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Why is autonomous driving security is
an interesting research target?
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Agenda

n Background: How Autonomous Vehicle Works

n Recent Trends in Autonomous Vehicle Security Research

n Future Research Directions

n Introduction to Our Research Project (JST CREST)
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Background: 
How an autonomous vehicle (AV) works
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Primary components of an autoware-installed EV
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How LiDAR sensor works
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PIXKIT + Autoware Universe/Core



A brief overview of the AV system

Perception Vehicle
Control

Motion
Planning

Sensors Actuators

GM Cruise’s autonomous driving car
https://www.youtube.com/watch?v=IA5NVJf3K4Q



Integration of various technologies
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AI components used in AV systems

1. Perception and Object Recognition

2. Environmental Understanding and Decision Making

3. Predictive Analysis and Behavior Prediction

4. End-to-end autonomous driving
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1. Perception and Object Recognition
n Traffic Sign Recognition: 

n Pedestrian and Vehicle Detection: 

n Lane Detection: 

n Traffic Light Recognition: 13



2. Environmental Understanding and Decision Making

n Obstacle and Hazard Detection

n Scene Segmentation

n Path Planning
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3. Predictive Analysis and Behavior Prediction

n Other Vehicle Behavior Prediction: 

n Pedestrian Behavior Prediction: 
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4. End-to-End autonomous driving
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18https://arxiv.org/abs/2306.16927
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https://github.com/OpenDriveLab/End-to-end-Autonomous-Driving



Recent Trends in Autonomous Vehicle 
Security Research
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Possible attack spots on AV systems

n Sensors

n AI

n Motion Planning

n Software / Firmware

n V2X communication

n ECU / CAN Bus
21



SoK paper: 

22https://arxiv.org/abs/2203.05314
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localization

Camera perception

LiDAR perception

End-to-end driving
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Object tracking
Lane detection

Object detection

Semantic segmentation

Traffic light classification

Object detection

localization

Camera perception

LiDAR perception

End-to-end driving



Three attack vectors against AI

n Adversarial Example (AE)
n Generate input data (tiny noise injection) that induces misclassification of machine 

learning algorithms

n Model Extraction
n Estimating (private) machine learning models from input and output results

n Model Inversion
n Estimated original data used to train (private) machine learning algorithms 26



Adversarial Example (AE)

Adversarial Noise Generated AEOriginal Image

F(x): 
Detect as “panda”
With 57.7% of 
confidence level

F(x+noise):
Detect as “gibbon”
With 99.3% of 
confidence level

Human perception

ML algorithm

Goodfellow et al., Explaining and Harnessing Adversarial Examples https://arxiv.org/abs/1412.6572

https://arxiv.org/abs/1412.6572


Idea of generating AE (FGSM)

!!
!"

! ", $, %

$

$ + ' sign ∇!!

! !

Loss function

Gradient

∇!! ", $, % = .!
./"

, .!./#

Fast Gradient Sigh Method:
Add a perturbation in the direction that maximizes 
the loss function under the max-norm constraints

AE
Input

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R., “Intriguing properties of neural networks,” arXiv:1312.6199v4 [cs.CV], Feb 2014.



Challenges for the “Physical” Adversarial Examples

n Needs to add the adversarial perturbation as an analog signal 

n It should be robust against various noises / environmental factors

n It should be ”realizable” e.g., printable or projectable

n In many cases, “adversarial patch” works well
n A universal pattern that satisfies the above conditions.  
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An example of adversarial patch
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Adversarial road signs

Eykholt, Evtimov, Fernandes, Li, Rahmati, Xiao, Prakash, Kohno, and Song,
“Robust Physical- World Attacks on Deep Learning Models,”  arXiv:1707.08945v5 [cs.CR], April 2018, pp. 1–11. 



Recent Studies from Our Team

n Attacks against AI
n Dirty Road Patch Attack: Sato (USENIX SEC 22)
n Infrared Laser Reflection Attack: Sato, Sugawara (NDSS 24)
n Retroreflector Attack: Tsuruoka, Sato, Mori (WIP)

n Attacks against sensors 
n Lidar physical removal attack: Sugawara (USENIX SEC 23)
n Lidar practical removal attack: Sato, Yoshioka (NDSS 24) 
n Adversarial fog Attack: Tanaka , Mori (WIP)

33



AI (1): Dirty Road Patch (DRP)
[Sato et al., Usenix Security ‘21]



Key idea
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● DRP attack pretends to be benign road patch but
the surface patterns are designed for adversarial attack
● Attacker can print malicious perturbation on patch and quickly deploy it

http://www.americanroadpatch.com/

Grayscale 
perturbation

Preserving original lane line 
information

Brightness limits

Perturbation 
area 

restriction

http://www.americanroadpatch.com/


Attack demo 1: Miniature-scale physical-world setup
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Attack Demo 2: Software-in-the-Loop Simulation



Attack demo 3: Safety impact on real vehicle
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Replace model output with the one 
obtained in the simulator

● We inject attack trace into real-world driving
to see if other driving assistance features (e.g., AEB) can prevent crash

ROI
Lateral
control

Vehicle 
actuation

Steering 
angle 

decision
PID

MPC…

Lane detection

Camera
frame

Lane 
lines

DNN

Vehicle state changes

* We obey California’s road of conduct



Target of our study: OpenPilot
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https://youtu.be/3Y67XKPmtY8 https://youtu.be/YJzvrDBQwOE https://youtu.be/4Qk2Kv8eJ8w 

*https://www.caranddriver.com/features/a30341053/self-driving-technology-comparison/

● Open-sourced production ACC with representative design: DNN-based camera lane 
detection

● Close performance to Tesla AutoPilot and GM Super Cruise*
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AI (2) Infrared Laser Reflection Attack
[Sato, Sugawara et al., NDSS 24]



Limitations of Existing Attacks: Visibility for Human
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[Eykholt et al., 2018] [Chen et al., 2019] [Jia et al., 2022][Zhao et al., 2019]

Existing attacks against vision-based traffic sign recognition are generally 
visible to human eyes



Our Attack: Infrared Laser Reflection (ILR) Attack
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To human eye (normal camera) A camera used in autonomous driving (AD)

Idea: Project an IR laser onto traffic signs.
• The IR laser's path is completely invisible to the human eye.
• It can disturb a large area on the traffic sign without compromising stealth.
• However, the trace may appear as a simple shape with a uniform purplish hue.



Trace Modeling and Optimization
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Technical Challenges
1. Accurate IR laser reflection modeling 
2. Effective optimization of attack parameters

1. Image Difference-based IR Trace Modeling 

Difference 
Image 

Processing

2.    Optimization Trace Position (xb, yb)

Black-box 
optimization

Stop

(xb, yb)

Bicycle Crossing
No AttackILR Attack



ILR Attack Demonstration
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AI (3) Retroreflection Attack
[Tsuruoka, Sato, Mori et al., WIP]



Retroreflector
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Invisible in day time Visible in night (with light)



Adversarial Attack only effective in night
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Without attack: detected as a stop sign With the attack: nothing detected



Simulation evaluation
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Future Research Directions
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(1) End-to-End Perspective

n An End-to-End Perspective is essential!
n End-to-End vs. Modular-based
n Beyond the element-focused reductionism

n To succeed the attack against a complex system like AV, it is necessary to 

optimize the attack for the whole system, not for a subsystem. 

n Full self-driving simulation and experiments with real vehicles are essential. 53



(2) Realistic Test/Benchmark Environment

n Catalog of Attack Scenarios
n A reference list of potential adversarial strategies targeting AV sensors and AI, crucial for 

structured security assessments.

n Benchmark Development
n Quantitative standards to measure AV defenses against the cataloged attacks, identifying 

weaknesses and guiding enhancements.

n Testing Protocols for Realism
n Procedures that apply these benchmarks in simulations and real-world tests to ensure AV 

systems can withstand practical security challenges.
54



(3) Integrated Software-Defined Defense

5555

【Measurement】
LiDAR sensing

GPS

3D map loading

【Perception】
Object detection with 

LiDAR/Camera 
sensors

【Perception】
Self-positioning with 

LiDAR 

【Motion planning】
Path planning for each 

scenario

Vehicle control

Control command

Vehicle IF
(CAN)

【Status monitor】
Detect adversarial 

inputs

【Control】
Thwart adversarial 

inputs



Introduction to our project
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JST CREST

n Funding agency: JST (Japan Science and Technology Agency)

n Program: CREST 
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Our Project 

n Research area: Creation of System Software for Society 5.0 by Integrating 

Fundamental Theories and System Platform Technologies

n Project theme: Security Evaluation and Countermeasure Infrastructure for 

AI-Driven Cyber-Physical System (AI-CPS)

n Period: Oct 2023 – Mar 2029 (5.5 years)

n Budget: 300,000,000 JPY  (1,875,000 EUR)
58



The goal and work packages (WP)

Goal: Realization of Security by Design to preemptively prevent the threat of 

adversarial inputs against AI-CPS (Achieving robustness against adversarial inputs)
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WP1: Assessment and countermeasure technology for adversarial inputs against elemental technologies

WP2: Assessment and countermeasure technology for adversarial inputs across the entire system

WP3: Building software that implements security countermeasure technologies



End-to-End Perspective

n A system where multiple components work in coordination.
n Adversarial inputs to cameras and sensors ripple through to subsequent processes: recognition, path 

planning, and control.
n How they ripple through is not self-evident.

n As vehicles moves, the surrounding environment also changes.
n The feedback loop of the entire system is essential.
n It is necessary to deal with models that dynamically change input data and conditions to sensors 

and AI (such as angle, distance, illumination, and speed). 60

Sensor Fusion
Perception

(AI)
Motion

Planning
Vehicle 
Control
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Resources

System security

Sensor integration

Physical measurement

Machine learning

Vehicle control

Graduate students

Partners


