
 This case is of benefit to attacker

Performance Evaluation

- Without SVM filter
 - Attacker builds names and leak information (steganography)
 - 2.06 Kbytes/Interest_packets
- With SVM filter (tuned parameters)
 - 7.79Bytes/Interest_packets

By using filter, malware has to send 264 times (2.06 KB/ 7.79B) more Interest packets to the attacker than without using filter

Project ANR Doctor (2014-2017) http://www.doctor-project.org/

- Deployment of new network functions and protocols (e.g.: NDN) in a virtualized networking environment (e.g.: NFV)
 - Monitoring, managing and securing (using SDN for reconfiguration)
- Partners: Orange, Thlaes, Montimage, UTT, LORIA/CNRS (900k€)

Conclusion

- Information-leakage is main Internet Security threat
 - Targeted Attacks
- NDN as Future Internet architecture
 - Prevent leakage information from names (Interest Packets)
 - Steganography-embedded attacks in Names
- NDN Names filtering heuristics
 - Based on URLs statistics
 - Up to 15% of anomalous URLs
 - Firewall for NDN
- SVM-based filtering heuristics
 - Choke throughput of information-leakage
 - Up to 264 more Interest packets to leak the same amount of information
- Designing Naming Scheme for Named-Data Networking (NDN)
 - Privacy in NDN

Thank You

• Questions ?

thomas@nict.go.jp

