

Institut Mines-Télécom

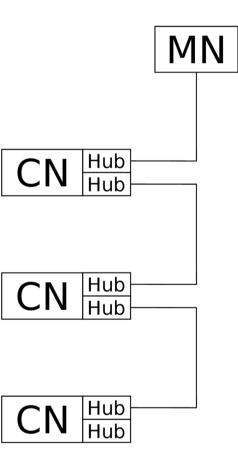
Cybersecurity for Industry 4.0

Security Issues and Mitigation in Ethernet POWERLINK

Hervé Debar Institut Mines-Télécom - Télécom SudParis <u>herve.debar@telecom-sudparis.eu</u>

Joint work with Jonathan Yung & Louis Granboulan (AIRBUS Group Innovations)

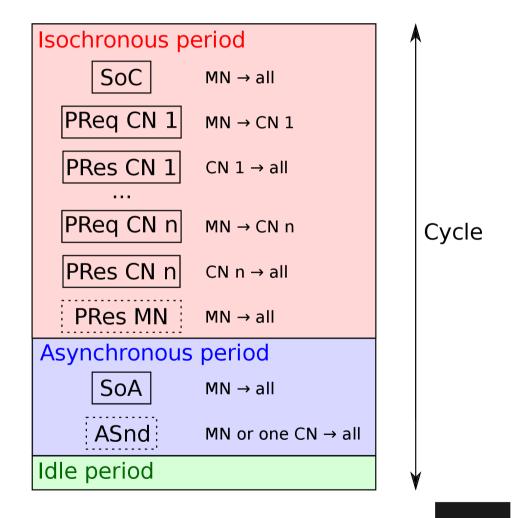
Security of SCADA protocols


- Focus of this talk: Industrial Ethernet Protocols
- Adaptation of the Fieldbus protocols on Ethernet.
- Classified in three types:
 - Class 1 (soft real-time): MODBUS/TCP, EtherNet/IP
 - Class 2 (hard real-time): PROFINET (RT)
 - Class 3 (isochronous real-time): PROFINET IRT, Ethernet POWERLINK, EtherCAT
- Literature already presents attacks and mitigation measures...
 - ... but only for class 1 and/or 2 protocols.
- The goal of this presentation is to:
 - test the security of a type 3 protocol: Ethernet POWERLINK
 - propose security improvements

2

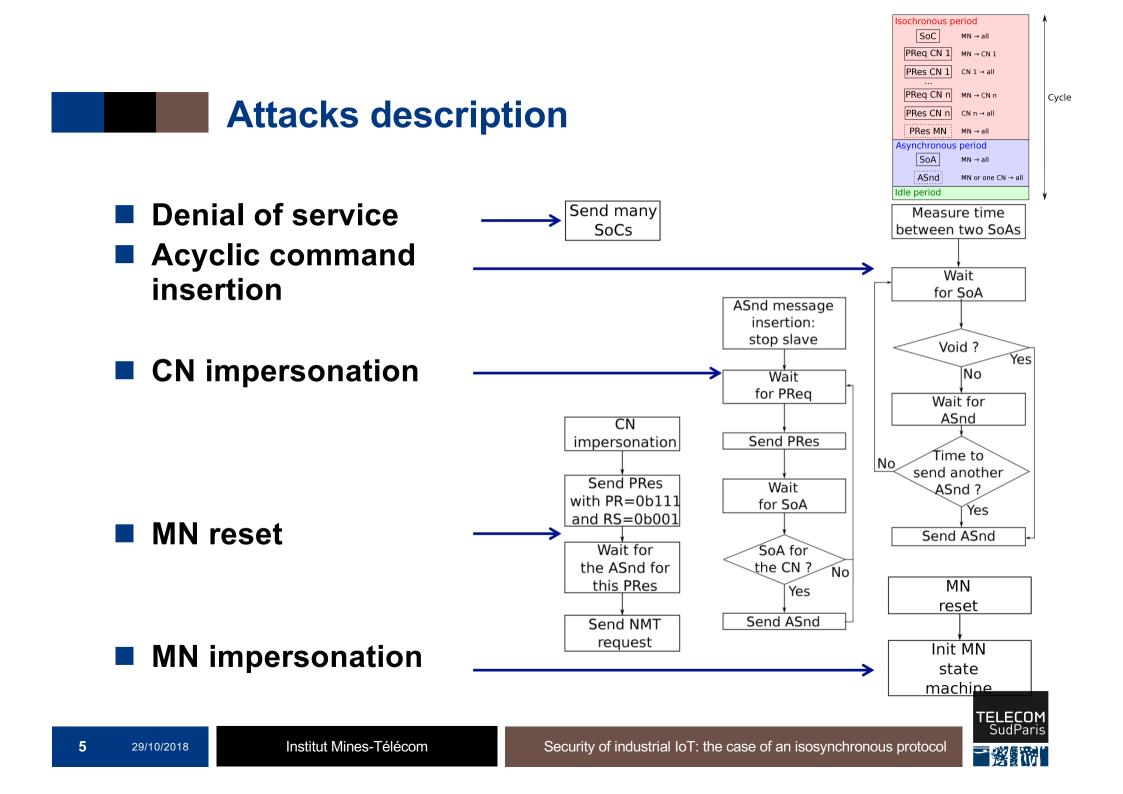
Ethernet POWERLINK Protocol Architecture

- It is specified by the EPSG (Ethernet POWERLINK Standardization Group).
- It uses the Master/Slave paradigm.
 - A Slave can send a message only if asked by the Master.
 - It is composed of:
 - one master called Managing Node (MN)
 - up to 240 slaves called Controlled Node (CN)
- The MN and CNs are connected through Hubs.
- Attacks require physical access to a free port


Ethernet POWERLINK Protocol structure

Composed of three periods:

- Isochronous period
- Asynchronous period
- Idle period


Operated by a Network Management (NMT) state machine

- The MN can change the NMT state of a CN through an ASnd command.
- A CN can ask the MN to send an NMT command to change the NMT state of a CN or of the MN.
- NMT State of a CN are (non exhaustive list):
 - Init, pre_operational_1, pre_operational_2, ready_to_operate, operational, stopped

TELECOM SudParis

4

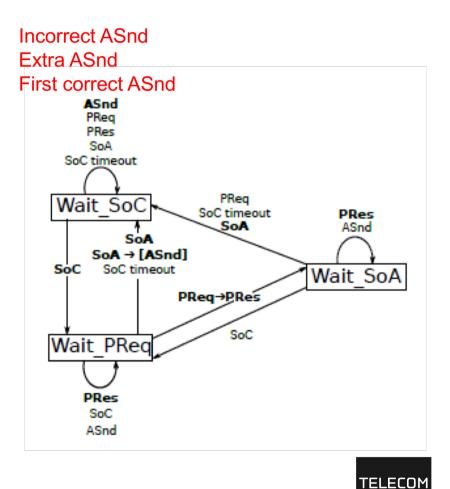
Initial experiments

Current experiments

Attacks	B&R components	openPOWERLINK	Attacks	B&R components	openPOWERLINK
Denial of service	ОК	OK	Denial of service	ОК	ОК
Acyclic command insertion	~OK	OK	Acyclic command insertion	ОК	ОК
CN impersonation	Not OK	OK	CN impersonation	~OK	ОК
MN reset	Not OK	OK	MN reset	ОК	ОК
MN impersonation	ОК	OK	MN impersonation	ОК	ОК

Summing Up the Attacks

- The Master/Slave paradigm simplifies any DoS attacks.
 - we do not handle mitigation against DoS attacks here
- The other attacks are due to weaknesses in the asynchronous period:
 - no basic authentication of the command
 - no verification that the ASnd and SoA are consistent
 - several ASnd can be accepted by a CN

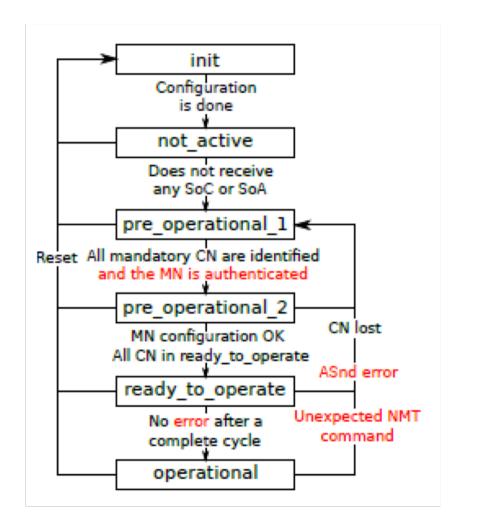


Attack Mitigation State Machine Modification

Wait SoC First correct ASnd trigger Incorrect ASnd \rightarrow error Extra ASnd \rightarrow error SoC trigger → send SoC+PRea last PRes → send SoA. [ASnd] ASnd last PRes timeout → send SoA. [ASnd] Wait PRes Wait ASnd SoC trigger → send SoC + PReq PRes → send PReg PRes timeout → send PRea

Controlled Node

SudParis



Master Node

Attack Mitigation MNT MN State Machine Modification

Better error checking

Include authentication

TELECOM SudParis

Mitigation evaluation

Denial of Service:

not handled here

Acyclic command insertion:

- The CN only accepts one correct command consistent with SoA.
- It is not totally perfect: an attacker can be quick enough to send such a command before the MN.
- However, even in this case, it will be detected.

CN impersonation:

- Change of the MN state machine: the MN checks the ASnd sent on the wire
- The attacker can't send an NMT command without being spotted by the MN.

MN reset:

• This attack requires the impersonation of a CN.

MN impersonation:

• The authentication phase during start-up blocks this attacks.

Residual risk analysis

Ethernet POWERLINK communications are not totally secured:

- We can stop the communications.
- We can inject commands.
- We can inject input data.
- We can impersonate an MN.

We proposed some modifications:

- reinforcing the asynchronous period
- improving the start-up period

Design of a security master for Powerlink

- Analogous to the OpenSafety context
- Adding one specific CN slave node to the network
 - Safety related configuration
 - Check communications
 - Handle safety nodes
- Modifying other nodes, CNs, as safety nodes to act on safety commands
- Modifications to the implementation of the protocol to protect against data corruption
 - Limit to message size
 - CRC
 - Timestamps

Attacker model

- Protection of the cyclic part of the cycle
- Acyclic part attacked through cyclic commands
- Integrity and authenticity attacks
 - DoS not handled, extremely hard due to timing constraints
 - Confidentiality not handled, considered irrelevant
- The attacker must be able to connect to a free RJ45 port
 - Easy at the end of the chain
 - Possible with interruption in other places

SecurityMaster features

- AES-CMAC on all data transported by the powerlink messages
- New secure messages/sub-protocols
 - Network management for control messages sent by the SecurityMaster
 - Error reporting to securely report errors to the HMI through the MN
 - Key management: initialization, key change

Several configurations possible

- Isolated security master: reporting to HMI
- Secure CN/monitored MN: detection of malicious commands
- Secure MN/monitored CN: check for malicious responses
- Full security

Security evaluation

	CN Impersona- tion	MN Impersona- tion	PRes modification	PReq modification
Isolated SecurityMaster	-	-	-	-
Monitored MN	Detected	Detected	Detected	
Monitored CN	-	Detected	-	Detected
Full security	Blocked	Blocked	Blocked	Blocked

Performance evaluation

Nb CN	Data size	Mon. MN	Mon. CN	Full sec.	Open- Safety
1	1	+0,64%	+1,94%	+4,66%	+0,01%
1	200	+4,08%	+5,18%	+13,5%	+22%
1	1490	+9,08%	+9,57%	+27,8%	N/A
20	1	+1,16%	+1,37%	+6,15%	+0,37%
20	200	+9,29%	+9,43%	+27,1%	+53,4%
20	1490	+12,1%	+12,2%	+36,2%	N/A
238	1	+1,26%	+1,28%	+6,40%	+0,49%
238	200	+9,93%	+9,94%	+28,7%	+57,2%
238	1490	+12,3%	+12,3%	+36,7%	N/A

Theoretical impact of the security protocol in terms of additional fields and cryptographic operations, using CMAC benchmark data

Conclusion

Securing isosynchronous protocols is feasible

- Requires adding a new node
- Requires new protocol messages
- Complies with Ethernet Powerlink specifications
- Similar to accepted technical practices (OpenSafety)

Implementation needs to validate the proposal

- B&R automation testbed under way
- Difficulties
 - Use cases
 - Programming

Thank you for your attention

Questions ?

