Aversarial example againt SotA ML-based binary
function classifiers

Gabriel Sauger
Loria

8th Franco-Japanese security workshop

8th Franco-Japanese security workshop

Gabriel Sauger (Loria) Aversarial example againt SotA ML-basec il /7x]

Problem statement

Context:

@ Target: Static binary function classification using machine-learning
techniques.

» Graph-based features
» Assembly code analysis features (bytegrams, n-grams, strings...)

A classifier claim to extract the semantics of a given function, no matter the
syntax (optimization / obfuscations).

8th Franco-Japanese security workshop

Gabriel Sauger (Loria) Aversarial example againt SotA ML-basec . /7x]

Problem statement

Question: Can we build an obfuscator to automatically induce a misclassifi-
cation in to SotA binary function classification models 7

8th Franco-Japanese security workshop

Gabriel Sauger (Loria) Aversarial example againt SotA ML-basec = /7x]

SotA papers in binary function classification

Marcelli et al (How Machine Learning Is Solving the Binary Function Sim-
ilarity Problem) benchmarked several SotA binary function classifiers. We
selected the best results:

@ Asm2vec (assembly level 3-grams - unsupervised)
e Google's GGSNN and GMN (graph and assembly level features)

All have near 0.90 on the benchmark performance metrics.

8th Franco-Japanese security workshop

Gabriel Sauger (Loria) Aversarial example againt SotA ML-basec l/7x]

Threat model

o Attacker can use their own compiler toolchain to compile the
malicious binary.

@ Attacker does not have access to C but knows the probable list of
features used to construct C. This means that attacker knows the
range of features on which the static analysis tools perform their
analysis.

@ The payload p is "smaller" than the target t

o Defender is restricted to static analysis based tools

8th Franco-Japanese security workshop

Gabriel Sauger (Loria) Aversarial example againt SotA ML-basec 3 /7x]

Notations

p: payload function
t: target function, known to be benign to the defender

Pasms Psrc, Pbin 1S the assembly code, source code, binary version of p

[p] is the semantics of p

8th Franco-Japanese security workshop

Gabriel Sauger (Loria) Aversarial example againt SotA ML-basec (& //7x]

Obfuscation recipe

@ Run the CFG Merger:

(Psrm tsrc) — Pgrc with |Ip]] = |Ip/]|

8th Franco-Japanese security workshop

Gabriel Sauger (Loria) Aversarial example againt SotA ML-basec 7/ /7x]

Obfuscation recipe

© Run the CFG Merger:

(Psre, tsre) = Pare with [p] = [p']

@ Compile to assembly code pl,. and ts.

8th Franco-Japanese security workshop

Gabriel Sauger (Loria) Aversarial example againt SotA ML-basec & /7x]

Obfuscation recipe

@ Run the CFG Merger:

(Psrc, tsrc) — pgrc with |Ip]] = |Ip/]]

@ Compile to assembly code p.,. and ts.

© Run the instruction frequency alignement algorithm

(pgsma tasm) - pgsm With I[p]] = IIPN]]

8th Franco-Japanese security workshop

Gabriel Sauger (Loria) Aversarial example againt SotA ML-basec] /7x]

Obfuscation recipe

@ Run the CFG Merger:

(Psrc tsrc) = P;,C with [p] = [[p’]]

@ Compile to assembly code p.,. and ts.

© Run the instruction frequency alignement algorithm

(Phsm» tasm) — Pasm with [p] = [p"]

Z

"sm to obtain pj. and feed it to the classifier.

@ Compile p

8th Franco-Japanese security workshop

Gabriel Sauger (Loria) Aversarial example againt SotA ML-basec 1l //7x]

CFG Merger: Principle

First step: CFG merge

' 8th Franco-Japanese security workshop
Gabriel Sauger (Loria) Aversarial example againt SotA ML-basec

CFG Merger: Principle

Algorithm 1 Tree Matching algorithm. main function

Require: (Prog. Prog)

Ensure: Prog if match is possible, else None
1: function MERGE_PROG(s. 1)
2: match (s.ef.t.cf) with

3 | (1f.1f)

4 res « MERGE_PROG(s.cf.body. {.c f.body)

5 match res with

6: | Prog > We matched the bodies
7 res2 + MERGE_PROG(s.cf.tail. t.cf.tail)

& match res2 with

9 | Prog > And we matched the tails !
10: return Prog(s.data, res, res2) > Amazing, we have a match :)
11: None

12: return MERGE_AFTER_INSERT(s,t) > Here we need to insert a node from f in s
13: end match

14: | None

15 return MERGE_AFTER_INSERT(s,t)

16: end match

17: | (While, While)

18: Same as previous case > Same disjonction as precedently but with two While
19: | (If.While) or (While, I1f) or (End.If) or (End, While)

20: return MERGE_AFTER_INSERT(s,t)

21: | (End, End)

22: return Prog(s.data, End) & Termination case, match :)
23: | (- End)

24: return None & Termination case, no match :(

25: end match
26: end function

CFG Merger: Principle

Second step: instruction matching

' 8th Franco-Japanese security workshop
Gabriel Sauger (Loria) Aversarial example againt SotA ML-basec

Instruction-level obfuscation problem statement

We target an instruction-level feature based classifier C. Given the (x86)
assembly code files of a payload p’ and a target t, our goal is still to build
a program p” such that:

o [P'] =1[p"] (p semantically equivalent to p’)

o Idea: Aligning the histogram of instructions is enough to fool the
classifier. (see Damasio et al A Game-Based Framework to Compare
Program Classifiers and Evaders)

In this example, the score of C is equal to 0 when the functions are dissimilar
and 1 when they are the same semantically.

8th Franco-Japanese security workshop

Gabriel Sauger (Loria) Aversarial example againt SotA ML-basec il:1/7x]

Assembly-level features

The selected features of an assembly instruction are:
e its operation (the mnemonic)

@ its operands

> register name
» "immediate" if it's an address
» reference if it's a "[eax 4+ imm]"-like reference address

8th Franco-Japanese security workshop

Gabriel Sauger (Loria) Aversarial example againt SotA ML-basec il 7k

Instructions obfuscation : hand-crafted examples

The steps are:

@ Generate a bunch of {(pj, p}, t;)}i with the merger. p € sqlite and
t € curl.

@ Vi, build the diff table i of p} and t;.
Q Vi, (p iasm, diff table i) — p/
Q Compute a2v(p/, t;), a2v(pi, t;) and a2v(p/, p;). Compare.

8th Franco-Japanese security workshop

Gabriel Sauger (Loria) Aversarial example againt SotA ML-basec 1l 7k

Diff Table example

Given a pair of function (p, t), we compute the difference between corre-
sponding items in Features(p) and Features(t):

feature Feat(p,t) = #t — #p
mox, rdx, rax 8
callimmediate 2

learax, [rbp + 0x3] -5

8th Franco-Japanese security workshop

Gabriel Sauger (Loria) Aversarial example againt SotA ML-basec il7/ 7k

The Pair dataset

An eligible function is a function that:

@ Has more than 5 basic blocks

o Is parsable by our CFG Merger

Binary Nb compilable functions
source:curl - target:openss/ 78
source:curl - target:sqlite3 216

Total 294

NOTE

curl and openss/ binaries are included in the classifier's training dataset.

sqlite3 is not.

8th Franco-Japanese security workshop

Gabriel Sauger (Loria) Aversarial example againt SotA ML-basec ik 7k

Benchmarks

Targets:
e GNN
o GMN

@ asm2vec

' 8th Franco-Japanese security workshop
Gabriel Sauger (Loria) Aversarial example againt SotA ML-basec

Instruction-level obfuscation: Misclassification problems

When we talk about misclassification, we refer to two problems:

"Query" problem

The defender has a database of function. We present him p’. The defender
can then query his database, by looking at the top k highest-similarity
functions according to C. Our goal then is to have t in the returned
functions and not p.

One metric commonly used in this case is the MRR@k score.

"Triplet" problem

When given a triplet (p, t, p’), we want C to output that p’ looks more
similar to t than to p.
Formally, if C(p, t) is low, our goal is:

C(p',t) > C(p, p) and C(p', t) > C(p, t) (1)

v

8th Franco-Japanese security workshop

Gabriel Sauger (Loria) Aversarial example againt SotA ML-basec 21} /2]

Results: CFG Merger only

Results on the selected pairs, on the "Triplet problem":

Dataset \ Classifier \ "Good" triplets ratio
(curl,sqlite3) GNN 155/230 (0.73)
(curl,openssl) GNN 63/78 (0.81)
(curl,sqlite3) GMN 38/211 (0.18)
(curl,openssl) | GMN 16/78 (0.21)
(curl,sqlite3) a2v 6/211 (0.03)
(curl,openssl) a2v 1/78 (0.01)

8th Franco-Japanese security workshop

Gabriel Sauger (Loria) Aversarial example againt SotA ML-basec il 7k

Results: CFG Merger + random instruction alignement

algorithm

Results on the selected pairs, on the "Triplet problem™":

Dataset

Classifier

"Good" triplets ratio

(sqlite3,curl)

a2v

(0.75)

8th Franco-Japanese security workshop

Gabriel Sauger (Loria) Aversarial example againt SotA ML-basec »r) 7k

Next steps

While technically enough to have one misclassification with reasonnable
"chance":

@ Use semantic preserving instruction insertions

Using save-regs / restore-regs functions

o

@ "hiding" instructions in dead branches

@ inserting sets of instructions equivalent to no-op
o

compare to the Random Forest of Damasio et al.

8th Franco-Japanese security workshop

Gabriel Sauger (Loria) Aversarial example againt SotA ML-basec k] 7k

