Trustworthy Machine Learning in Data-Driven Cyber Security Practices

Yufei Han@CIDRE Project Team, INRIA Rennes

Feb 25, 2021

Use of Machine Learning for Security Practices

Machine Learning for Cyber Threat Detection, Classification and Prediction

Security Operation Center (SOC) of Managed Security Service

Challenge raised by fast increasing cyber threats:

- Huge volume of data input of SOC. For example the SOC of a mainstreaming security vendor receive reports of 3.7 million spear-phishing and website hijacking events. Human experts can not verify all of them.
- 1/3 reported incidents originate from zero-day vulnerability.
 Prediction of potential threats is thus important for active defense

Challenges to Trustworthy Machine Learning Service in Cyber Security Practices

Outline

• Trustworthy Machine Learning in security-critical applications

- Robust security incident prediction with incomplete / noise-corrupted data
 - Multi-sourced active learning based cyber threat detection
- Privacy-agnostic an distributed data analytics
- Adversarial robustness certification
- Future perspectives

Dirty data challenge in security practices

Multi-sourced active learning based cyber threat prediction

Cyber Threat Prediction: predict threats (and their types) that would be likely to be evoked based on observed incidents

A real-world learning scenario with *incomplete features* and *partially observed incident labels*

Dirty data challenge in security practices

Multi-sourced active learning based cyber threat prediction

Dirty data challenge in security practices

Multi-sourced active learning based cyber threat prediction

Outline

• Trustworthy Machine Learning in security-critical applications

- Robust security incident prediction with incomplete / noise-corrupted data
- Privacy-agnostic and distributed data analytics
 - Byzantine failure resilient federated learning
- Adversarial robustness certification
- Future perspectives

Privacy-preserving and distributed data analytics

Byzantine Federated Learning

• A popular solution: Federated Learning (proposed by Google AI, published on NIPS 2016)

Real-world scenario: Robust distributed ML service in compliance with Data Privacy Regulations

Privacy-preserving and distributed data analytics

Byzantine Federated Learning

domain experts

Privacy-preserving Collaborative Data Debugging via Trusted Items

Assumption

We assume that training data hosted by each local agent is potentially buggy

We assume that a small fraction of trusted training data is available on <u>some</u> local agents, verified by domain experts with considerable cost and denoted as

Privacy-preserving and distributed data analytics

Byzantine Federated Learning

<u>Transferred messages don't</u> <u>uncover local data profiles</u>

Privacy-preserving Collaborative Data Debugging via Trusted Items

Assumption

We assume that training data hosted by each local agent is potentially buggy

We assume that a small fraction of trusted training data is available on <u>some</u> local agents, verified by domain experts with considerable cost and denoted as

Outline

• Trustworthy Machine Learning in security-critical applications

- Robust security incident prediction with incomplete / noise-corrupted data
- Privacy-agnostic and distributed data analytics
- Adversarial robustness certification
- Future perspectives

Threat Model: Evasion Attack against Sequential Data Classification Model

Classification system

Han et al, Attackability Assessment via Weak Submodularity and Greedy Attack, KDD 2020

- Why does evasion attack on discrete data matter ?
- Attack on discrete data is a combinatorial optimization problem

Threat Model: Evasion Attack against Sequential Data Classification Model

Set function maximization

 $S^* = \underset{|S| \le K}{\arg \max} g(S)$ where $g(S) = \underset{l \in S}{\max} f_y(\hat{\mathbf{x}}), \quad l = diff(\mathbf{b}, \hat{\mathbf{b}})$ |S| is the cardinality of set *S*.

diff function It reports the set of the indices where b and \hat{b} are different

l denotes the set of modification to make when we attack x

g(S) is a set function. The argument is a set, which includes all feasible subsets

g(S) is a non-decreasing function: If $S_i > S_{i-1}$, then $g(S_i) > g(S_{i-1})$

Greedy Search based Evasion Attack

 Weak submodularity of the attack objective: a bridge between Attack Quality and Regularity of the classifier

• Claim 1: Evasion attack on discrete data targeting at a general classifier f is weakly submodular

THEOREM 1. Let b as the unchanged original binary indicator defined in Eq.1. Let $\Omega_k = \{(\hat{b}, \hat{b'}) : |diff(b, \hat{b})| \le k, |diff(b, \hat{b'})| \le k, |diff(\hat{b}, \hat{b'})| \le k\}$, where \hat{b} and $\hat{b'}$ denote two sets of selected discrete attributes to be modified adversarially. If the classifier f_y is $(m_{\Omega_k}, M_{\Omega_k})$ -regularized on Ω_k , the g(S) defined by Eq.1 is weakly submodular. Its submodularity ratio γ_k on Ω_k is bounded from below:

$$\gamma_{k} \geq \frac{1}{2\psi_{k} M_{\Omega_{k}}}$$

$$\psi_{k} = 1 + \frac{k^{2} |m_{\Omega_{k}}|}{2 ||\nabla f_{y}(b)_{s}||_{2}^{2}}, \quad If \ m_{\Omega_{k}} \leq 0$$

$$\psi_{k} = \frac{1}{2m_{\Omega_{k}}}, \quad If \ m_{\Omega_{k}} > 0$$
(4)

where $\nabla f_y(b)_v$ denotes the elements of $\nabla f_y(b)$ corresponding to the difference between the index sets l_b and $l_{b'}$, where $v = l_{b'} \setminus l_b + l_b \setminus l_{b'}$.

Greedy Search based Evasion Attack

• Weak submodularity of the attack objective: a bridge between Attack Quality and Regularity of the classifier

(5)

Claim 2: Attack with a weakly submodular objective can be solved with greedy search. The quality of the solution can be bounded theoretically in a similar way as in the submodular case – in plein English, <u>weakly</u> <u>submodular attack objective is attackable.</u>

THEOREM 2. [Theorem 3 in [10]] Let the evasion attack problem defined by Eq.(1) be with the classification function f_y that is $(m_{\Omega_k}, M_{\Omega_k})$ -bounded. Let S_k be the set of the values selected by FSGS and S_k^* be the underlying optimal value set following the support size constraint. The corresponding attack objective values reached by S_k and S_k^* are g^{FSGS} and g^{OPT} , respectively. Then g^{FSGS} is bounded:

$$g^{FSGS} \ge (1 - e^{-\gamma S_k})g^{OPT}$$

where γ_{S_k} is the submodularity ratio of g(S) defined on the selected set S_k . Especially, if g(S) is submodular, the lower bound gives as:

$$g^{FSGS} \ge (1 - e^{-1})g^{OPT} \tag{6}$$

Weakly submodular attack objective: $0 < \gamma < 1$ Attackable but with lower worst case quality bound

Future Perspectives: Proactive defense with proactive AI

<u>AI in Security</u>

AI Boosted Attack Prediction and Comprehension

Security for AI

Trusted AI for security and privacy-sensitive data analytics

Thanks for your attention