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content 

• Brief	summary	of	AI/ML	related	work	in	KDDI’s	cyber	security	
research	

• Recent	result	from	user	behavior	analysis 
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AI/ML related work in KDDI’s cyber security 
research 
•  Analysis	of	various	security	logs	(IDS,	firewalls	etc.)	

•  For	supporting	cyber	security	operations	
•  Spam	e-mail	detection	in	mobile	network	

•  Spam	e-mails	specifically	targeting	mobile	users	are	different	from	other	spam	e-
mails	and	existing	spam	filters	do	not	work	well	

•  By	analyzing	a	large	collection	of	spam	e-mails	we	collect,	we	have	developed	and	
deployed	additional	spam	filters	to	our	service			

•  Android	application	inspection	for	KDDI’s	app	market	
•  We	have	been	inspecting	all	the	applications	on	the	KDDI’s	app	market		(au	Market)	
before	their	release	

•  Applying	AI	for	improving	accuracy	and	reducing	the	need	for	analysis	conducted	by	
human	experts	
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Traditional defenses are reactive 

Blacklists	react	to	prevent	users’	
visits	to	malicious	websites	

Anti-viruses	react	at	the	time	of	
download	or	execution	of	malware	

5	

By	the	time	they	react,	it	might	be	too	late	



Proactive defenses work over long periods 

For	example:	
•  Forecast	whether	users	will	visit	malicious	websites	within	3	months	
[Canali	et	al.,	AsiaCCS	’14]	

• Predict	whether	websites	will	be	compromised	within	1	year	
[Soska	and	Christin,	USENIX	Security	’14]	

Limited	sets	of	interventions	can	be	taken	
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Our work 

Predict	exposure	to	malicious	pages	shortly	before	occurrence	
(e.g.,	milliseconds,	5	seconds,	30	seconds)	using	network	traffic	

	

For	example:	
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John	

Usually	browses:	
-  News	and	technology	
-  Popular	websites	
-  Avg.	3MB	per	session	

Today	browses:	
-  Live	streaming	and	ads	
-  Unpopular	websites	
-  30MB	in	1	minute	

Exposed	to	a		
malicious	page	



Various interventions can be enabled 

• Alerting	users	about	potential	exposure	

• Prioritizing	traffic	for	expensive	inspection	

• Block	downloads	of	3rd	party	apps	

•  Terminate	Internet	connections	
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Less		
aggressive	

More	
aggressive	



Our data (1/3): HTTP requests 

• HTTP	requests	(text/html	only)	of	20,645	customers	
of	KDDI		

•  Fields:	consistent	user	ID,	timestamp,	URL,	
#	bytes	up/down,	…	

•  Spanning	3	months:	April	to	June,	2017	
• Collected	and	used	securely	with	user	consent	
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Our data (2/3): Online survey 

Answered	by	the	20,645	customers.	Asked	about:	
1.  Prior	security	incidents	(e.g.,	account	breaches)	
2.  Whether	the	customer	runs	an	anti-virus	
3.  Types	of	App	marketplaces	used	(official/unofficial)	
4.  Whether	the	customer	proceeds	on	browser	warnings	
5.  Standard	security-behavior	questions	

(from	the	Security	Behavior	Intentions	scale*)	
6.  Self-confidence	in	security	knowledge	

10	*	Egelman	and	Peer.	"Scaling	the	security	wall:	Developing	a	security	behavior	intentions	scale."	CHI,	2015.	



Our data (3/3): Google Safe Browsing (GSB) 

•  The	most	deployed	blacklist		
(used	by	the	major	browsers)	

• We	collected	daily	snapshots	
• Used	to	detect	users’	accesses	to	
malicious	pages	
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Processing data into sessions 

Session:	set	of	contiguous	requests	made	by	the	same	user,	which	
terminates	when	the	user	is	idle	for	more	>20	minutes*	
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Time	

40	min	 15	min	
HTTP	reqs.	 HTTP	reqs.	 HTTP	reqs.	

Session	#1	 Session	#2	

This	work:	From	early	observations	in	the	session,	predict	whether	
the	user	will	get	exposed	to	malicious	pages	later	in	the	session	

*	Wang,	Gang,	et	al.	"You	Are	How	You	Click:	Clickstream	Analysis	for	Sybil	Detection."	USENIX	Security,	2013.	



Next 

1.  Window	of	exposure	to	malicious	pages	
2.  Behavioral	differences	between	exposed	and	unexposed	users	
3.  Short-term	prediction:	methodology	and	evaluation	
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User exposure 

• About	one	session	per	1,000	sessions	is	exposed	
	
• 2,172	users	(~11%)	exposed	to	pages	on	GSB	

The	blacklisting	approach	used	by		
major	browsers	is	not	enough!	
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Visits	to	malicious	pages	increase	days	before	they	appear	on	GSB	
2	days	before	

To	capture	the	increase:	We	consider	a	page	malicious	if	it		
appears	on	GSB	within	2	days	of	the	visit	(incl.	visit	time)	
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Behavioral differences between users (1/3) 

Exposed	users	browse	the	web	more	than	unexposed	users	

16	

Avg.	session	length	(seconds)	

CD
F	
(o
ve
r	u

se
rs
)	

250	 400	

Unexposed	
Exposed	



0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3 0.4 0.5

Unexposed
Exposed

Behavioral differences between users (2/3) 

Exposed	users	request	pages	of	certain	topics	at	different	rates	than	
unexposed	users	(e.g.,	they	request	more	ads)	
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Behavioral differences between users (3/3) 

Exposed	users	browse	the	Internet	more	frequently	at	night	and	
outside	of	working	hours	
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Survey responses and exposure 

• Built	a	logistic	regression	model	to	understand	correlation	
• Dependent	variable:	whether	the	user	gets	exposed	
•  Independent	variables:	survey	responses	
•  Some	results:	

• Men	are	~1.9	times	more	likely	than	women	to	get	exposed	
• Users	who	run	anti-virus	are	~2.5	times	more	likely	to	get	exposed	

But,	model	explains	only	5%	of	variance	in	data.		
I.e.,	self-reported	data	may	not	be	sufficient	on	its	own.	
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Exposure prediction: Methodology (1/2) 

Based	on	findings,	we	developed	3	types	of	features	for	prediction:	
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Contextual		
(Updated	during	session)	

•  #	requests	
•  Session	length		
• Distribution	of	topics	
•  Time	of	day/week	
• …	

Past	behavior	
(Updated	after	session)	

• Avg.	#	requests	per	
session	

• Avg.	session	length	
•  Past	exposures?	
• …	

Self	reported		
(Collected	via	survey)	

•  Runs	anti-virus?	
•  Prior	security	
incidents?	

• …	



Request:	
reddit.com	
Request:	

streams.xyz	

•  Train	neural	networks	to	predict	exposure	after	each	request		
•  Session	is	exposed	if	neural	network	predicts	exposure	after	a	
request	

•  E.g.,	user	browses:		
reddit.com	→	streams.xyz	→	malicious.com	

	
	

•  Evaluate	using	five	20-day	periods:	15	days	to	train,	5	to	test	

Exposure prediction: Methodology (2/2) 
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Neural		
Network	
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Exposure prediction: Results (1/2) 

Accurate	within-session	exposure	prediction	is	possible	
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Short-term prediction: Results (2/2) 

Contextual	features	are	sufficient	to	predict	exposure	
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Base-rate effect (1/2) 

Exposure	rate	is	low	(~1000	unexposed	sessions	per	exposed	session)	
⇓	

Potentially	high	number	of	false	detections	
	
For	example,	at	56%	TPR	and	3%	FPR:		

56	true	detections	and	~3000	false	detections	per	100K	sessions	
	

Is	the	system	not	useful?	
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Base-rate effect (2/2) 

In	reality,	most	of	the	false	detections	may	be	true	detections	
	
Checking	against	VirusTotal’s	(more	inclusive)	blacklists,	we	found:	
•  Exposure	rate:	24	exposed	sessions	per	976	unexposed	
•  TPR=56%	FPR=3%	corresponds	to	TPR=96%	FPR=1%	

⇒	The	system	was	actually	achieving	2,186	true	detections		
and	870	false	detections	per	100K	sessions	

25	



Wrap up 
• Proposed	short-term	prediction	to	enable	proactive	defenses	
•  Explored	the	behavioral	differences	between	unexposed	and		
exposed	users	to	devise	useful	features	

•  Showed	that	short-term	prediction	can	be	done	accurately	

PREDICTING IMPENDING EXPOSURE TO  
MALICIOUS CONTENT FROM USER BEHAVIOR 

Mahmood	Sharif,	Jumpei	Urakawa,	Nicolas	Christin,	
Ayumu	Kubota,	Akira	Yamada	
E-mail:	mahmoods@cmu.edu	



Defining malice 

𝜏-malicious	page:	a	page	visited	at	time	t	is	𝜏-malicious	(𝜏>0)	if	it	>0)	if	it	
appears	on	GSB	within	𝜏	days	from	the	visit	(i.e.,	before	t+𝜏)	

	
•  𝜏=0:	page	has	to	be	on	GSB	to	be	considered	malicious	
• We	set	𝜏=2	to	capture	the	spike	
•  Larger	𝜏	leads	to	higher	coverage,	but	might	decrease	soundness	
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Limitation 

Incomplete	picture	of	users’	browsing	behavior:	
• Only	text/html	content	(no	scripts,	images,	…)	
• No	HTTPS	traffic		
• No	Wi-Fi	traffic	
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Behavioral differences between users (2) 

Exposed	users	tend	to	browse	the	web	more	frequently	at	night	and	
outside	of	working	hours	
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Survey responses and exposure 

• Used	logistic	regression	to	understand	correlation	
• Dependent	variable:	user	exposure	
•  Independent	variables:	survey	responses	
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Variable	 Odds	 p-value	
Is	female?	 0.54	 <0.01	
RSeBIS	score	 0.82	 <0.01	
Proceeds	on	warning?	 1.26	 <0.01	
Suffered	from	compromised	 1.67	 <0.01	
Uses	anti-virus?	 2.51	 <0.01	
Uses	unofficial	App	market?	 1.17	 <0.01	

RSeBIS	scale	is	a	good		
predictor	of	user	exposure	

Users	who	report	to	have	
anti-virus	are	more	likely	
to	get	exposed!	

But,	model	explains	only	
5%	of	variance	in	data.	
I.e.,	self-reported	data	
may	not	be	sufficient	on	
its	own.	



Long-term prediction: Methodology 

•  Rely	on	two	sets	of	features:	Past	behavior	(P)	and	Self	reported	(S)	

•  Classifier:	Random	Decision	Forest	
•  10-fold	cross	validation:	
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Past	behavior	features:	motivated	by	behavioral	differences,	efficiently	computable	
•  Avg.	#	daily	sessions	and	requests	
•  Prior	exposure?	
•  Fraction	of	top	Alexa	websites	

90%	users	

10%	users	

April	

90%	users	

10%	users	

May	

90%	users	

10%	users	

June	

Train	

predict	

Test	

predict	

•  Activity	in	different	times	of	day/week	
•  Distribution	of	URL	topics	
•  …	



Long-term prediction: Results 
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Comparable	to	prior	work	[Canali	et	al.,	’14],	while	less	intrusive	and	
using	more	efficiently	computable	features	(e.g.,	require	no	history)	
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Behavioral differences between users (3/3) 

Exposed	users	browse	the	Internet	more	frequently	at	night	and	
outside	of	working	hours	
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