Compiler and optimization level
recognition using graph neural
networks

Tristan Benoit Jean-Yves Marion Sébastien Bardin
Université de Lorraine, CNRS, Université de Lorraine, CNRS, Université Paris-Saclay
LORIA, LORIA, CEA, LIST

F-54000 Nancy, France F-54000 Nancy, France Saclay, France
tristan.benoit@loria.fr jean-yves.marion@loria.fr ~ sebastien.bardin @cea.fr

Signatures

» A vulnerability is a weakness which can be exploited to
perform unauthorized actions within a computer system.

Name
CVE-2019-9924

CVE-2019-9146

CVE-2019-1596

CVE-2019-1593

CVE-2018-7739

Description

rbash in Bash before 4.4-beta2 did not prevent the shell user from modifying BASH_CMDS, thus allowing the user to execute any command with the permissions of the
shell.

Jamf Self Service 10.9.0 allows man-in-the-middle attackers to obtain a root shell by leveraging the "publish Bash shell scripts" feature to insert
"fApplications/Utilities/Terminal app/Contents/MacOS/Terminal” into the TCP data stream.

A vulnerability in the Bash shell implementation for Cisco NX-0S Software could allow an authenticated, local attacker to escalate their privilege level to root. The
attacker must authenticate with wvalid user credentials. The vulnerability is due to incorrect permissions of a system executable. An attacker could exploit this
vulnerability by authenticating to the device and entering a crafted command at the Bash prompt. A successful exploit could allow the attacker to escalate their privilege
level to root. Nexus 3000 Series Switches are affected in versions prior to 7.0(3)I7(4). Nexus 3500 Platform Switches are affected in versions prior to 7.0(3)17(4).
Nexus 3600 Platform Switches are affected in versions prior to 7.0(3)F3(5). Nexus 9000 Series Switches in Standalone NX-OS Mode are affected in versions prior to
7.0(3)I7(4). Nexus 9500 R-Series Line Cards and Fabric Modules are affected in versions prior to 7.0(3)F3(5).

A vulnerability in the Bash shell implementation for Cisco NX-0S Software could allow an authenticated, local attacker to escalate their privilege level by executing
commands authorized to other user roles. The attacker must authenticate with valid user credentials. The vulnerability is due to the incorrect implementation of a Bash
shell command that allows role-based access control (RBAC) to be bypassed. An attacker could exploit this vulnerability by authenticating to the device and entering a
crafted command at the Bash prompt. A successful exploit could allow the attacker to escalate their privilege level by executing commands that should be restricted to
other roles. For example, a dev-ops user could escalate their privilege level to admin with a successful exploit of this vulnerability.

antsle antman before 0.9.1a allows remote attackers to bypass authentication via invalid characters in the username and password parameters, as demonstrated by a
username=>&password=%0a string to the /login URI. This allows obtaining root permissions within the web management console, because the login process uses
Java's ProcessBuilder class and a bash script called antsle-auth with insufficient input validation.

Signatures

» Library functions identification resorts on signatures.

.Lext:004069F1 neg ecx

.Lext:004069F3 push edx

.text:004085F4 lea edx, [esptaChtvar C]
.text:00406%F8 sbb ecx, ecx
.text:004069FA push 1

.text:004069FC and ecx, edx

.Lext: 0040602 neg edi

.Cext: 00406204 push eCK

Ltext: 00406205 lea ecx, [esp+3dh+var 10]
.Cext: 00406405 sbb edi, edi

.text: 00406508 and edi, ecx

.Lext: 00406211 neg esi

.Lext: 004062413 sbb esi, esi
.text:00406415 push edi

.Lext: 0040562416 and esi, edx

Qiu, J. et al. “Library functions identification in binary code by using graph isomorphism testings.” 2015 IEEE 22nd International
Conference on Software Analysis, Evolution, and Reengineering (SANER) (2015): 261-270.

Signatures

» Compiling environment and compiler options modify the
shape of signatures.

Functian FentFileAddEnry

if {table->sorted|

Tl 0 e tishasn T FRble-used == table-sie)

L

a eallos
BF6T ICALL §all 0xshel)
Tom sl

If tlentry)
BETI OO0 ¢ je abST6
—‘\/v— In reallac

b.’»su:mr-.jm_w@ €27 sk < IMP - gnd i fip - 0a232502]

mallac i :GALL:taIIaEE_D mallac A_Z—
C_:-—___ : . retuth (FontEntryPtr) 0 € oST S CALL : call st

e ‘/\‘IV\’E)
: if lentry->name.name)
- - — - __‘__""H..
03 : TMT : jmp qword pir [ip | 0:231::::]_:;3 bS02 : JCC RObSE D

(AT
o——smturn (FontEntryPre O

BSIL: CALL : call nxs;!Z:)
—_—
\W —
Ty

[—
7T 898 P g pur[rip 1 0323280

resum [FoptErtny®ir) o

memcpy BEda: WP - jmp Iab3 26

wl72 : CALL ; call DxE9E0

-=‘"\-|-_
In memcpy
OB IMP i qand g [ap + Us233028)

BS41:RET @ e

deadd ef: UNDEF —_—

demdindef - LNDEF

Goal

» ldentifying the toolchain provenance, i.e. the compiler
family (e.g. Visual Studio), the compiler version (e.g.
10.0, 12.0) and its optimization options (e.g. -01, -02),
that have been used to produce a stripped binary code.

Related works

4-Class Training Set 2-Class Training Set
—— = o= —---) S E—
! i

—-———

Optimization Level O

Compiler Family C Version V Low High
3.4.x -00,-01 -02,-03
GNU Compiler 4.2.x -00,-01 -02,-03
Collection (GCC) 4.3.x -00,-01 -02,-03
4.4.x -00,-01 -02,-03
Intel Compilers 10.x -00 -02,-03
(Icc) 11.x -00 -02,-03
. . VS 2003 /Od /O2
Ngff‘g\t/[gf\lfg?l VS 2005 /Od /02
VS 2008 /0d /O2
Chen at al. “Himalia: Recovering compiler optimization levels from Rosenblum et al. "Recovering the Toolchain Provenance of
binaries by deep learning”, Intelligent Systems and Applications, Binary Code", International Symposium on Software Testing

2019 and Analysis, 2011

Related works

» Focus on function output.
» Small amount of data for each function.

» Thousands of functions in one binary file.
» Arather limited number of binary file considered.

» Each source code is compiled with every possible
toolchain configuration.

Contribution

» A Graph Neural Network based framework to determine
the toolchain provenance of a whole stripped binary.

» An evaluation of this process on a broad dataset
composed from 36,272 source code compiled with 92
toolchain configurations.

Site Neural Network

» We only keep a skeletal part of the CFG.
» We extract 100 small graphs from it.

Assembly Code

mov eax [esp+6]
jcc eb53

jmp ¢52d53

add eax exc
push ecx eax

add eax ecx
push eax
jcc eb50
jmp a51f29

Control Flow Graph

7 mov eax [esp+6] |

mp c52d53
—

Bdd eaxecx |

push exc eax

Forgetting CFG Sites graph

Site Neural Network

Input Dense Convolution Layers Adaptive Max Pooling Layers

» Dense convolution:
Y, = (A + I)X@W[} + bg)
(Yit1)e>0 = ((A + 1)V Wy, + bi) | Yz)

Dataset

The dataset is made from 36,272 C/C++ source files solving
91 problems from Codeforces.

» Compiler family: Visual Studio, MinGW, Clang and GCC.
» Optimization level: OO0, 01, 02, O3 and Os.
» Compiler version: from 5 to 6 for each family.

Research questions

What is the capacity of our framewok to predict:
» Compiler family?

» Optimization level?

» Compiler version?

Compiler family

Compiler Precision | Recall | F1 Score | Support
Clang 1 0.9933 | 0.9967 600
GCC 0.9967 1 0.9983 600
MinGW 0.9983 | 0.9917 | 0.9950 600
VS 0.9828 | 0.9975 | 0.9901 400
Macro AVG | 0.9944 | 0.9956 | 0.9950 2200

» Very good accuracy on this task.

Optimization level

Option Precision | Recall | F1 Score | Support
-00 0.7917 | 0.8261 | 0.8085 460
-01 0.8289 | 0.7478 | 0.7863 460
-02/-03 0.7869 | 0.8329 | 0.8092 820
-Os 0.6316 0.6 0.6154 460
Macro AVG | 0.7598 | 0.7517 | 0.7549 2200

» Good accuracy on this task.

Compiler version

Family Precision | Recall | F1-Score | Support
Clang 0.2019 | 0.1883 | 0.1856 600
GCC 0.5731 | 0.5567 | 0.5496 600
MinGW 0.9832 | 0.9767 | 0.9799 600
VS 0.9162 | 0.9275 | 0.9206 400
GCC-MinGW-VS | 0.8242 | 0.8202 | 0.8167 1600
MinGW-VS 0.9497 | 0.9521 | 0.9502 1000
Macro AVG 0.6686 | 0.6623 | 0.6589 2200

» Very good accuracy on this task for families such as MinGW

and Visual Studio but not Clang and GCC.

Comparison

CFG

Addr_1: mov eax,10

!

Addr_2: dec eax
Addr_3: mov [base+eax],0 |
Addr_4: jnz Addr_2

l

Addr_5: mov eax,ebx

l

A =(0.12,...,041)
& [7| @z=(022...,082) |
i3 = (0.50,...,0.78)

l

i = (0.58,...,0.90)

., 5.31)

Structure2vec
'

7=(3.12,..

Massarelli et al. "Investigating graph embedding neural networks with unsupervised features extraction for binary analysis.”, 2019.

» How do we compare to [Massarelli et al., 2019] in terms
of accuracy and performance?

Comparison

» We change the output level of Massarelli et al. framework
and SNN.

binary function m 03

binary function - ot
binary function - 0o

- . binary function VA 00
MA-Disasm

; ; 01
binary function

i i 00
binary function

Lbinary function - ek

binary function 0>
binary function
.02 02

SNN binary function 0>

— MA-Disasm [HRinarxfunction 02
binary function -,

rn—Io<‘

MA-B outputs binary level prediction SNN-F outputs function level prediction

Comparison

Framework / Task | Compiler | Optimization Version
MA-B 0.91 0.42 0.32
SNN 0.92 |[4+0.03] | 0.58 [+0.03| | 0.45 |+0.02]
MA 0.90 0.36 0.36
SNN-F 0.87 |4+0.07] | 0.60 [+0.05] | 0.42 [+0.02]

» We outperform Massarelli et al. framework at both the
function and the binary level.

» Compared to Massarelli et al. framework, SNN is 68 x
times faster during learning and 1300 x time faster during
preprocessing.

Conclusion

» Classification at the whole binary level works.
» Our simple framework is efficient.

Direction for future works:

» Richer semantic features.

» Natural language processing techniques.
» Comparisons between frameworks.

Conclusion

» Thank you for your attention!

