Local Differential Privacy
and trade-off with Utility

Catuscia Palamidessi
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With the rise of cloud, mobility, loT, social and
analytics, the data explosion is accelerating.

This confluence of technologies has amplified the dala explasion, crealing incredible

o f w + growth-on-growlh for unstructured data. New dala sources are added daily, resultng in a
o O e O a a a e valable data ecosystam forevary buginass

Internet-connected
devices by 20207

90%

of all data was created
in the last 2 years’ Unstructured
Data*

been generated in the last 2
years! (source: IMB, 2017)
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Utility versus privacy
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Utility
Two kinds of utility:

® Quality of service

® Statistical analysis

Privacy, QoS and Statistical analysis are interrelated:
The user often releases his data in exchange of a
service, but it should not pose a threat to his
privacy. In turn, the service provider offers the
service because it's interested in collecting the
user's data, which are often used to derive statistics.

It is important to find mechanisms that optimize the
trade-off between these three
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Privacy by randomization

Differential Privacy [Dwork et al., '96]

A mechanism K (for a certain query) is e-differentially private if for every pair
of adjacent datasets x and z’ and every possible answer y

PIK(z) = y] < e PIK(z) = y]
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« Compositionality: the combination of two mechanisms which
are €1 and e differentially private is €1 + e2 differentially private

* Independent from side knowledge



Standard Differential Privacy
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Local Differential Privacy Google
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Standard Local Differential Privacy
[ Jordan &Wainwright 'l 3]

Definition Let X be a set of possible values and ) the set of noisy values. A
mechanism K is e-locally differentially private (e-LDP) if for all z1, 22 € X and
forally € Y

PK(z) =y] < e P[K(z") = y]

or equivalently, using the conditional probability notation:

py|z) <ef ply|a)

For instance, the Randomized Response

protocol is (log 3)-LPD Y
0/. H ,® Yes

T No

/e 1 X
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The flat mechanism (aka k-RR)

[ Kairouz et al,'16 ]

0.184

The flat mechanism is the simplest way to implement LPD. ..
It is defined as follows: o14]

0124
cet ifrx=y

0.107

p(ylz) = { C otherwise

0.08+

0.06+

where ¢ is a normalization constant.

0.041

1 0.024
namely ¢ = ————— where k is the size of the domain

k_1_|_€€ 07 T ] LIPR R

Privacy Properties: What about Utility ?

* Compositionalit -y .
P 4 * Statistical Utility

e QoS

* Independence from the side
knowledge of the adversary
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Statistical Utility
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Statistical utility: The matrix inversion method
[ Kairouz et al,"'16 ]

 Let C be the stochastic matrix associated to the mechanism

* Let g be the empirical distribution (derived from the noisy data).

* Compute the approximation of the true distributionas r = q C’

Example Assume ¢(Yes) = 15 and ¢(No) = £;. Then:

3 1 6
2 p(Yes) + = p(No) = —
5 P(Yes) + 2 p(No) = -
1 3 4
= p(Yes) + = p(No) = —
5 P(Yes) + 7 p(No) = -

:i

From which we derive p(Yes) = 1—70 and p(No) 10
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Statistical utility: The matrix inversion method
Problem 1: C must be invertible

Problem 2:Assume ¢(Yes) = ¢ and ¢(No) = 7. Then:

Y

yes no

yes Q7 Vi
X
o
11 1

From which we derive p( Yes) = 15 and p(No) = — 15

p(Yes) + § p(No) =

p(Yes) + p(No) =

e~ = W
QU — Ot
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Statistical utility: The matrix inversion method

r = q C' may not be a distribution because it may contain
negative elements. In order to try to obtain the true
distribution Tt we can either:

» set to 0 all the negative elements, and renormalize, or

* project r on the simplex.

The resulting distribution however usually is not the best
approximation of the original distribution.
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Our approach: Iterative Bayesian Update

P — X1x2X3... —p C —>  Y1,Y2, Y3,

D'\

The IBU:

* is based on the Maximization-Expectation method

* produces a Maximum Likelihood Estimator p of the true
distribution p

* Under certain conditions on C, the MLE is unique and converges to p
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The Iterative Bayesian Update

Define p© = any distribution (for ex. the uniform distribution)

Repeat: Define p(n*+1) as the Bayesian update of p(" weighted on the corresponding
element of g, namely:

(n)
(n+1) __ E , Pz CSU?J
’ qy (n) Czy

Note that p(+1) = T(pn))
We study the conditions on C under which T is a contraction

If T is a contraction then there is a unique fixed point p and it converges to p (as the

size of the dataset grows). Furthermore, when p("+1) does not differ much from p( we
know that we are close to the fixed point, and we can stop.
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Measuring the quality of the approximation

There are many measures of distance between distributions.
A typical one is the total variation distance. Our proposal, however is to use
the Kantorovich distance (aka Earth Movers distance).

® The Total Variation distance measures only the area
between the two probability distributions

® The Kantorovich takes into account also the ground
distance; it measures the "transportation effort” to
make the two distributions equal. Cfr. "Earth moving
distance"

® |n these two examples the TV is the same, while the
Kantorovich is larger in the second case

® The Kantorovich metric is particularly suitable when
we are interested in statistics that are sensitive to Ka(p,v) = sup Z fa f () — Z v f ()
the underlying distance. felip |5 x

Example: placement of hotspots.
where Lip is the set of Lipshitz functions wrt d



Quality of Service



Quality of Service

An abstract notion of utility loss:

* Following the approach of Shokri et al. we consider as utility
loss the rate distortion, namely the expected distance
between the true value and teh obfuscated value.

* This makes sense for all those services that depend on the
accuracy of data. Of course, in practical applications things can
be more complicated.
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Our approach to LDP
d-privacy



d-privacy: a generalization of DP and LDP

d-privacy

On a generic domain X provided with a distance d:

/ p(z|z) ed(z,z)
Ve, o' € X,Vz (=12 <e

/ generalizes \
Differential Privacy Local Differential Privacy
* X, X are databases * d is the discrete distance

* d is the Hamming distance

Properties
* Like LDP, it can be applied at the user side
* Like DP and LDP, it is compositional
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QoS: we extensively studied d-privacy in the case of
Location Privacy for Location Based Services

Example of LBS: find the
restaurants near the user

Revealing the exact location may be
dangerous: profiling, inference of
sensitive information, etc.

Revealing an approximate location
is usually ok

QoS: decreases with the expected
distance between the real location
and the noisy one.
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Location privacy:
geo-indistinguishability

d : the Fuclidean distance

x : the exact location
z : the reported location

d — privacy

p(z]x)

ey =€

where r 1s the distance
between x and z’

We call this property geo=indistinguishability. Like DP, it is:
|) independent from the prior,
2) compositional



d-private mechanisms for LBS:
Planar laplacian and Planar Geometric

dp,(2) = 5 e

® Efficient method to draw noisy
locations based on polar coordinates

® Then we translate from polar
coordinates to standard (latitude,
longitude) coordinates.

® Some degradation of the privacy level in
single precision, but negligeable in
double precision.
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Tool:“Location Guard”
http://www.lix.polytechnique.fr/~kostas/software.html

Extension for Firefox, Chrome, and Opera. It has been released about two yeas ago, and nowadays it has about 60,000 active users.
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http://www.lix.polytechnique.fr/~kostas/software.html

How it works
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Trade-off privacy-QoS

Comparison with other methods for location privacy

W )
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Privacy versus QoS: evaluation

The four mechanisms:
® Cloaking,
Optimal by [Shroki et al. CCS 2012] generated assuming uniform prior
Ours (Planar Laplacian)
Optimal by [Shroki et al. CCS 2012] generated assuming the given prior
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Trade-off between privacy and statistical utility
Comparison with k-RR

Both K-RR and the geometric / laplacian mechanisms are parametrized
by g, but it has a different meaning. We need to calibrate &, in such a
way that the requested ratio is satisfied in the “area of interest” (area in
which we want to be indistinguishable)

0.04

0.031

0.021

0.01
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Experiments on the Gowalla dataset

® Gowalla is a dataset of geographical checkins in several cities in the world

® We have used it to compare the statistical utility of kRR and Planar Laplacian with the

respective € calibrated so to satisfy the same privacy constraint:
same level of privacy within about 1 Km?

Gowalla checkins in an area of 3x3 km?2 in San Francisco downtown (about 10K checkins)
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n=>0.

The kRR
mechanism
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KantorovichDistance
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KantorovichDistance
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Thanks!

Questions ?



