
Data flow analysis in order to construct
control flow graphs of obfuscated x86

binary codes

Jean-Yves MARION - Université de Lorraine, Loria
Sylvain CECCHETTO - Cyber-Detect, Nancy

France-Japan
Cybersecurity workshop
February 25 and 26, 2021

Data flow analysis in order to construct
control flow graphs of obfuscated x86

binary codes

Jean-Yves MARION - Université de Lorraine, Loria
Sylvain CECCHETTO - Cyber-Detect, Nancy

France-Japan
Cybersecurity workshop
February 25 and 26, 2021

1

Introduction

Binary analysis
Disassembly and control flow graph
[Schwarz, Debray and Andrews 2002], [Shoshitaishvili, Wang, Salls, Stephens, Polino, Dutcher, Grosen, Feng, Hauser, Kruegel and Vigna 2016] [Biondi, Rigo, Zennou and Mehrenberger 2017]

3

55 89 E5 83 EC 10 C7
45 FC 00 00 00 00 C7
45 F8 01 00 00 00 EB
17 8B 55 FC 8B 45 F8
01 D0 89 45 F4 8B 45
F8 89 45 FC 8B 45 F4
89 45 F8 8B 45 08 8D
50 FF 89 55 08 85 C0
75 DC 8B 45 FC C9 C3

⚙ Disassembly

push ebp
mov ebp, esp
sub esp, 0x10
mov dword [ebp-0x4], 0x0
mov dword [ebp-0x8], 0x1
jmp 0x2d
mov edx, dword [ebp-0x4]
mov eax, dword [ebp-0x8]
add eax, edx
mov dword [ebp-0xc], eax
mov eax, dword [ebp-0x8]
mov dword [ebp-0x4], eax
mov eax, dword [ebp-0xc]
mov dword [ebp-0x8], eax
mov eax, dword [ebp+0x8]
lea edx, [eax-0x1]
mov dword [ebp+0x8], edx
test eax, eax
jne 0x16
mov eax, dword [ebp-0x4]
leave
ret

0x4011A0: push ebp
0x4011A1: mov ebp, esp
0x4011A0: sub esp, 0x10
0x4011A6: mov dword [ebp-0x4], 0x0
0x4011AD: mov dword [ebp-0x8], 0x1
0x4011B4: jmp 0x4011CD

0x4011CD: mov eax, dword [ebp+0x8]
0x4011D0: lea edx, [eax-0x1]
0x4011D3: mov dword [ebp+0x8], edx
0x4011D6: test eax, eax
0x4011D8: jne 0x4011B6

0x4011B6: mov edx, dword [ebp-0x4]
0x4011B9: mov eax, dword [ebp-0x8]
0x4011BC: add eax, edx
0x4011BE: mov dword [ebp-0xc], eax
0x4011C1: mov eax, dword [ebp-0x8]
0x4011C4: mov dword [ebp-0x4], eax
0x4011C7: mov eax, dword [ebp-0xc]
0x4011CA: mov dword [ebp-0x8], eax

0x4011DA: mov eax, dword [ebp-0x4]
0x4011DD: leave
0x4011DE: ret

push ebp
mov ebp, esp
sub esp, 0x10

Problems
◎ Variable length instructions
◎ Mixed data in code bytes
◎ Indirect jumps
◎ …

0x0: EB01 jmp 0x3
0x2: 68C3909090 push 0x909090c3

0x0: EB01 jmp 0x3
0x2: 68 ;data
0x3: C3 ret
0x4: 90 nop
0x5: 90 nop
0x6: 90 nop

Example : disassembly of EB0168C3909090 code

Obfuscation
[Collberg, Thomborson and Low 1997]

Transforming a program P into a
program P' so that P' works like
P but is harder to understand

4

Build the control flow
graph of a binary

5

Build the control flow
graph of a binary

5

Malwares are protected
(obfuscations)

Build the control flow
graph of a binary

5

Build the control flow graph of a
malware

Malwares are protected
(obfuscations)

2

BOA - platform

◎ Main goal:
‣ Disassemble and build CFG of obfuscated binaries

◎ Others goals:
‣ Detect obfuscations and doubtful behaviors

‣ Create report

7

Goals
Disassemble and build CFG of obfuscated binaries

BOA

?
An approach combining the advantages of a static
analysis with the strengths of a dynamic analysis?

8

?
An approach combining the advantages of a static
analysis with the strengths of a dynamic analysis?

8

➡ Symbolic execution…
 … obfuscation-resistant

9

Machine state

Execution

◎ Given by the triplet , with:(ip, σ, p)

ip Instruction pointer

 Value of CPU, flags and memory cells

 Memory cells permissions

σ:
r ∈ Reg ↦ v ∈ Addr ∪ { ⊥ }
f ∈ Flag ↦ v ∈ {0,1,⊥}
a ∈ Addr ↦ v ∈ Bytes ∪ { ⊥ }

p : a ∈ Addr ↦ p ∈ {∅, R, RX, RW, RW X}

 : unknown value⊥

Normal mode, when
can be executed

σ[ip]*

Else, kernel mode

(ip, σ, p) (ip′ , σ′ , p′) =def
(ip, σ, p)

σ[ip]*
(ip′ , σ′ , p′)

(ip, σ, p) 𝒪 𝒪(ip, σ, p)
Self-modification support :
‣ Instructions live in
‣ can be modified by

σ
σ σ [ip]*

Data flow analysis to rescue in order to
build the control flow graph of obfuscated binaries

◎ Analysis approach: recursive disassembling + symbolic execution at basic block level

◎ Resolve indirect jumps by partial machine state computation

◎ Multiple obfuscation support:
‣ Self-modification

‣ Exceptions

‣ Indirect jumps and call stack tampering

‣ Opaque predicate and dead branches

‣ On the fly import table construction

10

BOA
In a nutshell

while :𝒜

11

BOA
Algorithm : main loop

𝒜

(B3, ip3, σ3, p3)

(B, ip, σ, p)

(B7, ip7, σ7, p7)

while :𝒜
// Retrieve a 4-uplet to be processed

 | (B, ip, σ, p) = 𝒜.pop()

11

BOA
Algorithm : main loop

B

(σ, p)

ip

𝒜

(B3, ip3, σ3, p3)

(B7, ip7, σ7, p7)

while :𝒜
// Retrieve a 4-uplet to be processed

 | (B, ip, σ, p) = 𝒜.pop()
// Disassemble ip basic block

 | = DisasBasicBlock(ip)Bip

11

BOA
Algorithm : main loop

B

(σ, p)

ipBip

𝒜

(B3, ip3, σ3, p3)

(B7, ip7, σ7, p7)

while :𝒜
// Retrieve a 4-uplet to be processed

 | (B, ip, σ, p) = 𝒜.pop()
// Disassemble ip basic block

 | = DisasBasicBlock(ip)Bip
// Apply symbolic execution of in and Bip σ p

 | = MachineState()(ip′ , σ′ , p′) Bip, σ, p

11

BOA
Algorithm : main loop

B

(σ, p)

ipBip

ip′

(σ′ , p′)

𝒜

(B3, ip3, σ3, p3)

(B7, ip7, σ7, p7)

while :𝒜
// Retrieve a 4-uplet to be processed

 | (B, ip, σ, p) = 𝒜.pop()
// Disassemble ip basic block

 | = DisasBasicBlock(ip)Bip
// Apply symbolic execution of in and Bip σ p

 | = MachineState()(ip′ , σ′ , p′) Bip, σ, p
// Add new 4-uplet in 𝒜
 | if :ip′ ≠ ⊥
 | | 𝒜.push((Bip, ip′ , σ′ , p′))
 | else if == COND:t ype(Bip)
 | | 𝒜.push((Bip, next_mem, σ′ , p′))
 | | 𝒜.push((Bip, target, σ′ , p′))

11

BOA
Algorithm : main loop

B

(σ, p)

ipBip

ip′

(σ′ , p′)

𝒜

(B3, ip3, σ3, p3)

(B7, ip7, σ7, p7)

3

BOA - applications

Self-modifications

13

◎ Two goals

‣ Detect self-modification

‣ Continue self-modification

14

BOA
Self modification and execution waves

◎ Detect : [Bonfante, Fernandez, Marion, Rouxel, Sabatier et Thierry 2015]

‣ Keep a list of modified memory cells

‣ Check every instruction before symbolic execution

◎ Handle :

‣ Concept of execution waves

‣ Each instruction is associated to a wave

14

BOA
Self modification and execution waves

◎ Detect : [Bonfante, Fernandez, Marion, Rouxel, Sabatier et Thierry 2015]

‣ Keep a list of modified memory cells

‣ Check every instruction before symbolic execution

◎ Handle :

‣ Concept of execution waves

‣ Each instruction is associated to a wave

⇦ self-modification (@[A] replaced by 0x53)

⇦ self-modified instruction

14

BOA
Self modification and execution waves

◎ Detect : [Bonfante, Fernandez, Marion, Rouxel, Sabatier et Thierry 2015]

‣ Keep a list of modified memory cells

‣ Check every instruction before symbolic execution

◎ Handle :

‣ Concept of execution waves

‣ Each instruction is associated to a wave

⇦ self-modification (@[A] replaced by 0x53)

⇦ self-modified instruction

15

15

‣ original binary : hostname.exe

‣ 35 pecked versions

‣ Comparison with 9 dynamic tools

15

‣ original binary : hostname.exe

‣ 35 pecked versions

‣ Comparison with 9 dynamic tools

‣ Failed : 5

15

‣ original binary : hostname.exe

‣ 35 pecked versions

‣ Comparison with 9 dynamic tools

‣ Failed : 5

‣ Partially unpacked : 16

15

‣ original binary : hostname.exe

‣ 35 pecked versions

‣ Comparison with 9 dynamic tools

‣ Failed : 5

‣ Partially unpacked : 16

‣ Totally unpacked : 14

15

‣ original binary : hostname.exe

‣ 35 pecked versions

‣ Comparison with 9 dynamic tools

‣ Failed : 5

‣ Partially unpacked : 16

‣ Totally unpacked : 14

BOA :
100% static

Analysis of a real malware:
Emotet

16

17

BOA
The Emotet trojan

◎ Features

‣ Steal password and banking information

‣ Network propagation

‣ Loader and botnet

◎ Analysis of a « recent » sample

‣ October 14, 2020: detected as malware by 7/63 of
VirusTotal's antivirus

18

BOA
Emotet: BOA analysis

◎ First wave :

‣ 3 341 instructions

‣ No exception

‣ 145 RET instructions without call stack tampering

‣ 10 external functions address retrieved by GetProcAddress

◎ Construction of the second wave (after ~28 000 executed instructions) :

‣ Allocation of 117 043 bytes with VirtualAllocExNuma

‣ Un-pack loop execution (117 042 iterations)

‣ Jump on self-modified code with call ebx ⇨ enter in second wave

19

BOA
Emotet: BOA analysis

◎ Second wave dump:

‣ « Raw » dump

‣ Detected as Emotet by 13/60 VirusTotal’s antivirus

4

Conclusion

21

Conclusion
Perspectives

◎ Yet another tool

‣ A static analysis tool…

‣ …with some features of a dynamic analysis

◎ Needs some improvements

‣ Improve SMT solvers part

‣ Multi-thread, multi-process, best OS simulation,…

❖ Bergeron, Debbabi, Desharnais, Erhioui, Lavoie et Tawbi - 2001
Static Detection of Malicious Code in Executable Programs

❖ Bonfante, Fernandez, Marion, Rouxel, Sabatier et Thierry - 2015
CoDisasm: Medium Scale Concatic Disassembly of Self-Modifying Binaries with Overlapping Instructions

❖ Biondi, Rigo, Zennou et Mehrenberger - 2017
BinCAT: purrfecting binary static analysis

❖ Collberg, Thomborson et Low - 1997
A Taxonomy of Obfuscating Transformations

❖ Djoudi et Bardin - 2015
BINSEC: Binary Code Analysis with Low-Level Regions

❖ Junod, Rinaldini, Wehrli et Michielin - 2015
Obfuscator-LLVM -- Software Protection for the Masses

❖ Kiss, Lalande, Leslous et Tong - 2016
Kharon dataset: Android malware under a microscope

❖ Pietrek - 1997
A crash course on the depths of Win32 structured exception handling

❖ Qiu, Su et Ma - 2014
Deobfuscate Non-Returning Calls and Call-Stack Tampering in Instruction Traces

❖ Robin - 2017
Formal Approaches for Automatic Deobfuscation and Reverse-engineering of Protected Codes

❖ Salwan - 2020
L’usage de l’exécution symbolique pour la déobfuscation binaire en milieu industriel

❖ Schwarz, Debray et Andrews - 2002
Disassembly of executable code revisited

❖ Shoshitaishvili, Wang, Salls, Stephens, Polino, Dutcher, Grosen, Feng, Hauser, Kruegel, Vigna - 2016
SOK: (State of) The Art of War: Offensive Techniques in Binary Analysis

