Security Analysis of Rocca-S

Patrick Derbez¹ Pierre-Alain Fouque¹ André Schrottenloher²

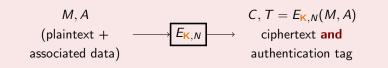
¹Univ Rennes ²Inria Rennes

Context	Design	Analysis
•	00000	0000000000
Context		

- **Rocca** is an authenticated encryption scheme for beyond-5G applications, designed in 2021 [SLNKI21]
- Rocca-S is an updated version of Rocca [ABC+23]
- Rocca-S has been submitted for standardization at the IETF

In Feb. 2023 our team did a third-party security analysis of Rocca-S for KDDI research.

Bakamoto, Liu, Nakano, Kiyomoto, Isobe, "Rocca: An Efficient AES-based Encryption Scheme for Beyond 5G", IACR Trans. Symmetric Cryptol. 2021

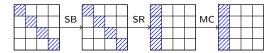

B Nakano, Fukushima, Isobe, "Encryption algorithm Rocca-S", IETF draft standard (2023)

Anand, Banik, Caforio, Fukushima, Isobe, Kiyomoto, Liu, Nakano, Sakamoto, Takeuchi, "An Ultra-High Throughput AES-based Authenticated Encryption Scheme for 6G: Design and Implementation", ESORICS 2023

Context	Design	Analysis
0	00000	0000000000

Analysis 0000000000

Rocca: nonce-based AEAD

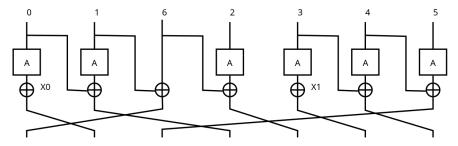


- *M* is encrypted (\rightarrow ciphertext *C*) and authenticated (\rightarrow tag *T*)
- A is authenticated but not encrypted
- N shall not be reused

Context	Design	Analysis
0	00000	0000000000
Internal state		

Similarly to AEGIS, Rocca-S is AES-based and uses a large internal state.

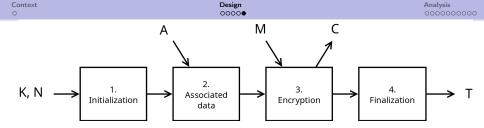
- AES state: 4×4 matrix of bytes
- AES round: $A = MC \circ SR \circ SB$


• Rocca-S state: $S = S[0] ||S[1]|| \cdots ||S[6]|$ (6 × 128 = 896 bits)

Analysis 0000000000

Round function

Context


The round function *R* absorbs a 256-bit input $X_0 || X_1$.

Design

00000

Parameters: $\mathbf{K} = \mathbf{K}_0 \| \mathbf{K}_1$ (256-bit), 128-bit *N*, 256-bit *T*

- Initialization: load K, N, do 16 empty rounds, XOR keys to the state
- **AD**: process AD blocks by pairs: $S \leftarrow R(S, A_0, A_1)$
- Encryption: process message blocks by pairs M_0, M_1 :

$$\begin{cases} C_0 = A(S[3] \oplus S[5]) \oplus S[0] \oplus M_0\\ C_1 = A(S[4] \oplus S[6]) \oplus S[2] \oplus M_1\\ S \leftarrow R(S, M_0, M_1) \end{cases}$$

• Finalization: apply 16 rounds $S \leftarrow R(S, |AD|, |M|)$, output:

 $T = (S[0] \oplus S[1] \oplus S[2] \oplus S[3]) \| (S[4] \oplus S[5] \oplus S[6])$

Context	Design	Analysis
0	00000	•000000000

Analysis

Rocca-S security

Chosen-plaintext queries:

Choose A, M, N, get C, T.

Verification queries:

Choose C, T, get "true" (and plaintext) if T is a valid tag.

Security goals:

- Key-recovery (adversary cannot find K): 256 bits
- Forgery (adversary cannot output new valid C, T): 192 bits
- Quantum: 128 bits for both

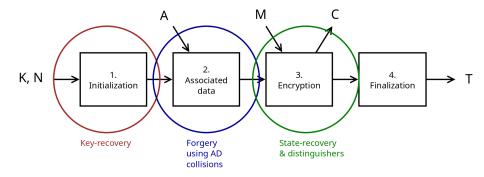
Rocca-S limitations

1. Nonce-reuse

Rocca-S does not claim security if a nonce N is reused (like AEGIS)

2. Superposition queries

Rocca-S is insecure against a quantum attacker doing superposition queries (Q2) (like similar schemes) [BS23]


Bonnetain, S., "Single-query quantum hidden shift attacks", ePrint 2023/1306

Context

Design

Analysis

Overview of possible attacks

Security analysis 1: key-recovery

We tried the following:

Context

- Guess-and-determine / MITM attacks
- Differential cryptanalysis of the initialization phase
- Algebraic / integral attacks on initialization

Case study: (truncated) differential analysis

- Introduce a difference in nonce (and key for RK setting)
- Propagate the difference through the initialization
- Observe an output difference

Estimate the probability of the transition by counting the active S-Boxes.

Analysis

Security analysis 1: key-recovery (ctd.)

Context

The propagation rules are encoded using MILP and the minimal number of active S-Boxes is determined.

Nb rounds	2	3	4	5	6	7	8
# S-Boxes (SK)	7	22	40	68			
# S-Boxes (RK)			13	30	36	53	

- The best probability of transition through an S-Box is 2^{-6}
- \implies with 43 active S-Boxes, the probability is $\leq 2^{-256}$

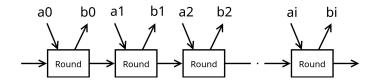
Security analysis 2: state-recovery

Principle: find the internal state for a given K, N, A, M

• May allow to encrypt new messages \implies break authenticity

This problem can be reduced to solving a system of equations: C = f(S, M) (M, C known).

- Guess-and-determine / MITM inapplicable
- Algebraic attacks inapplicable


Context

Design 00000 Analysis 000000000000

Security analysis 3: distinguishers

Linear distinguishers: choose linear masks for inputs a_i and outputs b_i such that: $\bigoplus_i (a_i \cdot M_i \oplus b_i \cdot C_i)$ is biased.

⇒ large-data keystream distinguisher

- We adapted a MILP model from [ENP19].
- Similarly to truncated differentials, one only counts the active S-Boxes
- We studied at most 7 rounds. Best results obtained for 4 rounds \implies 53 active S-Boxes \implies complexity above 2²⁵⁶

Eichlseder, Nageler, Primas, "Analyzing the linear keystream biases in AEGIS". IACR Trans. Symmetric Cryptol., 2019

Security analysis 4: forgery using AD

Principle: introduce differences in AD which cancel out completely

- With some probability, creates a message *N*, *A'*, *M* with same ciphertext & tag (forgery)
- We used the same MILP model for propagation
- The minimal number of active S-Boxes is 46: probability $2^{-276} < 2^{-256}$
- By instantiating the path by hand, we could obtain a small improvement (2^{-274})

Conclusion

- Confirms the security claims of the designers
- Confirms the high levels of security offered by Rocca-S (192 & 256 bits) for forgery and key-recovery

Thank you!