

Link to video chat with Ana during the Poster Session: https://meet.jit.si/fens2020-1069

Individual functional atlasing for cognitive mapping of the human brain

Ana Luísa Pinho¹, IBC team¹, Bertrand Thirion¹

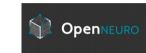
¹Université Paris-Saclay, Inria, CEA, Palaiseau, 91120, France

https://project.inria.fr/IBC/

Poster #1069

Goal

Develop an approach in individual functional atlasing


Link functional segregation of brain regions to mental functions

Background and motivations

- Functional atlasing of cognitive systems requires pooling data from multiple tasks
- Data pooling across studies typically impacted by inter-subject and inter-site variability
- Individual mapping free from data-pooling variability, but not yet integrated into brain function templates

Source Data: IBC first-release

- Features of the IBC dataset:
 - → High-resolution fMRI data (1.5mm)
 - Multi-task fMRI dataset of a fixed cohort and environment
- First release of the IBC dataset:
 - → 12 tasks covering many psychological domains
 - → 13 subjects

ds002685

Functional data for atlasing

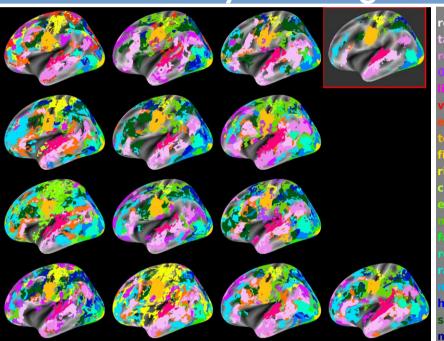
• IBC data-derivatives: individual, contrast z-maps obtained from a mass-univariate GLM analysis of task-fMRI data

Sparse dictionary learning to extract individual topographies underlying common representations of the contrasts

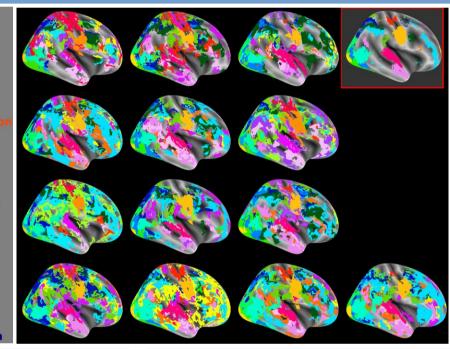
Encoding models for atlasing

Subject-specific ROI analysis w/ dual regression, using language-specific IBC contrasts, to draw the cognitive profile of the language network

Decoding model for validation


- Leave-p-out CV (p=3 subjects),
- Ridge-Regression model to reconstruct
- contrasts of 1 task from contrasts
- of the other 11 tasks

Audio summary of the poster


Correlations of the dictionary components on split-half data

https://project.inria.fr/IBC/files/2020/07/fens2020 analuisa.mp3

Dictionary-learning decomposition of 51 contrasts into 20 individual topographies

Inter-subject Intra-subject correlation Variability of topographies linked to

individual differences

Topographies consistently mapped across subjects

Reconstruction of functional contrasts

Most of brain regions covered by the predicted functional signatures

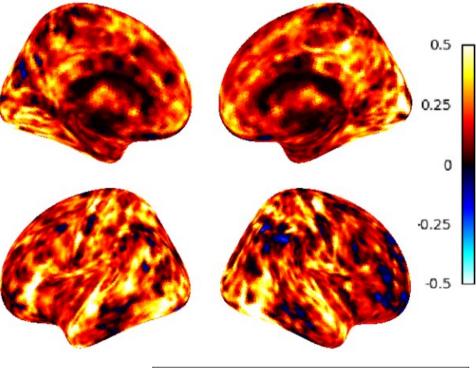
Proportion of

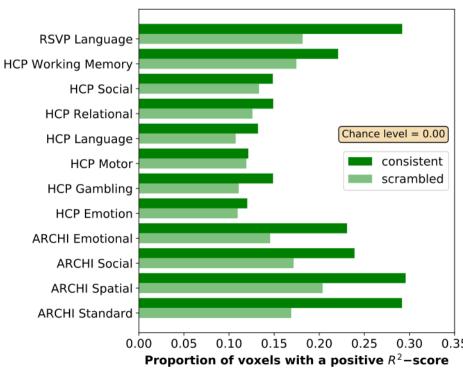
voxels with

lower when

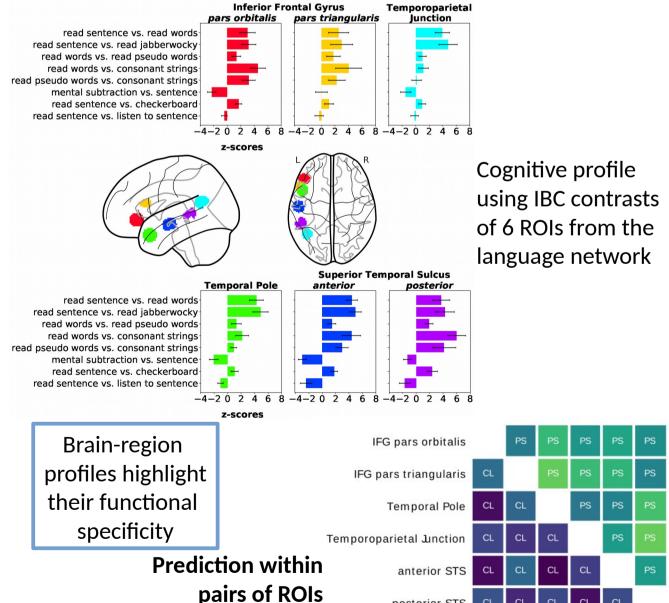
subjects are

Topographies


subject-specific


driven by

variability


permuted

 $R^2 > 0$

Functional mapping of the language network

posterior STS

Linear SVC (upper triangle)

Dummy Clf. (lower triangle)

13 groups = 13 participants

LOGOCV scheme

PS: Prediction Score

CL: Chance Level