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IA revolution

• Robotsky: You have been rescued by...
• Robotsky, Sparx, Mike the Fridge: The Robot Revolutionary Front!
• Sparx: I'm Sparx, the brains.
• Robotsky: And I'm Robotsky, the muscle.
• Mike the Fridge: And I'm Mike the Fridge. I'm the fridge.
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Some history …

1969

Arpanet

1982

First virus : Elk cloner

1983

TCP/IP

1988

First worm: Morris 
worm

1988

First Firewall
•First stateful firewall, 1990

1997

First DoS attack : 1997, 
during DEF CON
•First DDos : 1999, Trinoo

1997

First large scale 
Internet 
Measurements: 1997, 
Vern Paxson

1998

Snort intrusion 
detection System

2002

In 2002 first Internet 
measurement 
Workshop 
•Out of 39 papers, 12 about 
network anomalies …



What is AI ?

• Wikipedia : Artificial intelligence (AI) is
intelligence demonstrated by machines.
• the term "artificial intelligence" is

applied when a machine mimics
"cognitive" functions that humans
associate with other human minds, 
such as "learning" and "problem
solving »

• “When you’re fundraising, it’s AI. When
you’re hiring, it’s ML. When you’re
implementing, it’s logistic regression.”



AI, machine 
learning, data 

mining



Any fool 
consider 

himself as 
intelligent 

Danish folklore



What is cybersecurity ?

• Communication security
• Encryption, authentification 

• Physical security
• Firewalls, resilience

• System security
• Malware, virus

• Software security
• Network security

• Routing, in network detection
• User security

• Social engineering
• Attacks intentions

• Geopolitics, cybercrime
• Policies, regulations



Machine learning in cybersecurity ? 

• Model based
• Traffic generative models

• Queuing theory, Poisson models, Erlang, Markovian, self-similarity
• Behavior models

• State machine, Markovian, Latent state
• Inverse inference

• Having an empirical traffic what are the parameters of the model 
• Moment methods, Maximum Likelihood, EM methods

• Model based anomaly detection
• Calibrate a model of normal behavior
• Detect divergence from normal behavior
• Raise an alarm when divergence large

• Extension to non-parametric models



Data mining approaches in cybersecurity

• Association rules
• For Anomaly extraction
• For Rules extraction 

• Sequence prediction
• Similar to machine learning but with a sequence model

• Fingerprint extraction 
• Virus/Worm detection

• Log analysis
• Natural langage processing, LDA, 



Big data and cybersecurity

• One day of packet headers= 12 Tbytes of data 

• 2 days of DNS data in China = 20 Tbytes of data, 72 Billions records

• AS level graph analysis : one 68 k nodes graph per mins over 50 days

• Social network graph: 300 k nodes graphs 

• Fraud detection : 75 k nodes graphs 



A critical history of deep learning

• The Centuries Old Machine Learning Algorithm

• The perceptron: 1957

• Multi-layer Neural Net 



A critical history of deep learning
• Back propagation 
• Basic idea in 1974, by Paul Werbos

• In 1968, I proposed that we somehow imitate Freud’s
concept of a backwards flow of credit assignment, 
flowing back from neuron to neuron

• Reinvented by Geof Hinton 
• Use of CNN
• Application in 1989 to hand written numbers

• LeCun, Y; Boser, B; Denker, J; Henderson, D; Howard, R; 
Hubbard, W; Jackel, L, “Backpropagation Applied to 
Handwritten Zip Code Recognition,” in Neural 
Computation , vol.1, no.4, pp.541-551, Dec. 1989



A critical history of deep learning

• Neural Nets Go Unsupervised
• Using NN as a universal compression tool
• Clustering

• Kohonen maps

• Fusioning information
• Belief propagation networks

• Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning
algorithm for boltzmann machines*. Cognitive science, 9(1), 
147-169.

• Graphical models



A critical history of deep learning

• The glacial age of deep learning (from mid-80 to mid-00)
• Historically, this was very important in overcoming the belief that these deep

neural networks were no good and could never be trained. And that was a 
very strong belief. A friend of mine sent a paper to ICML [International 
Conference on Machine Learning], not that long ago, and the referee said it
should not accepted by ICML, because it was about neural networks and it
was not appropriate for ICML. In fact if you look at ICML last year, there were
no papers with ‘neural’ in the title accepted, so ICML should not accept
papers about neural networks. That was only a few years ago. And one of the 
IEEE journals actually had an official policy of [not accepting your papers]. So, 
it was a strong belief.”



Spring arrived ! 

• This year ICML program is 92% deep learning! 

• What bring back the spring
• Not swallows J
• Maths, maths and maths

• Convex Optimisation 
• Differential geometry

• But the ingredients of glacial age are sy-till trhere
• Amateurism
• Lack of perspective
• Generalization issue
• Non reproducibility
• Boredness
• Hegemony



So what are the area of interest ?

• Automatic misconfiguration detection
• Data mining to extract new attacks
• New feature extraction tools
• Highly Non linear
• Information fusion 

• Heterogeneous source

• High speed computation 



Large-scale graph 
monitoring 

An application to  overall monitoring of 
Internet through BGP feeds

Kavé Salamatian, 
Professor of Computer Science, University of Savoie 

Distinguished visitor professor in Chinese Academy of 
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Holder of Presidential Award of the Chinese Academy
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Large graphs monitoring

• Graphs are complex object
• Nodes and links  represent things that are of different nature
• All change to graph are local but some of them have global effects

• Graph monitoring is the process of deciding if a local change will lead 
to global changes or not ?
• Large set of applications 

• Computer Networks, biology, social networks 

• How can we know that a local change is scaling into global?



On geometry and topology

• In 18th century Gauss raised this question: 
• Do an ant moving on a shape can know what is the shape ?

• Curvature
• Describe how geodesics converge or diverge

• Gauss-Bonnet theorem

Gauss–Bonnet theorem
The Gauss–Bonnet theorem or Gauss–Bonnet formula in
differential geometry is an important statement about surfaces which
connects their geometry (in the sense of curvature) to their topology
(in the sense of the Euler characteristic). It is named after Carl
Friedrich Gauss who was aware of a version of the theorem but never
published it, and Pierre Ossian Bonnet who published a special case
in 1848.

Statement of the theorem

Interpretation and significance

Special cases
Triangles

Polyhedra

Combinatorial analog

Generalizations

In Popular Culture

References

Books

External links

Suppose  is a compact two-dimensional Riemannian manifold with boundary . Let  be the Gaussian curvature of , and let
 be the geodesic curvature of . Then

where dA is the element of area of the surface, and ds is the line element along the boundary of M. Here,  is the Euler
characteristic of .

If the boundary  is piecewise smooth, then we interpret the integral  as the sum of the corresponding integrals along

the smooth portions of the boundary, plus the sum of the angles by which the smooth portions turn at the corners of the boundary.

The theorem applies in particular to compact surfaces without boundary, in which case the integral

An example of a complex region where Gauss–

Bonnet theorem can apply. Shows the sign of

geodesic curvature.

Contents

Statement of the theorem

Interpretation and significance



Extension to graphs ? 
• Graph embeddings
• Transpose a graph into the manifold 

where an !-distance linking will create the 
graph 
• Too complex

• The manifold was more complex than the 
graph

• Can we just reproduce curvature
structure ?
• Forman Curvature
• Ricci-Ollivier Curvature
• …



Optimal transport 
• Evaluate the cost of transferring some distribution of  mass 

over nodes of a graph to another
• Consider distribution of mass ! " and # " over all nodes " in the 

graph 
• ∑! " = 1 and ∑# " = 1

• Optimal transport is where
d(x,y)	

is the cost of transport one unit of mass  from x to y and . ", / is the	
amount of	mass	to	transport,	with constraints

• Boils down	to	shortest path if	all	mass	is concentrated over	two points
• Transportation distance 
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manifold from two perspectives: the extrinsic view considers
the manifold as an object embedded in a (larger) euclidean
space, while the intrinsic view considers properties deter-
mined solely by distance within the surface. In other terms,
the extrinsic view is the one of an observer that could look
at the manifold globally, and the intrinsic view is that of an
ant (or an army of ants) moving along the manifold. Relation
between these two perspectives has been a major question
in geometry, e.g. the "remarkable theorem" of Gauss, Theo-
rema Egregium, states that the curvature of a surface does
not change if one bends the surface without stretching it.
Thus the curvature is an intrinsic invariant of a surface [13].
The intrinsic and extrinsic viewpoints are fundamental in
our work as well, since we aim at characterizing which lo-
cal changes will result in major global changes. Through
the Theorema Egregium the notion of curvature of a surface
becomes a main tool for doing this.

Curvature can be intimately related to the local behavior of
geodesics, i.e., shortest paths along the manifold. On a space
with (strictly) positive curvature, two distinct geodesics start-
ing at two points close to each other and pointing to the same
destination will ultimately converge to the same point [48].
Inversely with negative curvature, two geodesics will drift
apart getting further of each other (see Figure 1). Several met-

Figure 1: In �at geometry, parallel lines are equidis-
tant while they tend to get further (resp. closer) in hy-
perbolic (resp. spherical) space.
rics exist for describing the curvature such as the sectional
curvature [13], Gromov � -hyperbolicity [21], Bakry Émery
Tensor [10], Forman-Ricci curvature [27] [62] etc. [12]. In
this paper, we use an extension of the Ricci curvature to
discrete objects, and particularly graphs, which we describe
in the following section.

2.3 Discrete curvature and the
Ollivier-Ricci curvature

Let’s de�ne the discrete extension of Ricci curvature to a
graph G = (V ,E). This extension uses the concept of trans-
portation cost d [51] over a graph. Let’s assume a graph
where a distance metric d(x ,�) is de�ned between each pair
of vertices (x ,�) 2 V ⇥V . This distance can be the minimum
hop distance, a minimal weight distance or any other arbi-
trary distance matrix. Consider distributions µ and � over

the vertex set V , i.e. µ(x) � 0 for x 2 V and
Õ

x 2V µ(x) = 1.
The optimal transport � ⇤(µ,� ) is de�ned as follows.

De�nition 2.1 (Optimal Transport).

� ⇤(µ,� ) = argmin
�

’
x,�2V

� (x ,�)d(x ,�), (1)

where the minimization is over all transport plans � , i.e.
� : V ⇥V 2 R such that

� (x ,�) � 0 for all x ,� 2 V’
�2V

� (x ,�) = µ(x) for all x 2 V

’
x 2V

� (x ,�) = � (�) for all � 2 V . (2)

The value C(� ⇤, µ,� ) , Õ
x,�2V � ⇤(µ,� )d(x ,�) is referred to

as the transportation distance.

Intuitively, the transportation distance evaluates the e�ort
needed to transport a mass distributed following a distribu-
tion µ(x) over the di�erent vertices of the graph to another
mass distribution � (x). The optimal transport � ⇤(µ,� ) always
exists and can be computed exactly by solving the linear pro-
gram (1), or approximated e�ciently (see for example [25]).

We can leverage the optimal transport to extend the Ricci
curvature to graphs.

De�nition 2.2 (Ollivier’s Ricci curvature [47]). The Ollivier
Ricci curvature �(x ,�) between two vertices x and � 2 V is
de�ned as:

�(x ,�) = 1 �
C(� ⇤, µx , µ� )

d(x ,�) , (3)

where {µz for z 2 V } is a family of distribution.

The distributions µz can be general, and we will specify
which distribution is suitable for our application later on. It
can be shown that the curvature is bounded in general as
�2  �(x ,�)  1 [48]. However for distribution µz such that
half of the mass is positioned on the central node and the
remaining mass is distributed over the neighbors, one can
prove that �1  �(x ,�)  1 [32].
Examples: To illustrate intuitively the Ollivier-Ricci curva-
ture let us look at three extreme cases. For these examples, we
assume µz put weights uniformly among neighbors of z, i.e.
if dz is the number of neighbors of vertex z, then µz (x) = 1

dz
if x is a neighbor of z, and 0 otherwise.

• LetG = (V ,E) be a clique with N vertices. In this case
all neighbors of x are neighbors of �. So the optimal
transport plan � ⇤(µx , µ� ) has not to transport anything
from neighbors of x to neighbors of � and only needs
to transport a mass 1

N�1 from � to x . This means that
the Ollivier-Ricci curvature equal to �(x ,�) = 1� 1

N�1 .
As N grows, the curvature tends to its maximal value
1.
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assume µz put weights uniformly among neighbors of z, i.e.
if dz is the number of neighbors of vertex z, then µz (x) = 1

dz
if x is a neighbor of z, and 0 otherwise.

• LetG = (V ,E) be a clique with N vertices. In this case
all neighbors of x are neighbors of �. So the optimal
transport plan � ⇤(µx , µ� ) has not to transport anything
from neighbors of x to neighbors of � and only needs
to transport a mass 1

N�1 from � to x . This means that
the Ollivier-Ricci curvature equal to �(x ,�) = 1� 1

N�1 .
As N grows, the curvature tends to its maximal value
1.



Ollivier-Ricci Curvature

• Optimal transport over a distribution defined over the neighbors of 
source and destination 

• Examples
• Over a clique with N nodes the ORC is 1- 1/(N-1).
• Over an alignment of links the ORC is 0
• Two star connected by a link ORC is -1+3/2N
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manifold from two perspectives: the extrinsic view considers
the manifold as an object embedded in a (larger) euclidean
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the extrinsic view is the one of an observer that could look
at the manifold globally, and the intrinsic view is that of an
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geodesics, i.e., shortest paths along the manifold. On a space
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Figure 1: In �at geometry, parallel lines are equidis-
tant while they tend to get further (resp. closer) in hy-
perbolic (resp. spherical) space.
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’
x 2V
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can be shown that the curvature is bounded in general as
�2  �(x ,�)  1 [48]. However for distribution µz such that
half of the mass is positioned on the central node and the
remaining mass is distributed over the neighbors, one can
prove that �1  �(x ,�)  1 [32].
Examples: To illustrate intuitively the Ollivier-Ricci curva-
ture let us look at three extreme cases. For these examples, we
assume µz put weights uniformly among neighbors of z, i.e.
if dz is the number of neighbors of vertex z, then µz (x) = 1

dz
if x is a neighbor of z, and 0 otherwise.

• LetG = (V ,E) be a clique with N vertices. In this case
all neighbors of x are neighbors of �. So the optimal
transport plan � ⇤(µx , µ� ) has not to transport anything
from neighbors of x to neighbors of � and only needs
to transport a mass 1

N�1 from � to x . This means that
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Ollivier-Ricci Curvature monitoring system 
• Compare the Ollivier- Ricci between all nodes of two snapshots

of the graph 
• Evaluate the importance of the change by the magnitude of the 

change 
• Does Gauss-Bonnet theorem is valid ?

• Almost but not in general
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We show in Fig 3 the sum of positive and negative values
in the �k matrix. Following the discussion in section 3.2,
we observe a behavior compatible with the Gauss-Bonnet
theorem, i.e. zero sum or very small one in period without
major BGP events, and a change in period with large event.

Figure 3: Time series of the sum of the positive (resp.
negative) elements in �k along with the global sum.

From the previous discussion one can consider that moni-
toring the sum of curvature is enough to detect large events.
Nonetheless, when the Gauss-Bonnet theorem is valid, the
sum of curvature will not change whatever large is the �uc-
tuation. However, the Gauss-Bonnet theorem is not formally
valid for Ollivier-Ricci curvature. This means, just looking
at the sum of curvature might generate false alarms and mis-
detections. We have therefore to de�ne another method to
translate the matrix �k into a time-series over which we will
detect large events.
Analysis of Curvature MatrixAs said before columns or
lines structure in the matrixm ⇥ L matrix �k are represen-
tative of the changes in the topology. Typically, the matrix
contains several very small values, relative to small curva-
ture changes, and a limited number of lines or columns with
larger curvature changes. In order to analyze the structure of
this matrix we will use its singular values 2, i.e., the roots of
eigenvalues of the L ⇥ L matrix �kT�k . The elements on the
diagonal of �kT�k are the column-wise sum of squares of
�k matrix and its trace is the Frobenius norm of �k , k�k kF :

k�k kF =
’
i

’
j

⇣
�ki j

⌘2
.

The Frobenius norm represent therefore the variance of the
values in �k , i.e., the strength of the curvature changes.

One can check that if the matrix �k contains a l non-zero
column, i.e., its rank is l , the matrix �kT�k will have l strictly
positive eigenvalues, or equivalently �k will have l non-zero
singular values. However, in practice, the curvature matrix
is �lled with small values, rather than 0, and only some of
the lines or columns will have large values. In such case,
2Singular values are extension of eigenvalues to non-square matrices [7]

�k have some large singular values �kT�k representing the
large values columns, and other eigenvalues close to 0. In
such contexts, the stable rank de�ned as

�k =
k�k kF
�0k
,

where �0k is the largest eigenvalue of �kT�k . �k is frequently
used as a robust estimator of the rank of a matrix, in partic-
ular for generating low rank approximation of noisy matri-
ces [23]. As the rank is directly related to number of large
columns in �k , the stable rank estimates this number, i.e., a
stable rank close to 1 means that only a single column of �k

has important changes, while a large stable rank indicates
large number of columns, i.e., landmarks, having seen impor-
tant changes. It is also noteworthy that �0k have the below
property :

�0k = max
kX k2,0

k�kX k2
kX k2

.

In other terms, the largest singular value gives the largest
norm stretching that the �k matrix can generate.

The above observations lead into a simple anomaly detec-
tion scheme. For each incoming matrix �, we evaluate the
normalized Frobenius norm, i.e., k�k kF = k�k kF

m , wherem is
the number of ASes having seen changes in the k th snapshot,
and the stable rank of�k , i.e.,�k . The set

n⇣
¯k�k kF ,��1

k

⌘
, k = 0, . . . ,

o
de�nes a time trajectory that will be used to detect large
events. We use ��1

k in place of ��1
k , as it is bounded, i.e.,

0 < ��1
k < 1. A large event will have a large value of k�k kF

and a small ��1
k , while a local event might have large value

of k�k kF but will have a value of �k close to 1.

3.3 Landmarks selection
Our approach relies on constructing the Ollivier-Ricci em-
bedding in RN . However, monitoring the variations of all
distances is unfeasible over a real AS-level graph with over
60k vertices and 3.6 billion distances [3]. We reduce the di-
mensionality by choosing a set of L << N landmarks and
onlymonitor the variation of curvature towards them, i.e., we
represent the position of vertex i by a vector Xi = (x ij ), j =
1, . . . L where x ij = �(i, j) is the curvature from i to landmark
j. The essential property we are seeking to preserve despite
the dimensionality reduction, is that the variation of the time
series between time t and t + 1, denoted hereafter by the
drift, should be small when there are no major changes in
the graph underlying geometry and substantial when such
a large change happens. The landmarks should satisfy this
property and we will validate this claim in Sec. 4.

Choosing landmarks in a highly dynamic graph is a com-
plex task [40].



BGP monitoring system 



Monitoring platform

• JSON updates 
• collector': 'rrc19', 'message': 'announce', 'peer': {'address': '197.157.79.173', 'asn': 

37271}, 'time': 1515110408, 'fields': {'asPath': ['37271', '6939', '52320', '23106', 
'23106', '23106', '262700'], 'prefix': '187.102.120.0/21', 'nextHop': '197.157.79.173’},

• Augmented
• 'flags': {'version': 'v4', 'shortPath': ['37271', '6939', '52320', '23106', '262700'], 

'geoPath': ['ZA', 'US', 'CO', 'BR', 'BR'], 'names': ['Workonline Communications(Pty) 
Ltd', 'Hurricane Electric, Inc.', 'GlobeNet Cabos Submarinos Colombia, S.A.S.', 'Cemig
Telecomunicações SA', 'Efibra Telecom LTDA - EPP'], 'risk': 9.262460855949895e-05, 
'previousPath': None, 'activePath': None, 'category': None}}

• Each mins one snapshot of the AS level Graph



Landmark selection
• On a 60k network one cannot afford to calculate the curvature

between all nodes
• We limit this to a set of landmarks and only node that have seen an 

update in a time window
• Landmarks ?

• Nodes that are well connected to other nodes but are not close to 
each other
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Figure 4: Components of the monitoring system

We considered multiple landmark selection process: (a)
random landmarks selection, (b) highest degree, (c) highest
centrality, (d) highest number of triangles, (e) Tier 1 and Tier
2 AS, a random walk starting at (e) a random vertex or (g) at
the collector node, and �nally (f) a lazy random walk that
we introduced and which was developed for this purpose.

In order to evaluate the performance of di�erent landmark
selection methods, we de�ne two metrics that are calculated
over a landmark set R. A �rst metric, S1, evaluates the diver-
sity arising from R, by assessing the proportion of distinct
neighbors of vertices in R among all possible neighbors, and
S2 the average distance in hops between landmarks, i.e.:

S1(R) =

���� –
� 2R

N (�)
����Õ

w 2R |N (w)|

S2(R) =
1

2|R |
’
� 2R

’
w 2R

d(�,w)

(4)

High diversity is a necessary condition for a landmark to
have high curvature. So we use the S1 metric as a low com-
plexity proxy to detecting potentially high curvatures. A
good set of landmark should therefore at the same time
achieve a good diversity, large value of S1, and be far apart,
large value of S2. We consider 30 of our collected AS graphs
and run over them the di�erent landmark selection algorithm
and see the outcomes. For random walk based approaches
(lazy random walk, fully random and random walk), we do
10 runs each with 35k random steps (10k for 10 landmarks)
and for deterministic approach (triangle, degree, tier 1& 2),
we execute the code over the 30 graphs. We compute for each
case the score S1 and S2 of resulting landmarks obtained by
di�erent methods. We report the average of S2 in 1 and look
at the distribution of the measure S1 for 20 landmarks in 5.
We can see that the lazy random walk achieves a better per-
formance both in term of diversity and of average distance,
we will therefore use the 20 landmarks coming from this
method in the forthcoming.

Figure 5: Distribution of S1 for 20 landmarks for dif-
ferent landmarks selection approaches

Landmarks
# of landmarks #10 (10K) # 20 (35K) # 30 (35k)
Lazy Rand Walk 5.447742 7.07428 5.2616129
Fully random 3.670968 4.118387 3.841935
Highest degree 1.123871 1.265484 1.106452
Highest centrality 1.16788 1.278206 1.125779
Highest triangle 1.144516 1.209032 0.984516
Mix Tier 1 and Tier
2

1.565161 1.548065 1.620645

Rand. Walk 1.859355 2.0933387 1.830323
Rand. Walk Ripe 1.741935 1.720806 1.823971Table 1: Average of S2 for di�erent landmarks selec-

tion approaches

4 EVALUATION AND VALIDATION
The previous sections presented several components of a
large-scale graph monitoring system and its application to
the particular case of AS level BGP graph. We present in Fig.
4 the components of the monitoring system. In this section,
we will assert the performance of our approach and compare
it with other approaches.
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The previous sections presented several components of a
large-scale graph monitoring system and its application to
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(a) Global e�ect event (b) Local e�ect event (c) Natural drift

Figure 3: Representative sample of the matrix �k for 3 di�erent types of events. In Fig. 5.3 we show the Google leak Incident
that impacted Japan the 25th of August 2017. In Fig.3b we show a local BGP event, an outage, that impacts only slightly a small
part of the matrix (Brazil leakage, see table 2). The event pictured in Fig. 3c corresponds to a period (5 Jan 2018 see in table
2) where there is no any local, outage or hijack, or global event. However there will still be a natural drift coming from BGP
updates and withdraws.

.

Figure 4: Time series of the sum of the positive (resp. nega-
tive) elements in �k along with the global sum.

eigenvalues. In practice, the curvature matrix is �lled with small
values of curvatures with some lines or columns with large values.
In such case, �Tk �k will have some large eigenvalues representing
the number of large values lines or columns. This observation leads
into a simple anomaly detection scheme. For each incoming matrix
�, we evaluate �0k , the largest eigenvalue of �

T
k �k , and the sum of

all eigenvalue that is precisely the trace of the matrix tr (�Tk �k ). It

is noteworthy that �0k have the below property :

�0k = max
kX k2,0

k�kX k2
kX k2

.

The ratio �k

�k =
�0k

tr (�Tk �k )

represents which proportion of the energy in tr (�Tk �k ) is concen-
trated in a single line or column. When this value is small this
means that several elements of the spectrum matrix �k are large
and therefore the matrix �k contains a relative high number of
large lines or columns, while a large value of �k means that the
energy in �Tk �k is concentrated into a single line or columns. The
value tr (�Tk �k ) represent also the variance of the values in �k , i.e.,
the strength of the curvature changes.

We can therefore de�ne a trajectory {(tr (�Tk �k ),�k )}, k = 0, . . .
that will be used similarly to a timeseries to detect large events. A
large event will have a large value tr (�Tk �k ) along with a small �k .
A local event can have a large value of tr (�Tk �k ) but will have a
large value of �k .



Anomaly detector
• Frobenius norm of a matrix

• Largest eigenvalue of the matrix

• We monitor for each difference matrix the Frobenius norm and 
the Stable rank
• A large scale anomaly will have A large Frobenus norm and large stable 

rank
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We show in Fig 3 the sum of positive and negative values
in the �k matrix. Following the discussion in section 3.2,
we observe a behavior compatible with the Gauss-Bonnet
theorem, i.e. zero sum or very small one in period without
major BGP events, and a change in period with large event.

Figure 3: Time series of the sum of the positive (resp.
negative) elements in �k along with the global sum.

From the previous discussion one can consider that moni-
toring the sum of curvature is enough to detect large events.
Nonetheless, when the Gauss-Bonnet theorem is valid, the
sum of curvature will not change whatever large is the �uc-
tuation. However, the Gauss-Bonnet theorem is not formally
valid for Ollivier-Ricci curvature. This means, just looking
at the sum of curvature might generate false alarms and mis-
detections. We have therefore to de�ne another method to
translate the matrix �k into a time-series over which we will
detect large events.
Analysis of Curvature MatrixAs said before columns or
lines structure in the matrixm ⇥ L matrix �k are represen-
tative of the changes in the topology. Typically, the matrix
contains several very small values, relative to small curva-
ture changes, and a limited number of lines or columns with
larger curvature changes. In order to analyze the structure of
this matrix we will use its singular values 2, i.e., the roots of
eigenvalues of the L ⇥ L matrix �kT�k . The elements on the
diagonal of �kT�k are the column-wise sum of squares of
�k matrix and its trace is the Frobenius norm of �k , k�k kF :

k�k kF =
’
i

’
j

⇣
�ki j

⌘2
.

The Frobenius norm represent therefore the variance of the
values in �k , i.e., the strength of the curvature changes.

One can check that if the matrix �k contains a l non-zero
column, i.e., its rank is l , the matrix �kT�k will have l strictly
positive eigenvalues, or equivalently �k will have l non-zero
singular values. However, in practice, the curvature matrix
is �lled with small values, rather than 0, and only some of
the lines or columns will have large values. In such case,
2Singular values are extension of eigenvalues to non-square matrices [7]

�k have some large singular values �kT�k representing the
large values columns, and other eigenvalues close to 0. In
such contexts, the stable rank de�ned as

�k =
k�k kF
�0k
,

where �0k is the largest eigenvalue of �kT�k . �k is frequently
used as a robust estimator of the rank of a matrix, in partic-
ular for generating low rank approximation of noisy matri-
ces [23]. As the rank is directly related to number of large
columns in �k , the stable rank estimates this number, i.e., a
stable rank close to 1 means that only a single column of �k

has important changes, while a large stable rank indicates
large number of columns, i.e., landmarks, having seen impor-
tant changes. It is also noteworthy that �0k have the below
property :

�0k = max
kX k2,0

k�kX k2
kX k2

.

In other terms, the largest singular value gives the largest
norm stretching that the �k matrix can generate.

The above observations lead into a simple anomaly detec-
tion scheme. For each incoming matrix �, we evaluate the
normalized Frobenius norm, i.e., k�k kF = k�k kF

m , wherem is
the number of ASes having seen changes in the k th snapshot,
and the stable rank of�k , i.e.,�k . The set

n⇣
¯k�k kF ,��1

k

⌘
, k = 0, . . . ,

o
de�nes a time trajectory that will be used to detect large
events. We use ��1

k in place of ��1
k , as it is bounded, i.e.,

0 < ��1
k < 1. A large event will have a large value of k�k kF

and a small ��1
k , while a local event might have large value

of k�k kF but will have a value of �k close to 1.

3.3 Landmarks selection
Our approach relies on constructing the Ollivier-Ricci em-
bedding in RN . However, monitoring the variations of all
distances is unfeasible over a real AS-level graph with over
60k vertices and 3.6 billion distances [3]. We reduce the di-
mensionality by choosing a set of L << N landmarks and
onlymonitor the variation of curvature towards them, i.e., we
represent the position of vertex i by a vector Xi = (x ij ), j =
1, . . . L where x ij = �(i, j) is the curvature from i to landmark
j. The essential property we are seeking to preserve despite
the dimensionality reduction, is that the variation of the time
series between time t and t + 1, denoted hereafter by the
drift, should be small when there are no major changes in
the graph underlying geometry and substantial when such
a large change happens. The landmarks should satisfy this
property and we will validate this claim in Sec. 4.

Choosing landmarks in a highly dynamic graph is a com-
plex task [40].
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We show in Fig 3 the sum of positive and negative values
in the �k matrix. Following the discussion in section 3.2,
we observe a behavior compatible with the Gauss-Bonnet
theorem, i.e. zero sum or very small one in period without
major BGP events, and a change in period with large event.
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is �lled with small values, rather than 0, and only some of
the lines or columns will have large values. In such case,
2Singular values are extension of eigenvalues to non-square matrices [7]

�k have some large singular values �kT�k representing the
large values columns, and other eigenvalues close to 0. In
such contexts, the stable rank de�ned as

�k =
k�k kF
�0k
,

where �0k is the largest eigenvalue of �kT�k . �k is frequently
used as a robust estimator of the rank of a matrix, in partic-
ular for generating low rank approximation of noisy matri-
ces [23]. As the rank is directly related to number of large
columns in �k , the stable rank estimates this number, i.e., a
stable rank close to 1 means that only a single column of �k

has important changes, while a large stable rank indicates
large number of columns, i.e., landmarks, having seen impor-
tant changes. It is also noteworthy that �0k have the below
property :

�0k = max
kX k2,0

k�kX k2
kX k2

.

In other terms, the largest singular value gives the largest
norm stretching that the �k matrix can generate.

The above observations lead into a simple anomaly detec-
tion scheme. For each incoming matrix �, we evaluate the
normalized Frobenius norm, i.e., k�k kF = k�k kF

m , wherem is
the number of ASes having seen changes in the k th snapshot,
and the stable rank of�k , i.e.,�k . The set

n⇣
¯k�k kF ,��1

k

⌘
, k = 0, . . . ,

o
de�nes a time trajectory that will be used to detect large
events. We use ��1

k in place of ��1
k , as it is bounded, i.e.,

0 < ��1
k < 1. A large event will have a large value of k�k kF

and a small ��1
k , while a local event might have large value

of k�k kF but will have a value of �k close to 1.

3.3 Landmarks selection
Our approach relies on constructing the Ollivier-Ricci em-
bedding in RN . However, monitoring the variations of all
distances is unfeasible over a real AS-level graph with over
60k vertices and 3.6 billion distances [3]. We reduce the di-
mensionality by choosing a set of L << N landmarks and
onlymonitor the variation of curvature towards them, i.e., we
represent the position of vertex i by a vector Xi = (x ij ), j =
1, . . . L where x ij = �(i, j) is the curvature from i to landmark
j. The essential property we are seeking to preserve despite
the dimensionality reduction, is that the variation of the time
series between time t and t + 1, denoted hereafter by the
drift, should be small when there are no major changes in
the graph underlying geometry and substantial when such
a large change happens. The landmarks should satisfy this
property and we will validate this claim in Sec. 4.

Choosing landmarks in a highly dynamic graph is a com-
plex task [40].
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(a) Brazil Leakage (b) 21 Oct 2017 (c) Google Leakage

(a) Time-series of the event for the opti-
mal transport

(b) Heatmap at the anomaly (c) Di�erence between the transport
plan

(d) Histogram for the counts at time

the observed surge in update rates. Moreover the self-similar and
heavy tailed structure of update rates, that is partly caused by BGP
session resets that leads to large BGP exchanges and BGP update
rates, makes di�cult to separate anomalies from normal update
rates surges. Gao et al. [21] infers the non-disclosed policies be-
tween ASes by investigating their preferred routes. An "anomaly" is
detected when the chosen path does not correspond to the expected
policy. This approach is very localized and cannot be extended
to the whole graph as it need one of their monitored ASes to be
a�ected by the "anomaly", in order to detect it. Moreover, infer-
ring non-disclosed policies might be hard specially with malicious
actors.
Large scale events detection: The previous described approach
were not targeting speci�cally large scale events. Comarela et al.
[18] similarly to us targeted large-scale. They aggregate next-hop
changes into a metric tensor. By looking at the concentration of
elements within the tensor, they proposed a large-scale events de-
tection system. However, they use a daily granularity, which is
not satisfactory for small time scale detection. The analysis also
heavily relies on hop-count changes that is not a reliable enough
metric to understand the real evolution of the network as we dis-
cussed above (see section ??. In comparison, we provide an almost
real-time event detection that is detecting a larger set of events
that the one that hop-count could detect. Chen et al. [14], extended
this paper and developed the LBE, a metric that aim into locating
large-scale events. However, LBE su�ers from its lack of scalability
and as it is mainly based on the number of BGP updates happening

during an event, it is heavily impacted by the heavy tail nature of
BGP update rate and perturbed by BGP session resets that leads to
large BGP exchanges.
Tra�c volumes anomaly detection There exists a large litera-
ture on anomaly detection in tra�c volumes, e.g., [48] [28]. Time
series analysis approaches are the most widely spread analytic tool
used in the context of anomaly detection. Those approaches rely
on the de�nition of a Linear Time independent (LTI) state space
synthetic stochastic model capturing observed temporal and spa-
tial correlations between observed tra�c volumes during "normal"
periods. The tracking of this normal model can be done with a
Kalman Filter [48] or without it [28]. The anomaly detection is
done through a threshold comparison. Our approach in this pa-
per di�ers from what done on tra�c volumes in several respects.
First, we are analyzing the overall graph, not the tra�c volume of
a limited number of links. Second point is that even if the

Second, we use a concrete metric of changes: the change in
curvature that is directly related the geometry change, i.e., any large
curvature change is surely a change in the underlying geometry,
while we cannot directly relate

strong premises about the existence of a "normal" state, our
scheme developed a purely "within-data" description of the space,
only requiring eigenvalues. Our procedures can be decomposed
into two steps: the extraction whose purpose is to select signi�cant
information from combining datasets during a preliminary stage
and the prediction, where the data obtained at the �rst step are
used to predict the formation of new events. Lakhina et al. [29]

Conference’17, July 2017, Washington, DC, USA

(a) Hop count distance (b) Spectral (c) Ricci curvature

Figure 6: Distribution of the variation of 2 candidate embedding metrics

(a) Phase diagram of the Google leakage (b) Phase diagram of all datasets (c) Zoom of the all datasets phase diagram

Figure 7: Three phase diagram �gure showing
.

Figure 8: Time evolution the AS level graph AS and link
number

have been made to detect anomalous Internet events through dis-
secting BGP updates and tables. Most works in this �eld are based

on monitoring several BGP feeds and eventually on generating
aggregated statistics that are analyzed [37] [33]. A major issue
is relative to the nature of BGP protocol that provide very �ne
grained and localized information that are di�cult to aggregate
to obtained a global inference. A second issue is relative to the
opacity of announcement �ltering rules, forwarding policies and
IGP protocols used by ASes. A �nal reason is relative to intrinsic
complexity of graphs which makes it di�cult to extract meaningful
information about anomalies from any kind of tra�c statistics. As a
result, typically most BGP monitoring tools become aware of major
events after them and are not able to detect them while they are
in progress. To overcome this problem, we developed a geometric
approach outside of the traditional scope of anomaly detections
which relies on a discretization of Riemannian Geometry.
Anomaly detection of BGP feeds Several papers used BGP up-
date rates to detect changes or anomalies by correlating rapid
changes in routing updates ratewith instabilities. Wavelet com-
bined with clustering anomalies detected at di�erent location were
employed by Mei et al. [36]. However, while potentially able to
detect an ongoing anomaly do not provide way of interpreting
the anomaly, i.e., to infer the cause relative to AS graph change to



Calibrating detector



• We can use the optimal transport 
plan changes 

Interpretation of the anomaly detection



Big data challenges

• Processing large graphs 
• Graph are up to 80 k nodes

• Even if the optimal transport is a linear programming we have to solve
1000th of them
• Distance matrix are node dense

• Computing cluster is needed


