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Security Operation Center (SOC) of Managed Security Service

Use of Machine Learning for Security Practices

Machine Learning for Cyber Threat Detection, Classification and Prediction
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Challenge raised by fast increasing cyber threats:

i Servers
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Huge volume of data input of SOC. For example the SOC of a
mainstreaming security vendor receive reports of 3.7 million
spear-phishing and website hijacking events. Human experts
can not verify all of them.

1/3 reported incidents originate from zero-day vulnerability.
Prediction of potential threats is thus important for active
defense



Challenges to Trustworthy Machine Learning Service in
Cyber Security Practices

Semi-autonomous security
analysis to improve incident
detection / prediction accuracy
and efficiency

Cyber threat profiling based on multiple
information sources
e Static / Dynamic analysis of
suspicious files
* Time-series modeling of malicio

ated

* Human-in-the-loop attack
understanding
Prediction of malware infection

incidents for active defense
Self-Supervised Machine Learning
Adversarial Robustness Assessmen Multi-sourced active Byzantine failure
Federated learning / Differentially learning based cyber f;selraetr;td
Private Learning threat detection

learning Highly incomplete data profiles
due to privacy control (noise

e Adversarial vulnerability of corruption / missing data).

machine learning models f:t‘)’sgfggi Privacy regulations constrain
e Manipulation of training / testing . certificate the use of privacy-sensitive data
data can induce classification error, ’ (e.g. GDPR protocols)

e.g. adversarial malware samples



Outline

* Trustworthy Machine Learning in security-critical applications
- Robust security incident prediction with incomplete / noise-corrupted data
- Multi-sourced active learning based cyber threat detection
- Privacy-agnostic an distributed data analytics

- Adversarial robustness certification

* Future perspectives



Dirty data challenge in security practices

0 Multi-sourced active learning based cyber threat prediction
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Should my company acd a firewall?
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Cyber Threat Prediction: predict
threats (and their types) that would
be likely to be evoked based on
observed incidents

A real-world learning scenario with incomplete features and partially observed

incident labels




Dirty data challenge in security practices

« Multi-sourced active learning based cyber threat prediction

Collaborative Embedding
as a transfer learning

solution to learning with
‘ incomplete feature and
weak labels

A ot

Shared Embedding Space
Low-rank LSE based Matrix gt Cost-Sensitive Logistic Matrix

Factorization

Factorization

N, M: the number of training samples
- M - Logit and feature dimensionality

: Maximum L2-norm of the row
vectors in X

Label reconstruction error R(Y") < < N
(I—p)VNM



Dirty data challenge in security practices

Multiple information source / multiple feature description of security events

source 1 source 2 source 3 oo source n

Human-in-t e-iooT l l l

Multi-source K-nearest-neighbour graph clustering
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Attribute graph based semi-supervised learning

Active learning boo:lted
Cyber Threat Prediction

Iterative
training
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//_V—Vefighted voting of probabilistic score for
“——___decision

Multi-sourced active learning based cyber threat prediction -




Outline

* Trustworthy Machine Learning in security-critical applications
- Robust security incident prediction with incomplete / noise-corrupted data
- Privacy-agnostic and distributed data analytics
Byzantine failure resilient federated learning

- Adversarial robustness certification

* Future perspectives



Privacy-preserving and distributed data analytics

-Byzantine Federated Learning

- A popular solution: Federated Learning (proposed by Google Al, published on NIPS
2016)

(1) Sharing classifier parameter%t/\

Local data noise

Users

.

Real-world scenario:
Robust distributed ML
service in compliance
with Data Privacy
Regulations
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(2) Updating parameters (3) Averaging locally-updated
locally with private data classifiers



Privacy-preserving and distributed data analytics

-Byzantine Federated Learning

Aggregate the local estimate of
the potential noise pattern

Potentially buggy

data
%é [ SEIE S B ARl e j - Trusted data verified by
domain experts
Learn the profiles of the
noise perturbation over
the potential buggy
training data instances . . .
Data, providar Privacy-preserving Collaborative
o ut trust s Data Debugging via Trusted Items
)
& @ | “ |
User / Data provider User / Data provider l User / Data prowder I
Assumption

We assume that training data hosted by each local agent is potentially buggy
We assume that a small fraction of trusted training data is available on some local agents, verified by domain

experts with considerable cost and denoted as



Privacy-preserving and distributed data analytics

-Byzantine Federated Learning

%@ [ Central Curator / Aggregator J

Share the estimated
profiles about data noise
and guide users to

correct the buggy data

Transferred messages don’t
uncover local data profiles

Privacy-preserving Collaborative

- L - - l Data Debugging via Trusted Items
& Y &5

User / Data provider User / Data provider User / Data provider

Assumption
We assume that training data hosted by each local agent is potentially buggy
We assume that a small fraction of trusted training data is available on some local agents, verified by domain
experts with considerable cost and denoted as



Outline

* Trustworthy Machine Learning in security-critical applications
- Robust security incident prediction with incomplete / noise-corrupted data
- Privacy-agnostic and distributed data analytics

« Adversarial robustness certification

* Future perspectives



Adversarial robustness certification

Threat Model: Evasion Attack against Sequential Data Classification Model

f(x = {x0, %1, X3, %3,%4})
=Y

Medical visit records
Malware dynamic analysis ...
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Adversarial robustness certification

Han et al, Attackability Assessment via Weak Submodularity and Greedy Attack, KDD 2020

* Why does evasion attack on discrete data matter ?

* Attack on discrete data is a combinatorial optimization problem

Which

variable to [[?

attack ?

-

\

Categorical
variable 1

Categorical
variable 2

Categorical
variable 3

Categorical

variable 4

/

Classification system

CLT T el
0

Which categorical
value should be used
for attack ?

Combinatorial optimization is NP-complete: any sort of search
algorithm or metaheuristic can be used to solve them, but with at least
exponential complexity. The most universally applicable approach

is branch-and-bound



https://en.wikipedia.org/wiki/Search_algorithm
https://en.wikipedia.org/wiki/Search_algorithm
https://en.wikipedia.org/wiki/Metaheuristic
https://en.wikipedia.org/wiki/Branch_and_bound

Adversarial robustness certification

Threat Model: Evasion Attack against Sequential Data Classification Model

* Set function maximization

5§ = argmax g(5)
1S|<K

where ¢g(S) = rlnagc fy(x), [ =diff(b, b)
C

|S| is the cardinality of set S.

: . It reports the set of the indices
diff function >
ﬁ where b and b are different

[ denotes the set of modification to make when we attack x

g(S) is a set function. The argument is a
set, which includes all feasible subsets

g(S) is a non-decreasing function:
If S; > S;_1, then g(S;) > g(S;_1)



Adversarial robustness certification

Greedy Search based Evasion Attack

* Weak submodularity of the attack objective: a bridge between
Attack Quality and Regularity of the classifier

* Claim 1: Evasion attack on discrete data targeting at a general classifier f is weakly submodular

1

THEOREM 1. Let b as the unchanged original binary indicator -~
defined in Eq.1. Let Q¢ = {(b,¥’) : |diff(b.b)| < k. |diff(b,}’)| <
k, |diff (b, b’)| < k}, where b and b’ denote two sets of selected dis- o5 Concave Submodular
crete attributes to be modified adversarially. If the classifier fy is case attack
(mq, . Mq, )-regularized on Q. the g(S) defined by Eq.1 is weakly o
submodular. Its submodularity ratio yr. on Qy is bounded from below: | [ objective
-6 -4 -2 0 2 4 6
= 2y Mo,
pom1r el e <o @
20V ) B 7 Weakly
P — , Non-concave submodular
2may case attack objective:
where V f;(b), denotes the elements of V f(b) corresponding to the 0<y<1
difference between the index setslp and lp:, wherev = Iy \ Ip +1p \ I
-6 -4 -2 0 2 4 6

Classifier



Adversarial robustness certification

Greedy Search based Evasion Attack

* Weak submodularity of the attack objective: a bridge between
Attack Quality and Regularity of the classifier

* Claim 2: Attack with a weakly submodular objective can be solved with greedy search. The quality of the
solution can be bounded theoretically in a similar way as in the submodular case — in plein English, weakly
submodular attack objective is attackable. !

THEOREM 2. [Theorem 3 in [10]] Let the evasion attack prob- Submodular

lem defined by Eq.(1) be with the classification function fy that is 05 S:sr;cave attack
(mq, , Mg, )-bounded. Let S be the set of the values selected by FSGS objective
and S| be the underlying optimal value set following the support size
constraint. The corresponding attack objective values reached by Sy I Lo
and S are gF SGS and gOP e respectively. Then gF SGS is bounded: o o024 e

gFSGS - e VSk )gOPT (5)

, ; , Weakly Attackable but
where ys, is the submodularity ratio of g(S) defined on the selected .
set Sy.. Especially, if g(S) is submodular, the lower bound gives as: - Non-concave Y bmodular with lower
case attack worst case
gFSGS 5 (1 ¢~ 1)gOPT (©) ar !
objective: quality bound
| s 0<y<l1



Future Perspectives: Proactive defense with proactive Al

Autonomous Cyber Defense Al in Security
e Zero-day attack prediction and risk assessment Al Boosted Attack
* Understanding attack incidents (network Prediction and

Machine intrusion / malwares )

Learnin * Human-in-the-loop defense planning, especially
& in the safety-sensitive scenarios

* Application of non-cooperative game theory

Comprehension

models

Synergy

Security between Al
Research Security Research
Security and Al
Applications
Security for Al
Use machine learning as a Secured and Trustworthy Al Decision Making :
St el e etk * Robust to intentional or natural data noise Truste(.:i Al for sec.u.rlty
detection with telemetry data: (error-correction enhanced learning ) and privacy-sensitive
K / * Data-privacy preserving analytics data analytics

* Mitigate data privacy risk leakage while enjoy the
benefits of Al systems



Thanks for your attention



