Predicting Impending Exposure to Malicious Content by Learning User Behavior Ayumu Kubota, KDDI Research Inc.

content

- Brief summary of AI/ML related work in KDDI's cyber security research
- Recent result from user behavior analysis

AI/ML related work in KDDI's cyber security research

- Analysis of various security logs (IDS, firewalls etc.)
 - For supporting cyber security operations
- Spam e-mail detection in mobile network
 - Spam e-mails specifically targeting mobile users are different from other spam emails and existing spam filters do not work well
 - By analyzing a large collection of spam e-mails we collect, we have developed and deployed additional spam filters to our service
- Android application inspection for KDDI's app market
 - We have been inspecting all the applications on the KDDI's app market (au Market) before their release
 - Applying AI for improving accuracy and reducing the need for analysis conducted by human experts

Predicting Impending Exposure to Malicious Content from User Behavior

Mahmood Sharif^{*}, Jumpei Urakawa⁺, Nicolas Christin^{*}, Ayumu Kubota⁺, Akira Yamada⁺

*Carnegie Mellon University *KDDI Research, Inc

Presented at ACM CCS 2018 (15-19 Oct. 2018, Toronto, Canada)

Traditional defenses are reactive

Blacklists react to prevent users' visits to malicious websites

Anti-viruses react at the time of download or execution of malware

By the time they react, it might be too late

Proactive defenses work over long periods

For example:

- Forecast whether users will visit malicious websites within **3 months** [Canali et al., AsiaCCS '14]
- Predict whether websites will be compromised within **1 year** [Soska and Christin, USENIX Security '14]

Limited sets of interventions can be taken

Predict exposure to malicious pages shortly before occurrence (e.g., milliseconds, 5 seconds, 30 seconds) using network traffic

Various interventions can be enabled

- Alerting users about potential exposure
- Prioritizing traffic for expensive inspection
- Block downloads of 3rd party apps
- Terminate Internet connections

Our data (1/3): HTTP requests

- HTTP requests (*text/html* only) of 20,645 customers of KDDI
- Fields: consistent user ID, timestamp, URL, # bytes up/down, ...
- Spanning 3 months: April to June, 2017
- Collected and used securely with user consent

Our data (2/3): Online survey

Answered by the 20,645 customers. Asked about:

- 1. Prior security incidents (e.g., account breaches)
- 2. Whether the customer runs an anti-virus
- 3. Types of App marketplaces used (official/unofficial)
- 4. Whether the customer proceeds on browser warnings
- Standard security-behavior questions (from the Security Behavior Intentions scale^{*})
- 6. Self-confidence in security knowledge

10

Our data (3/3): Google Safe Browsing (GSB)

- The most deployed blacklist (used by the major browsers)
- We collected daily snapshots
- Used to detect users' accesses to malicious pages

Processing data into sessions

Session: set of contiguous requests made by the same user, which terminates when the user is idle for more \geq 20 minutes^{*}

This work: From early observations in the session, predict whether the user will get exposed to malicious pages later in the session

12

Next

- 1. Window of exposure to malicious pages
- 2. Behavioral differences between exposed and unexposed users
- 3. Short-term prediction: methodology and evaluation

User exposure

• About one session per 1,000 sessions is exposed

• 2,172 users (~11%) exposed to pages on GSB

The blacklisting approach used by major browsers is not enough!

Window of exposure

Behavioral differences between users (1/3)

Exposed users browse the web more than unexposed users

Behavioral differences between users (2/3)

Exposed users request pages of certain topics at different rates than unexposed users (e.g., they request more ads)

Behavioral differences between users (3/3)

Exposed users browse the Internet more frequently at night and outside of working hours

Survey responses and exposure

- Built a logistic regression model to understand correlation
- Dependent variable: whether the user gets exposed
- Independent variables: survey responses
- Some results:
 - Men are ~1.9 times more likely than women to get exposed
 - Users who run anti-virus are ~2.5 times more likely to get exposed But, model explains only 5% of variance in data.
 I.e., self-reported data may not be sufficient on its own.

Exposure prediction: Methodology (1/2)

Based on findings, we developed 3 types of features for prediction:

Contextual (Updated *during* session) Past behavior

(Updated after session)

Self reported

(Collected via survey)

- # requests
- Session length
- Distribution of topics
- Time of day/week

- Avg. # requests per session
- Avg. session length
- Past exposures?

• Runs anti-virus?

• Prior security incidents?

•

Exposure prediction: Methodology (2/2)

- Train neural networks to predict exposure after each request
- Session is exposed if neural network predicts exposure after a request
- E.g., user browses:

reddit.com \rightarrow *streams.xyz* \rightarrow *malicious.com*

• Evaluate using five 20-day periods: 15 days to train, 5 to test

Exposure prediction: Results (1/2)

Accurate within-session exposure prediction is possible

Short-term prediction: Results (2/2)

Contextual features are sufficient to predict exposure

Base-rate effect (1/2)

Exposure rate is low (~1000 unexposed sessions per exposed session) ↓ Potentially high number of false detections

For example, at 56% TPR and 3% FPR:

56 true detections and ~3000 false detections per 100K sessions

Is the system not useful?

Base-rate effect (2/2)

In reality, most of the false detections may be true detections

Checking against VirusTotal's (more inclusive) blacklists, we found:

- Exposure rate: 24 exposed sessions per 976 unexposed
- TPR=56% FPR=3% corresponds to TPR=96% FPR=1%

⇒ The system was actually achieving 2,186 true detections and 870 false detections per 100K sessions

Wrap up

- Proposed short-term prediction to enable proactive defenses
- Explored the behavioral differences between unexposed and exposed users to devise useful features
- Showed that short-term prediction can be done accurately

PREDICTING IMPENDING EXPOSURE TO MALICIOUS CONTENT FROM USER BEHAVIOR Mahmood Sharif, Jumpei Urakawa, Nicolas Christin, Ayumu Kubota, Akira Yamada

E-mail: mahmoods@cmu.edu

Defining malice

 τ -malicious page: a page visited at time t is τ -malicious ($\tau \ge 0$) if it appears on GSB within τ days from the visit (i.e., before t+ τ)

- τ =0: page has to be on GSB to be considered malicious
- We set $\tau=2$ to capture the spike
- Larger τ leads to higher coverage, but might decrease soundness

Limitation

Incomplete picture of users' browsing behavior:

- Only *text/html* content (no scripts, images, ...)
- No HTTPS traffic
- No Wi-Fi traffic

Behavioral differences between users (2)

Exposed users tend to browse the web more frequently at night and outside of working hours

Survey responses and exposure

- Used logistic regression to understand correlation
- Dependent variable: user exposure
- Independent variables: survey responses

Variable	Odds	p-value
Is female?	0.54	<0.01
RSeBIS score	0.82	<0.01
Proceeds on warning?	1.26	< 0.01
Suffered from compromised	1.67	<0.01
Uses anti-virus?	2.51	< 0.01
Uses unofficial App market?	1.17	<0.01

RSeBIS scale is a good predictor of user exposure

Users who report to have anti-virus are more likely to get exposed!

But, model explains only 5% of variance in data. I.e., self-reported data may not be sufficient on its own.

Long-term prediction: Methodology

• Rely on two sets of features: Past behavior (P) and Self reported (S)

Past behavior features: motivated by behavioral differences, efficiently computable

•

- Avg. # daily sessions and requests
- Prior exposure?
- Fraction of top Alexa websites

- Activity in different times of day/week
- Distribution of URL topics

Long-term prediction: Results

Comparable to prior work [Canali et al., '14], while less intrusive and using more efficiently computable features (e.g., require no history)

Behavioral differences between users (3/3)

Exposed users browse the Internet more frequently at night and outside of working hours

