
Aversarial example againt SotA ML-based binary
function classifiers

Gabriel Sauger

Loria

8th Franco-Japanese security workshop

Gabriel Sauger (Loria) Aversarial example againt SotA ML-based binary function classifiers
8th Franco-Japanese security workshop
1 / 23



Problem statement

Context:
Target: Static binary function classification using machine-learning
techniques.

▶ Graph-based features
▶ Assembly code analysis features (bytegrams, n-grams, strings...)

A classifier claim to extract the semantics of a given function, no matter the
syntax (optimization / obfuscations).

Gabriel Sauger (Loria) Aversarial example againt SotA ML-based binary function classifiers
8th Franco-Japanese security workshop
2 / 23



Problem statement

Question: Can we build an obfuscator to automatically induce a misclassifi-
cation in to SotA binary function classification models ?

Gabriel Sauger (Loria) Aversarial example againt SotA ML-based binary function classifiers
8th Franco-Japanese security workshop
3 / 23



SotA papers in binary function classification

Marcelli et al (How Machine Learning Is Solving the Binary Function Sim-
ilarity Problem) benchmarked several SotA binary function classifiers. We
selected the best results:

Asm2vec (assembly level 3-grams - unsupervised)
Google’s GGSNN and GMN (graph and assembly level features)

All have near 0.90 on the benchmark performance metrics.

Gabriel Sauger (Loria) Aversarial example againt SotA ML-based binary function classifiers
8th Franco-Japanese security workshop
4 / 23



Threat model

Attacker can use their own compiler toolchain to compile the
malicious binary.
Attacker does not have access to C but knows the probable list of
features used to construct C. This means that attacker knows the
range of features on which the static analysis tools perform their
analysis.
The payload p is "smaller" than the target t

Defender is restricted to static analysis based tools

Gabriel Sauger (Loria) Aversarial example againt SotA ML-based binary function classifiers
8th Franco-Japanese security workshop
5 / 23



Notations

p: payload function
t: target function, known to be benign to the defender
pasm, psrc , pbin is the assembly code, source code, binary version of p
[[p]] is the semantics of p

Gabriel Sauger (Loria) Aversarial example againt SotA ML-based binary function classifiers
8th Franco-Japanese security workshop
6 / 23



Obfuscation recipe

1 Run the CFG Merger:

(psrc , tsrc) → p′src with [[p]] = [[p′]]

Gabriel Sauger (Loria) Aversarial example againt SotA ML-based binary function classifiers
8th Franco-Japanese security workshop
7 / 23



Obfuscation recipe

1 Run the CFG Merger:

(psrc , tsrc) → p′src with [[p]] = [[p′]]

2 Compile to assembly code p′src and tsrc

Gabriel Sauger (Loria) Aversarial example againt SotA ML-based binary function classifiers
8th Franco-Japanese security workshop
8 / 23



Obfuscation recipe

1 Run the CFG Merger:

(psrc , tsrc) → p′src with [[p]] = [[p′]]

2 Compile to assembly code p′src and tsrc
3 Run the instruction frequency alignement algorithm

(p′asm, tasm) → p′′asm with [[p]] = [[p′′]]

Gabriel Sauger (Loria) Aversarial example againt SotA ML-based binary function classifiers
8th Franco-Japanese security workshop
9 / 23



Obfuscation recipe

1 Run the CFG Merger:

(psrc , tsrc) → p′src with [[p]] = [[p′]]

2 Compile to assembly code p′src and tsrc
3 Run the instruction frequency alignement algorithm

(p′asm, tasm) → p′′asm with [[p]] = [[p′′]]

4 Compile p′′asm to obtain p′′bin and feed it to the classifier.

Gabriel Sauger (Loria) Aversarial example againt SotA ML-based binary function classifiers
8th Franco-Japanese security workshop
10 / 23



CFG Merger: Principle

First step: CFG merge

Gabriel Sauger (Loria) Aversarial example againt SotA ML-based binary function classifiers
8th Franco-Japanese security workshop
11 / 23



CFG Merger: Principle

Gabriel Sauger (Loria) Aversarial example againt SotA ML-based binary function classifiers
8th Franco-Japanese security workshop
12 / 23



CFG Merger: Principle

Second step: instruction matching

Gabriel Sauger (Loria) Aversarial example againt SotA ML-based binary function classifiers
8th Franco-Japanese security workshop
13 / 23



Instruction-level obfuscation problem statement

We target an instruction-level feature based classifier C. Given the (x86)
assembly code files of a payload p′ and a target t, our goal is still to build
a program p′′ such that:

[[p′]] = [[p′′]] (p semantically equivalent to p′)
Idea: Aligning the histogram of instructions is enough to fool the
classifier. (see Damasio et al A Game-Based Framework to Compare
Program Classifiers and Evaders)

In this example, the score of C is equal to 0 when the functions are dissimilar
and 1 when they are the same semantically.

Gabriel Sauger (Loria) Aversarial example againt SotA ML-based binary function classifiers
8th Franco-Japanese security workshop
14 / 23



Assembly-level features

The selected features of an assembly instruction are:
its operation (the mnemonic)
its operands

▶ register name
▶ "immediate" if it’s an address
▶ reference if it’s a "[eax + imm]"-like reference address

Gabriel Sauger (Loria) Aversarial example againt SotA ML-based binary function classifiers
8th Franco-Japanese security workshop
15 / 23



Instructions obfuscation : hand-crafted examples

The steps are:
1 Generate a bunch of {(pi , p′i , ti )}i with the merger. p ∈ sqlite and

t ∈ curl .
2 ∀i , build the diff table i of p′i and ti .
3 ∀i , (p′iasm,diff table i) → p′′i
4 Compute a2v(p′′i , ti ), a2v(pi , ti ) and a2v(p′′i , pi ). Compare.

Gabriel Sauger (Loria) Aversarial example againt SotA ML-based binary function classifiers
8th Franco-Japanese security workshop
16 / 23



Diff Table example

Given a pair of function (p, t), we compute the difference between corre-
sponding items in Features(p) and Features(t):

feature Feat(p,t) = #t −#p

mox , rdx , rax 8
callimmediate 2

. . . . . .
learax , [rbp + 0x3] -5

Gabriel Sauger (Loria) Aversarial example againt SotA ML-based binary function classifiers
8th Franco-Japanese security workshop
17 / 23



The Pair dataset

An eligible function is a function that:
Has more than 5 basic blocks
Is parsable by our CFG Merger

Binary Nb compilable functions
source:curl - target:openssl 78
source:curl - target:sqlite3 216

Total 294

NOTE
curl and openssl binaries are included in the classifier’s training dataset.
sqlite3 is not.

Gabriel Sauger (Loria) Aversarial example againt SotA ML-based binary function classifiers
8th Franco-Japanese security workshop
18 / 23



Benchmarks

Targets:
GNN
GMN
asm2vec

Gabriel Sauger (Loria) Aversarial example againt SotA ML-based binary function classifiers
8th Franco-Japanese security workshop
19 / 23



Instruction-level obfuscation: Misclassification problems

When we talk about misclassification, we refer to two problems:

"Query" problem
The defender has a database of function. We present him p′. The defender
can then query his database, by looking at the top k highest-similarity
functions according to C. Our goal then is to have t in the returned
functions and not p.
One metric commonly used in this case is the MRR@k score.

"Triplet" problem
When given a triplet (p, t, p′), we want C to output that p′ looks more
similar to t than to p.
Formally, if C(p, t) is low, our goal is:

C(p′, t) > C(p′, p) and C(p′, t) > C(p, t) (1)

Gabriel Sauger (Loria) Aversarial example againt SotA ML-based binary function classifiers
8th Franco-Japanese security workshop
20 / 23



Results: CFG Merger only

Results on the selected pairs, on the "Triplet problem":

Dataset Classifier "Good" triplets ratio
(curl ,sqlite3) GNN 155/230 (0.73)
(curl ,openssl) GNN 63/78 (0.81)
(curl ,sqlite3) GMN 38/211 (0.18)
(curl ,openssl) GMN 16/78 (0.21)
(curl ,sqlite3) a2v 6/211 (0.03)
(curl ,openssl) a2v 1/78 (0.01)

Gabriel Sauger (Loria) Aversarial example againt SotA ML-based binary function classifiers
8th Franco-Japanese security workshop
21 / 23



Results: CFG Merger + random instruction alignement
algorithm

Results on the selected pairs, on the "Triplet problem":

Dataset Classifier "Good" triplets ratio
(sqlite3,curl) a2v (0.75)

Gabriel Sauger (Loria) Aversarial example againt SotA ML-based binary function classifiers
8th Franco-Japanese security workshop
22 / 23



Next steps

While technically enough to have one misclassification with reasonnable
"chance":

Use semantic preserving instruction insertions
Using save-regs / restore-regs functions
"hiding" instructions in dead branches
inserting sets of instructions equivalent to no-op
compare to the Random Forest of Damasio et al.

Gabriel Sauger (Loria) Aversarial example againt SotA ML-based binary function classifiers
8th Franco-Japanese security workshop
23 / 23


