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Why is autonomous driving security is
an interesting research target?
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Background:
How an autonomous vehicle (AV) works



Primary components of an autoware-installed EV




How LiDAR sensor works
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A brief overview of the AV system

Sensors ™| Perception [ Motion mp  Vehicle kpl ) rugtors
Planning Control

GM Cruise’s autonomous driving car
https://www.youtube.com/watch?v=IA5NVJf3K4Q




Integration of various technologies
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Al components used in AV systems

Perception and Object Recognition
Environmental Understanding and Decision Making
Predictive Analysis and Behavior Prediction

End-to-end autonomous driving
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1. Perception and Object Recognition

B Traffic Sign Recognition:
B Pedestrian and Vehicle Detection:
B Lane Detection:

B Traffic Light Recognition:
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2. Environmental Understanding and Decision Making

B Obstacle and Hazard Detection

B Scene Segmentation

B Path Planning
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3. Predictive Analysis and Behavior Prediction

B Qther Vehicle Behavior Prediction:

B Pedestrian Behavior Prediction:

......
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4. End-to-End autonomous driving
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End-to-end Autonomous Driving:
Challenges and Frontiers

Li Chen, Penghao Wu, Kashyap Chitta, Bernhard Jaeger, Andreas Geiger and Hongyang Li

Abstract—The autonomous driving community has witnessed a rapid growth in approaches that embrace an end-to-end algorithm
framework, utilizing raw sensor input to generate vehicle motion plans, instead of concentrating on individual tasks such as detection
and motion prediction. End-to-end systems, in comparison to modular pipelines, benefit from joint feature optimization for perception and
planning. This field has flourished due to the availability of large-scale datasets, closed-loop evaluation, and the increasing need for au-
tonomous driving algorithms to perform effectively in challenging scenarios. In this survey, we provide a comprehensive analysis of more
than 250 papers, covering the motivation, roadmap, methodology, challenges, and future trends in end-to-end autonomous driving. We
delve into several critical challenges, including multi-modality, interpretability, causal confusion, robustness, and world models, amongst
others. Additionally, we discuss current advancements in foundation models and visual pre-training, as well as how to incorporate these
techniques within the end-to-end driving framework. To facilitate future research, we maintain an active repository that contains up-to-
date links to relevant literature and open-source projects at https://github.com/OpenDriveLab/End-to-end-Autonomous-Driving.

Index Terms—Autonomous Driving, End-to-end System Design, Policy Learning, Simulation.

§
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Recent Trends in Autonomous Vehicle
Security Research



Possible attack spots on AV systems

Sensors

Al

Motion Planning
Software / Firmware

V2X communication

ECU / CAN Bus
21



SoK: On the Semantic Al Security in Autonomous Driving

Junjie Shen, Ningfei Wang, Ziwen Wan, Yunpeng Luo, Takami Sato, Zhisheng Hu', Xinyang Zhang',
Shengjian Guo', Zhenyu Zhong', Kang Lif, Ziming Zhao!, Chunming Qiao?, Qi Alfred Chen

{junjies1, ningfei.wang, ziwenw8, yunpel3, takamis, alfchen}@uci.edu,
T{zhishenghu, xinyangzhang, sjguo, edwardzhong, kangli01} @baidu.com, *{zimingzh, giao} @buffalo.edu
UC Irvine, 'Baidu Security, fUniversity at Buffalo
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Figure 2. Overview of AD system designs and the roles of AD Al components.

https://arxiv.org/abs/2203.05314 22
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Camera perception

LiDAR perception

localization

End-to-end driving
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Camera perception

LiDAR perception

localization

End-to-end driving
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Three attack vectors against Al

B Adversarial Example (AE)

Generate input data (finy noise injection) that induces misclassification of machine
learning algorithms

B Model Extraction

Estimating (private) machine learning models from input and output results

B Model Inversion

Estimated original data used to train (private) machine learning algorithms
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Adversarial Example (AE)

Human perception

ML algorithm

Original Image

F(x):

Detect as “panda”
With 57.7% of
confidence level

+.007 x

Adversarial Noise

gl i

sign(VeJ (0, 2,y))

Generated AE

x +
esign(VaJ(0, 2, y))

N

F(x+noise):
Detect as “gibbon”

With 99.3% of
confidence level

Goodfellow et al., Explaining and Harnessing Adversarial Examples https://arxiv.org/abs/1412.6572



https://arxiv.org/abs/1412.6572

Idea of generating AE (FGSM)

Loss function J(w, X, Y) A Fast Gradient Sigh Method:
Add a perturbation in the direction that maximizes
the loss function under the max-norm constraints

Gradient
d d
VX](W,X, Y) = (é,%)
AE

X + e sign(Vy))

Szegedy, C, Zaremba, W., Sutskever, |, Bruna, J., Erhan, D., Goodfellow, |, and Fergus, R., “Intriguing properties of neural networks,” arXiv:1312.6199v4 [cs.CV], Feb 2014.



Challenges for the “Physical” Adversarial Examples

B Needs to add the adversarial perturbation as an analog signal

It should be robust against various noises / environmental factors

B |t should be "realizable” e.g., printable or projectable

B In many cases, “adversarial patch” works well
= Auniversal pattern that satisties the above conditions.
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An example of adversarial patch
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Adversarial road signs

Model Physical Dynamics by Sampling

Distance/Angle

Subtle Poster

Subtle Poster
Right Turn

Camouflage
Graffiti

C

At C flage Art

(LISA-CNN)  (GTSRB-CNN)

OO0
8 8 8 Output SJ:E'.D
Jo(z) 45
1 Target

from Distribution
.k '
|

Input

Stationary + Drive-By Testing

Perturbed Stop Sign Under
Varying Distances/Angles

107 0°

107 30°

40" 0°

[P

-

o

ae0o
Eraan

Targeted-Attack Success
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80%

Eykholt, Evtimov, Fernandes, Li, Rahmati, Xiao, Prakash, Kohno, and Song,
“Robust Physical- World Attacks on Deep Learning Models,” arXiv:1707.08945v5 [cs.(R], April 2018, pp. 1-11.



Recent Studies from Our Team

B Attacks against Al

= Dirty Road Patch Attack: Sato (USENIX SEC 22)
m |Infrared Laser Reflection Attack: Sato, Sugawara (NDSS 24)
m Retroreflector Attack: Tsuruoka, Sato, Mori (WIP)

B Attacks against sensors

= Lidar physical removal attack: Sugawara (USENIX SEC 23)
m Lidar practical removal attack: Sato, Yoshioka (NDSS 24)
m  Adversarial fog Attack: Tanaka , Mori (WIP)
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Al (1): Dirty Road Patch (DRP)
[Sato et al., Usenix Security ‘21]



Key idea

DRP attack pretends to be benign road patch but

the surface patterns are designed for adversarial attack
o Attacker can print malicious perturbation on patch and quickly deploy it

v

. o o | 4 : ': 3 N : : ‘*,I::'.'_; '; '
Brightness limits TR e
DR Perfurbofion | (LR b

Grayscale
perturbation

area
restriction

Preserving original lane line
information

http: //www.americanroadpatch.com/
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Attack demo 1: Miniature-scale physical-world setup
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Attack Demo 2

Software-in-the-Loop Simulation with LGSVL

Target ALC: OpenPilot v0.6.6
Scenario: Local Road at 45 mph (72 km/h)




Attack demo 3: Safety impact on real vehicle

e We inject attack trace into real-world driving
to see if other driving assistance features (e.g., AEB) can prevent crash

Lane detection
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Vehicle state changes

Replace model output with the one
obtained in the simulator

* We obey California’s road of condggt



Target of our study: OpenPilot

o Open-sourced production ACC with representative design: DNN-based camera lane
detection
o (lose performance to Tesla AutoPilot and GM Super Cruise™

https://lyoutu.be/3Y67XKPmtY8 https://youtu.be/YJzvrDBQWOE https://youtu.be/4Qk2Kv8eJ8w



Pre-collision alert starts 0.74 sec before the crash |
*Alert Only.* Pre-collision braking is enabled but not applied.
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Al (2) Infrared Laser Reflection Attack
[Sato, Sugawara et al., NDSS 24]



Limitations of Existing Attacks: Visibility for Human

— | =
[Eykholt et al., 2018] [Chenetal., 2019] [Zhao et al., 2019] [Jia et al., 2022]

Existing attacks against vision-based traffic sign recognition are generally
visible to human eyes
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Our Attack: Infrared Laser Reflection (ILR) Attack

To human eye (normal camera)

= \

|dea: Project an IR laser onto traffic signs.

o The IR laser's path is completely invisible to the human eye.

e It can disturb a large area on the traffic sign without compromising stealth.

*  However, the trace may appear as a simple shape with a uniform purplish hue.




Trace Modeling and Optimization

Technical Challenges

1. Accurate IR laser reflection modeling
2. FEffective optimization of attack parameters

1. Image Difference-based IR Trace Modeling 2. Optimization Trace Position (x,, y;)

F ILR Attack
Dl:’ference . ‘; _.‘ % Black-box (Xps V)
mage e
S optimization

ILR Attack Processing .
— 46




ILR Attack Demonstration

Camera with IR filter (Human Eye) Camera without IR filter (AV)




Al (3) Retroreflection Attack
[Tsuruoka, Sato, Mori et al., WIP]



Retroreflector

Invisible in day time

Visible in night (with light)
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Adversarial Attack only effective in night

Without attack: detected as a stop sign With the attack: nothing detected

step.sign : 0.94

-




Simulation evaluation




Future Research Directions



(1) End-to-End Perspective

B An End-to-End Perspective is essential!

= Endto-End vs. Modular-based
= Beyond the elementfocused reductionism

B To succeed the aftack against a complex system like AV, it is necessary to

optimize the attack for the whole system, not for a subsystem.

B Full self-driving simulation and experiments with real vehicles are essential. 53



(2) Realistic Test/Benchmark Environment

B (atalog of Attack Scenarios
m  Areference list of potential adversarial strategies targeting AV sensors and Al, crucial for
structured security assessments.
B Benchmark Development
= Quantitative standards to measure AV defenses against the cataloged attacks, identifying
weaknesses and guiding enhancements.
B Testing Protocols for Realism

= Procedures that apply these benchmarks in simulations and real-world tests to ensure AV
systems can withstand practical security challenges.
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(3) Integrated Software-Defined Defense

GPS

[ Measurement ] ~ [Perception] N\ [ )
LiDAR sensing : o [ Motion planning]
Object detection with Yt it
LiDAR/Camera <cenario
L semors ) )
A I w I a )
[Percention] [ Status monifor] Vehicle control
erception Detect adversarial ~ |¢—— s g
Self-positioning with .
LiDAR > ———>! Control command
( (Conrol] - [ VehidelF
3D map loading Thwart adversarial (CAN)
L inputs ) ) 55




Introduction to our project



JST CREST

®  Funding agency: JST (Japan Science and Technology Agency) (050 H¥iitmmins

W Program: CREST
3

4
1

CREST is a funding program for team-oriented research with the aim of
achieving the strategic goals set forth by the government.

The objective is to create revolutionary technological seeds

for science and technology innovation.
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Our Project

B Research area: Creation of System Software for Society 5.0 by Integrating
Fundamental Theories and System Platform Technologies

B Project theme: Security Evaluation and Countermeasure Infrastructure for
Al-Driven Cyber-Physical System (AI-CPS)

B Period: Oct 2023 - Mar 2029 (5.5 years)
Budget: 300,000,000 JPY (1,875,000 EUR)
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The goal and work packages (WP)

Goal: Realization of Security by Design to preemptively prevent the threat of

adversarial inputs against AI-CPS (Achieving robustness against adversarial inputs)

WP1: Assessment and countermeasure technology for adversarial inputs against elemental technologies
WP2: Assessment and countermeasure technology for adversarial inputs across the enfire system

WP3: Building software that implements security countermeasure technologies
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End-to-End Perspective

Sensor

Fusion

Perception
(Al

Motion
Planning

Vehicle
Control

B A system where multiple components work in coordination.

= Adversarial inputs to cameras and sensors ripple through fo subsequent processes: recognition, path

planning, and control.

m  How they ripple through is not self-evident.

B As vehicles moves, the surrounding environment also changes.

m  The feedback loop of the enfire system is essential.
m  |tis necessary to deal with models that dynamically change input data and conditions to sensors

and Al (such as angle, distance, illumination, and speed).
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