Advancing Personalized Federated Learning: Group Privacy, Fairness, and Beyond

Filippo Galli, **Gangsoo Zeong**, Sayan Biswas, Catuscia Palamidessi, Tommaso Cucinotta

École Polytechnique & Inria

November 29, 2023

Overview

- Introduce two problems in federated learning
 - Non-IID and privacy
- Personalized federated learning with *d*-privacy
- Fairness aspect of personalized federated learning

Federated learning

- Federated learning (FL) trains a machine learning model via multiple independent participants, each using its own dataset
- Training local models on local data samples and exchanging parameters to generate a global model shared by all nodes

But still, problem is not solved

"Deep leakage from Gradients", NeurIPS 2019

Differential privacy

- "Deep Learning with Differential Privacy",
- Adding noise to model parameter(or

Personalized federated learning

- Statistical challenges of federated learning
 - local data is non-IID
- Solution: Personalized federated learning

Problems

• Privacy

- Avoiding the release of user's raw data is not enough
- How can we enforce privacy?

- Personalization
 - How can we provide personalization?
 - Clients have different data distribution need different models. How do we adapt?

Our suggestion

 We propose an algorithm for personalized federated learning with local guarantees to provide privacy

8

 Our algorithm is motivated by the Iterative Federated Clustering Algorithm (IFCA) and builds on top of it to provide formal privacy guarantees

Overview of our algorithm

• IFCA with *d*-privacy

2. Clients calculate the loss for all

d-privacy(Metric privacy)

- Geo-Indistinguishability
 - A mechanism K satisfies *ε*-geo-indistinguishability iff for all x, x':

 $d_P(K(x), K(x')) \le \epsilon d(x, x')$

There is an advantage of not having to do clipping

Algorithm for private and personalized federated learning

Algorithm 1 An algorithm for personalized federated learning with formal privacy guarantees in local neighborhoods.

Require: number of clusters k; initial hypotheses $\theta_i^{(0)}, j \in [k]$; number of rounds T; number of users per round U; number of local epochs E; local step size s; user batch size B_s ; noise multiplier ν ; local dataset Z_c held by user c.

Server-side loop 1: for $t = \{0, 1, \dots, T-1\}$ do $C^{(t)} \leftarrow \mathsf{SampleUserSubset}(U)$ 2: BroadcastParameterVectors ($C^{(t)}$; $\theta_{j}^{(t)}, j \in [k]$) 3: for $c \in C^{(t)}$ do in parallel ▷ Client-side loop 4: $\overline{j} = \arg\min_{i \in [k]} F_c(\theta_i^{(t)}; Z_c)$ 5: $\theta_{\overline{z}}^{(t)} \leftarrow \text{LocalUpdate}(\theta_{\overline{z}}^{(t)}; s; E; Z_c)$ 6: $\hat{\theta}_{\overline{j},c}^{(t)} \leftarrow \mathsf{SanitizeUpdate}(\theta_{\overline{j},c}^{(t)}; \nu)$ 7: end for 8: $\{S_1, \dots, S_k\} = k\text{-means}(\hat{\theta}_{\overline{j},c}^{(t)}, c \in C^{(t)}; \theta_j^{(t)}, j \in [k])$ 9: $\theta_j^{(t+1)} \leftarrow \frac{1}{|S_j|} \sum_{c \in S_j} \hat{\theta}_{\overline{j},c}^{(t)}, \quad \forall j \in [k]$ 10: 11: end for

Algorithm 2 SanitizeUpdate obfuscates a vector $\theta \in \mathbb{R}^n$, with a Laplacian noise tuned on the radius of a certain neighborhood and centered around 0.

1: function SANITIZEUPDATE($\theta_{\overline{i}}^{(t)}; \theta_{\overline{i},c}^{(t)}; \nu$) $\delta_c^{(t)} = \theta_{\overline{j},c}^{(t)} - \theta_{\overline{j}}^{(t)}$ 2: 3: Sample $\rho \sim \mathcal{L}_{0,\varepsilon}(x)$ 4: $\hat{\theta}_{\overline{j},c}^{(t)} = \theta_{\overline{j},c}^{(t)} + \rho$ 5: return θ 7: end function

- Synthetic data
 - One hypothesis with non-sanitization
 - Failed to converge to the optimal parameter $\theta_1^{\ *}$ and $\theta_2^{\ *}$
 - Two hypothesis with non-sanitization
 - Converge to the optimal parameter $\theta_1{}^*$ and $\theta_2{}^*$
 - Two hypothesis with sanitization

Noise multiplier	Average Accuracy
0	0.801
0.001	0.813
0.01	0.805
0.1	0.808
1	0.814
3	0.825
5	0.787
10	0.687
15	0.622

Fairness

- In addition to addressing privacy concerns, we also investigate the impact of our method on fairness in federated learning
- Several researches observed that systems aiming to protect privacy while ensuring fairness often involve a trade-off between the two
 - Privacy protection techniques based on differential privacy tend to minimize the impact of outliers or minorities within the overall dataset
- We presents experimental results demonstrating that the use of personalized FL improves fairness

Noise multiplier

- Personalization of models enhances the group fairness under all the metrics
- A major reason behind this improvement of fairness is that the personalized model training optimizes for each group's data distribution

Conclusion

- We employ d-privacy techniques for sanitization on personalized federated learning
- Experimental results demonstrate the effectiveness of the proposed mechanism against the DLG attack
- We also evaluate the fairness of machine learning models trained using personalized federated learning and d-privacy

Q&A

Thanks you for listening!