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We shall mostly study nonnegative 

random variables 𝑺 satisfying:  



:  



:  



:  

Invariably, 

𝑺 nonnegative



Rough Plan of Lectures

1. Safe Testing (Statistics/AB Testing)

2. Safe Testing (Information Theory!)

3. Safe and Generalized Bayes

4. Fast Rate Conditions in Statistical (stochastic) and 

Online (nonstochastic) Learning

5. Safety and Luckiness – A Philosophy of Learning 

and Inference



First Lectures: Statistics, Testing 

We will call a nonnegative random variable 𝑆 satisfying

an 𝑺-value. It is a better-behaved alternative to a 𝑝-

value (large 𝑆 roughly corresponding to small 𝑝) 



From Stats to Information Theory

• Let 𝐻0 be a set of prob distrs, and let 𝑄 be a prob 

distr

• The reverse I-projection of 𝑸 onto 𝑯𝟎 is the prob. 

measure  𝑃0 achieving

• Theorem (Li, Barron 1999):  𝑃0 generally exists, is 

unique, has density*, and satisfies, for all 𝑃0 ∈ 𝐻0,  



Generalized and Safe Bayes

• Let { 𝑝𝑓 ∶ 𝑓 ∈ F } be a set of probability densities and 

let 𝜋0 be a prior density on F

• The standard Bayesian posterior 

can behave very badly under misspecification, i.e.   

if the model is wrong but useful

• However, if we consider the tempered posterior 

for 𝜂 <  𝜂, then everything works just fine again.  



Generalized and Safe Bayes

• If we consider the tempered posterior 

for 𝜂 <  𝜂, then everything works just fine, even 

under misspecification

Here  𝜂 is the critical  𝜂 ,defined as the largest  𝜂 > 0
satisfying, for all 𝑓 ∈ F 

with  𝑓 achieving



Fast Rate Conditions in Statistical 

and Online Learning

• ℱ set of predictors, ℓ𝑓: 𝒵 → ℝ loss function for 𝑓

. 

• We say that (𝑃, ℱ, ℓ𝑓) satisfies the strong central 

condition if for some 𝜂 > 0, for all 𝑓 ∈ ℱ, 

• ...allows fast learning (𝑂
1

𝑛
convergence rates)

• Generalizes existing conditions such as Bernstein’s, 

exp-concavity, mixability 



Rough Plan of Lectures

1. Safe Testing (Statistics/AB Testing)

2. Safe Testing (Information Theory!)

3. Safe and Generalized Bayes

4. Fast Rate Conditions in Statistical (stochastic) and 

Online (nonstochastic) Learning

5. Safety and Luckiness – A Philosophy of Learning 

and Inference



Part I: Safe Testing

• Classical Hypothesis Testing, 

A/B Testing

Partly based on joint work with 

Rianne de Heide,                 

Wouter Koolen, Allard 

Hendriksen



Slate Sep 10th 2016: yet another classic finding in 

psychology—that you can smile your way to 

happiness—just blew up…

Reproducibility Crisis 

Cover Story of 

Economist (2013), 

Wall Street Journal, 

Science (2012)



Reasons for Reproducibility Crisis

1. Publication Bias

2. Problems with Hypothesis Testing Methodology







Xkcd.org



Reasons for Reproducibility Crisis

1. Publication Bias

2. Problems with Hypothesis Testing Methodology



Reasons for Reproducibility Crisis

1. Publication Bias

2. Problems with...

p-values



80 years and still unresolved...

• Standard method for testing is still

p-value-based

null hypothesis significance testing
...an amalgam of Neyman-Pearson’s and Fisher’s 

1930s methods

• everybody in psychology and medical sciences 

(and even in A/B testing) does it...

• .... most statisticians agree it’s not o.k....

• ...but still can’t agree on what to do instead!



Null Hypothesis Testing

• Let 𝐻0 = 𝑃𝜃 𝜃 ∈ Θ0} represent the null hypothesis

• For simplicity, today we assume data 𝑋1, 𝑋2, … are 

i.i.d. under all 𝑃 ∈ 𝐻0 .

• Let 𝐻1 = 𝑃𝜃 𝜃 ∈ Θ1} represent alternative hypothesis

• Example: testing whether a coin is fair

Under 𝑃𝜃 , data are i.i.d. Bernoulli 𝜃

Θ0 =
1

2
, Θ1 = 0,1 ∖

1

2

Standard test would measure frequency of 1s



Null Hypothesis Testing

• Let 𝐻0 = 𝑃𝜃 𝜃 ∈ Θ0} represent the null hypothesis

• For simplicity, assume 𝑋1, 𝑋2, … are i.i.d. under all 

𝑃 ∈ 𝐻0 .

• Let 𝐻1 = 𝑃𝜃 𝜃 ∈ Θ1} represent alternative hypothesis

• Example: testing whether a coin is fair

Under 𝑃𝜃 , data are i.i.d. Bernoulli 𝜃

Θ0 =
1

2
, Θ1 = 0,1 ∖

1

2

Standard test would measure frequency of 1s

Simple 𝐻0



Null Hypothesis Testing

• Let 𝐻0 = 𝑃𝜃 𝜃 ∈ Θ0} represent the null hypothesis

• For simplicity, assume data 𝑋1, 𝑋2, … are i.i.d. 

under all 𝑃 ∈ 𝐻0 .

• Let 𝐻1 = 𝑃𝜃 𝜃 ∈ Θ1} represent alternative hypothesis

• Example: t-test (most used test world-wide)

𝐻0: 𝑋𝑖 ∼𝑖.𝑖.𝑑. 𝑁 0, 𝜎2 vs. 

𝐻1 : 𝑋𝑖 ∼𝑖.𝑖.𝑑. 𝑁 𝜇, 𝜎2 for some 𝜇 ≠ 0

𝜎2 unknown (‘nuisance’) parameter 

𝐻0 = 𝑃𝜎 𝜎 ∈ 0,∞ }

𝐻1 = 𝑃𝜎,𝜇 𝜎 ∈ 0, ∞ , 𝜇 ∈ ℝ ∖ 0 }



Null Hypothesis Testing

• Let 𝐻0 = 𝑃𝜃 𝜃 ∈ Θ0} represent the null hypothesis

• For simplicity, assume data 𝑋1, 𝑋2, … are i.i.d. 

under all 𝑃 ∈ 𝐻0 .

• Let 𝐻1 = 𝑃𝜃 𝜃 ∈ Θ1} represent alternative hypothesis

• Example: t-test (most used test world-wide)

𝐻0: 𝑋𝑖 ∼𝑖.𝑖.𝑑. 𝑁 0, 𝜎2 vs. 

𝐻1 : 𝑋𝑖 ∼𝑖.𝑖.𝑑. 𝑁 𝜇, 𝜎2 for some 𝜇 ≠ 0

𝜎2 unknown (‘nuisance’) parameter 

𝐻0 = 𝑃𝜎 𝜎 ∈ 0,∞ }

𝐻1 = 𝑃𝜎,𝜇 𝜎 ∈ 0, ∞ , 𝜇 ∈ ℝ ∖ 0 }

Composite 𝐻0



P-value Problem #1: 

Combining Independent Tests

• Suppose two different research groups tested the 

same new medication. How to combine their test 

results?

• You can’t multiply p-values!

• This will (wildly) overestimate evidence 

against the null hypothesis!

• Different valid p-value combination methods exist 

(Fisher’s; Stouffer’s) but give different results

• In “our” method evidences can be safely 

multiplied



• Suppose reseach group A tests medication, gets 

‘almost significant’ result.

• ...whence group B tries again on new data. How to 

combine their test results?

• Now Fisher’s and Stouffer’s method don’t work 

anymore – need complicated methods!

• In “our” method, despite dependence, evidences 

can still be safely multiplied

P-value Problem #2: 

Combining Dependent Tests



• Suppose reseach group A tests medication, gets 

‘almost significant’ result.

• Sometimes group A can’t resist to test a few 

more subjects themselves...

• In a recent survey 55% of psychologists admit to have 

succumbed to this practice [L. John et al., Psychological 

Science, 23(5), 2012]

• In “our” method, despite dependence, evidences 

can still be safely multiplied

P-value Problem #2b:

Extending Your Test



• Suppose reseach group A tests medication, gets 

‘almost significant’ result.

• Sometimes group A can’t resist to test a few 

more subjects themselves...

• A recent survey revealed that 55% of psychologists have 

succumbed to this practice 

• But isn’t this just cheating?

• Not clear: what if you submit a paper and the referee 

asks you to test a couple more subjects? Should you 

refuse because it invalidates your p-values!?

P-value Problem #2b:

Extending Your Test



Menu

1. A problem with/limitation of with p-values

2. S-Values and Safe Tests

• ...solves the stop/continue problem

• gambling interpretation 

3. Safe Testing, simple (singleton) 𝐻0

• relation to Bayes

• relation to MDL (data compression)

4. Safe Testing, Composite 𝐻0

• Magic: RIPr (Reverse Information Projection) 

• Examples: Safe t-Test, Safe Independence Test



S-Values: General Definition

• Let 𝐻0 = 𝑃𝜃 𝜃 ∈ Θ0} represent the null hypothesis

• Assume data 𝑋1, 𝑋2, … are i.i.d. under all 𝑃 ∈ 𝐻0 .

• Let 𝐻1 = 𝑃𝜃 𝜃 ∈ Θ1} represent alternative hypothesis

• An S-value for sample size 𝑛 is a function                

such that for all 𝑃0 ∈ 𝐻0 , we have 



S-Values: General Definition

• Let 𝐻0 = 𝑃𝜃 𝜃 ∈ Θ0} represent the null hypothesis

• Assume data 𝑋1, 𝑋2, … are i.i.d. under all 𝑃 ∈ 𝐻0 .

• Let 𝐻1 = 𝑃𝜃 𝜃 ∈ Θ1} represent alternative hypothesis

• An S-value for sample size 𝑛 is a function                

such that for all 𝑃0 ∈ 𝐻0 , we have 

I promised you!



General Definition

• An S-Value for stopping time 𝝉 is a fn 𝑆 with 

nonnegative range such that for all 𝑃0 ∈ 𝐻0 , we have 



First Interpretation: p-values

• Proposition: Let S be an S-value. Then 𝑆−1 𝑋𝜏 is a 

conservative p-value, i.e. p-value with wiggle room: 

• for all 𝑃 ∈ 𝐻0, all 0 ≤ 𝛼 ≤ 1 , 

• Proof: just Markov’s inequality! 



Safe Tests

• The Safe Test against 𝐻0 at level 𝛼 based on S-

value S is defined as the test which rejects 𝐻0 if 

S 𝑋𝜏 ≥
1

𝛼

• Since for all 𝑃 ∈ 𝐻0, all 0 ≤ 𝛼 ≤ 1 ,  

• ....the safe test which rejects 𝐻0 iff 𝑆(𝑋𝜏) ≥ 20 , i.e.  

𝑆−1 𝑋𝜏 ≤ 0.05 , has Type-I Error Bound of 0.05



Second Interpretation: Type-I Error

• The Safe Test against 𝐻0 at level 𝛼 based on S-

value S is defined as the test which rejects 𝐻0 if 

S 𝑋𝜏 ≥
1

𝛼

• Since for all 𝑃 ∈ 𝐻0, all 0 ≤ 𝛼 ≤ 1 ,  

• ....the safe test which rejects 𝐻0 iff 𝑆(𝑋𝜏) ≥ 20 , i.e.  

𝑆−1 𝑋𝜏 ≤ 0.05 , has Type-I Error Bound of 0.05



First Examples

1. 𝐻0 and 𝐻1 are point hypotheses: 

...is an S-value.



First Examples

1. 𝐻0 and 𝐻1 are point hypotheses: 

...is an S-value, since

...can be extended to general stopping times 

𝜏, densities, Radon-Nikodym derivatives etc...



First Examples: Safe ≠ Neyman

1. 𝐻0 and 𝐻1 are point hypotheses: 

...note: one might think ‘the Neyman-Pearson paradigm 

tells us to use a LR ratio test here, and this is an LR 

ratio test, so safe testing is NP testing”

...but the safe test based on 𝑆 is not a standard NP test.

Safe Test: reject if 𝑆 𝑋𝜏 ≥ 1/𝛼

NP: reject if 𝑆 𝑋𝜏 ≥ 1/𝐵 with 𝐵 s.t. 𝑃0 𝑆 𝑋𝜏 ≥ 𝐵 = 𝛼



First Examples: Safe ≠ Neyman

1. 𝐻0 and 𝐻1 are point hypotheses: 

...note: one might think ‘the Neyman-Pearson paradigm 

tells us to use a LR ratio test here, and this is an LR 

ratio test, so safe testing is NP testing”

...but the safe test based on 𝑆 is not a standard NP test.

Safe Test: reject if 𝑆 𝑋𝜏 ≥ 1/𝛼

NP: reject if 𝑆 𝑋𝜏 ≥ 1/𝐵 with 𝐵 s.t. 𝑃0 𝑆 𝑋𝜏 ≥ 𝐵 = 𝛼

more conservative



First Examples

2. Ryabko & Monarev’s (2005)           

Compression-based randomness test

R&M checked whether sequences generated by 

famous random number generators can be 

compressed by standard data compressors such as 

gzip and rar

Answer: yes! 200 bits compression for file of 10 

megabytes
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First Examples

2. Ryabko & Monarev’s (2005)           

Compression-based randomness test

R&M checked whether sequences generated by 

famous random number generators can be 

compressed by standard data compressors such as 

gzip and rar

Answer: yes! 200 bits compression for file of 10 

megabytes



Safe Tests are Safe 

under optional continuation

• Suppose we observe data (𝑋1, 𝑌1), 𝑋2, 𝑌2 , …

• 𝑌𝑖:  side information, independent of 𝑋𝑖 ’s 

• Let 𝑆1, 𝑆2, … , 𝑆𝑘 be an arbitrarily large collection of 

(potentially “identical”) S-values for sample sizes 

𝑛1, 𝑛2, … , 𝑛𝑘 respectively. Let 

• We first evaluate 𝑆1 on data (𝑋1, … , 𝑋𝑛1
).

• If outcome is in certain range (e.g. promising but not 

conclusive) and 𝑌𝑛1
has certain values (e.g. ‘boss has 

money to collect more data’) then.... 

we evaluate 𝑆2 on data 𝑋𝑛1+1, … , 𝑋𝑁2
,

otherwise we stop.



Safe Tests are Safe

• We first evaluate 𝑆1.

• If outcome is in certain range and 𝑌𝑛1
has certain 

values then we evaluate 𝑆2 on new batch of data; 

otherwise we stop.

• If  𝑆2 is in certain range and 𝑌𝑁2
has certain values 

then we perform 𝑆3 , else we stop.

• ...and so on

(note that sequentially computed S-values may but 

need not have identical definitions, but data must be 

different for each test!) 



Safe Tests are Safe

• We first evaluate 𝑆1.

• If outcome is in certain range and 𝑌𝑛1
has certain 

values then we evaluate 𝑆2 ; otherwise we stop.

• If outcome of 𝑆2 is in certain range and 𝑌𝑁2
has 

certain values then we compute 𝑆3 , else we stop.

• ...and so on

• ...when we finally stop, after say 𝐾 data batches, we 

report as final result the product 

• First Result, Informally: any 𝑺 composed of S-

values in this manner is itself an S-value, 

irrespective of the stop/continue rule used! 



Safe Tests are Safe

Formally (and a bit more generally): 

Let  

represent arbitrary stop/continue strategy, and: 

Define                          if 

Define                                           if 

else

else

and so on...

Define                                     if 



Safe Tests are Safe

Theorem:

Let  

represent an arbitrary stop/continue strategy, and 

let the combined 𝑆 be defined as before. Then :

If the 𝑺𝟏, 𝑺𝟐, … , 𝑺𝒌 are S-values, then so is 𝑺 !



Safe Tests are Safe

Theorem:

Let  

represent an arbitrary stop/continue strategy, and 

let the combined 𝑆 be defined as before. Then :

If the 𝑺𝟏, 𝑺𝟐, … , 𝑺𝒌 are S-values, then so is 𝑺 !

• Can extend to:

• choices between several tests at each time

• tests that each have their own local stopping rule

• Potentially infinite nr of tests (as long as stop/continue 

strategy stops eventually almost surely)

• Technically, the process                                           is a 

nonnegative supermartingale (Ville ‘39)



Safe Tests are Safe

Theorem:

Let  

represent an arbitrary stop/continue strategy, and let 

the combined 𝑆 be defined as before. Then :

If the 𝑺𝟏, 𝑺𝟐, … , 𝑺𝒌 are S-values, then so is 𝑺 !

Corollary: Type-I Error Guarantee Preserved under 

Optional Continuation

Suppose we combine S-values with arbitrary 

stop/continue strategy and reject 𝐻0 when final 𝑆 has 

𝑆−1 ≤ 0.05 . Then resulting test is a safe test and our 

Type-I Error is guaranteed to be below 0.05!



Safe Tests are Safe

Theorem:

Let  

represent an arbitrary stop/continue strategy, and let 

the combined 𝑆 be defined as before. Then :

If the 𝑺𝟏, 𝑺𝟐, … , 𝑺𝒌 are S-values, then so is 𝑺 !

Corollary: Type-I Error Guarantee Preserved under 

Optional Continuation

Suppose we combine S-values with arbitrary 

stop/continue strategy and reject 𝐻0 when final 𝑆 has 

𝑆−1 ≤ 0.05 . Then resulting test is a safe test and our 

Type-I Error is guaranteed to be below 0.05!



Second, Main Interpretation: 

Gambling! 



Safe Testing = Gambling!

• At time 1 you can buy ticket 1 for 1$. It pays off 

𝑆1(𝑋1, … , 𝑋𝑛1
) $ after 𝑛1 steps

• At time 2 you can buy ticket 2 for 1$. It pays off 

𝑆2(𝑋𝑛1+1, … , 𝑋𝑁2
) $ after 𝑛2 further steps.... and so on.

You may buy multiple and fractional nrs of tickets. 

Kelly (1956)



Safe Testing = Gambling!

• At time 1 you can buy ticket 1 for 1$. It pays off 

𝑆1(𝑋1, … , 𝑋𝑛1
) $ after 𝑛1 steps

• At time 2 you can buy ticket 2 for 1$. It pays off 

𝑆2(𝑋𝑛1+1, … , 𝑋𝑁2
) $ after 𝑛2 further steps.... and so on.

You may buy multiple and fractional nrs of tickets. 

• You start by investing 1$ in ticket 1. 



Safe Testing = Gambling!

• At time 1 you can buy ticket 1 for 1$. It pays off 

𝑆1(𝑋1, … , 𝑋𝑛1
) $ after 𝑛1 steps

• At time 2 you can buy ticket 2 for 1$. It pays off 

𝑆2(𝑋𝑛1+1, … , 𝑋𝑁2
) $ after 𝑛2 further steps.... and so on.

You may buy multiple and fractional nrs of tickets. 

• You start by investing 1$ in ticket 1. 

• After 𝑛1 outcomes you either stop with end capital 𝑆1

or you continue and buy 𝑆1 tickets of type 2.



Safe Testing = Gambling!

• At time 1 you can buy ticket 1 for 1$. It pays off 

𝑆1(𝑋1, … , 𝑋𝑛1
) $ after 𝑛1 steps

• At time 2 you can buy ticket 2 for 1$. It pays off 

𝑆2(𝑋𝑛1+1, … , 𝑋𝑁2
) $ after 𝑛2 further steps.... and so on.

You may buy multiple and fractional nrs of tickets. 

• You start by investing 1$ in ticket 1. 

• After 𝑛1 outcomes you either stop with end capital 𝑆1

or you continue and buy 𝑆1 tickets of type 2. After 𝑁2 =
𝑛1 + 𝑛2 outcomes you stop with end capital 𝑆1 ⋅ 𝑆2 or 

you continue and buy 𝑆1 ⋅ 𝑆2 tickets of type 3, and so 

on..



Safe Testing = Gambling!

• You start by investing 1$ in ticket 1. 

• After 𝑛1 outcomes you either stop with end capital 

𝑀1 or you continue and buy 𝑆1 tickets of type 2. After 

𝑁2 = 𝑛1 + 𝑛2 outcomes you stop with end capital 𝑆1 ⋅
𝑆2 or you continue and buy 𝑆1 ⋅ 𝑆2 tickets of type 3, 

and so on...

• 𝑺 is simply your end capital

• Your don’t expect to gain money, no matter what the 

stop/continuation rule since none of individual 

gambles 𝑺𝒌 are strictly favorable to you



Safe Testing = Gambling!

• You start by investing 1$ in ticket 1. 

• After 𝑛1 outcomes you either stop with end capital 𝑆1

or you continue and buy 𝑆1 tickets of type 2. After 

𝑁2 = 𝑛1 + 𝑛2 outcomes you stop with end capital 𝑆1 ⋅
𝑆2 or you continue and buy 𝑆1 ⋅ 𝑆2 tickets of type 3, 

and so on...

• 𝑺 is simply your end capital

• Your don’t expect to gain money, no matter what the 

stop/continuation rule since none of individual 

gambles 𝑺𝒌 are strictly favorable to you

• Hence a large value of 𝑺 indicates that something 

very unlikely has happened under 𝐻0 ...



Safe Testing = Gambling!

• Your don’t expect to gain money with 𝑆 since none of 

individual gambles 𝑆𝑘 are strictly favorable to you

• Hence a large value of 𝑺 indicates that something 

has happened that is higly unlikely under 𝐻0 ...

• “Amount of evidence against 𝑯𝟎” is thus 

measured in terms of how much money you gain 

in a game that would allow you not to make 

money in the long run if 𝑯𝟎 were true!



Safe Testing = Gambling!

• Your don’t expect to gain money with 𝑆 since none of 

individual gambles 𝑆𝑘 are strictly favorable to you

• Hence a large value of 𝑺 indicates that something 

has happened that is higly unlikely under 𝐻0 ...

• “Amount of evidence against 𝑯𝟎” is thus 

measured in terms of how much money you gain 

in a game that would allow you not to make 

money in the long run if 𝑯𝟎 were true!

relation to martingales will be 

considered later! 



SafeTests & Neyman-Pearson, again

• Let 𝑝 be a 𝑝-value: for all 𝑃 ∈ 𝐻0,  𝑃 𝑝 ≤ 𝛼 = 𝛼.

• Let 𝑆 =
1

𝛼
if 𝑝 ≤ 𝛼 , and 𝑆 =0 otherwise

• Then for all 𝑃 ∈ 𝐻0,

...so 𝑆 is an S-value, and obviously, the safe test based 

on 𝑆 rejects iff 𝑝 ≤ 𝛼. t thus implements the Neyman-

Pearson test at significance level 𝛼. 



• Let 𝑝 be a 𝑝-value: for all 𝑃 ∈ 𝐻0,  𝑃 𝑝 ≤ 𝛼 = 𝛼.

• Let 𝑆 =
1

𝛼
if 𝑝 ≤ 𝛼 , and 𝑆 =0 otherwise

• Then for all 𝑃 ∈ 𝐻0,

...so 𝑆 is an S-value, and obviously, the safe test based 

on 𝑆 rejects iff 𝑝 ≤ 𝛼. t thus implements the Neyman-

Pearson test at significance level 𝛼. 

...but it is a very silly S-value to use! With 

probability 𝜶, you loose all your capital, and you will 

never make up for that in the future!

SafeTests & Neyman-Pearson, again



Safe Tests and Neyman-Pearson, 

again

• The Safe Test based on an S-Value that is a 

likelihood ratio is not a Neyman-Pearson test (it is 

more conservative)

• Neyman-Pearson tests (that only report ‘reject’ 

and ‘accept’, and not the p-value) are (other) Safe 

Tests, but useless ones corresponding to 

irresponsible gambling... 



Menu

1. Some of the problems with p-values

2. Safe Testing with 𝑆-values

• ...solves the optional continuation problem

• gambling interpretation

• Neyman-Pearson tests are useless safe-tests... 

3. Safe Testing, simple (singleton) 𝐻0

• relation to Bayes

4. Safe Testing, Composite 𝐻0

• Magic: RIPr (Reverse Information Projection) 

• Examples: Safe t-Test, Safe Independence Test



Safe Testing and Bayes

• Bayes factor hypothesis testing

with 𝐻0 = 𝑝𝜃 𝜃 ∈ Θ0} vs 𝐻1 = 𝑝𝜃 𝜃 ∈ Θ1} :

Evidence in favour of 𝐻1 measured by 

where 

(Jeffreys ‘39)



Safe Testing and Bayes, simple 𝑯𝟎

Bayes factor hypothesis testing

between 𝐻0 = { 𝑝0} and 𝐻1 = 𝑝𝜃 𝜃 ∈ Θ1} :

Evidence measured by 

where 



Safe Testing and Bayes, simple 𝑯𝟎

Bayes factor hypothesis testing

between 𝐻0 = { 𝑝0} and 𝐻1 = 𝑝𝜃 𝜃 ∈ Θ1} : 

Take 

and note that  (no matter what prior 𝑤1 we chose)   



Safe Testing and Bayes, simple 𝑯𝟎

Bayes factor hypothesis testing

between 𝐻0 = { 𝑝0} and 𝐻1 = 𝑝𝜃 𝜃 ∈ Θ1} : 

Take 

and note that  (no matter what prior 𝑤1 we chose)   

The Bayes Factor for Simple 𝑯𝟎

is an S-value!



Menu

1. Some of the problems with p-values

2. Safe Testing

3. Safe Testing, simple (singleton) 𝐻0

• relation to Bayes

4. Safe Testing, Composite 𝑯𝟎

• Magic: RIPr (Reverse Information Projection)

• Allows for a general construction of Safe Tests 

• Examples: Safe t-test, Safe independence test



Composite 𝑯𝟎: 

Bayes may not be Safe!

Bayes factor given by

where 



Composite 𝑯𝟎: 

Bayes may not be Safe!

Bayes factor given by

where 

S-value requires that for all 𝑃0 ∈ 𝐻0 :

...but for a Bayes factor we can only guarantee that  



Composite 𝑯𝟎: 

Bayes can be unsafe!

• ...for Bayes factor we can in general only guarantee

• In general Bayesian tests with composite 𝐻0 are not 

safe ...which means that they loose their Type-I error 

guarantee interpretation when we combine 

(in)dependent Bayes factors

• (and they lack several other nice properties as well)



Composite 𝑯𝟎: 

Bayes can be unsafe!

• ...for Bayes factor we can in general only guarantee

• Bayesian tests with composite 𝐻0 are safe if you 

really believe your prior on 𝐻0

• I usually don’t believe my prior, so no good for me!



Composite 𝑯𝟎: 

Bayes can be unsafe!

• ...for Bayes factor we can in general only guarantee

• Bayesian tests with composite 𝐻0 are safe if you 

really believe your prior on 𝐻0

• I usually don’t believe my prior, so no good for me!

Bayesian statisticians often claim

Optional Stopping: No Problem for Bayesians (Rouder, ‘14)

...but that only works if you believe your prior – viz. 

Why Optional Stopping is a Problem for Bayesians

(G. & De Heide, ‘18)



Composite 𝑯𝟎: 

Bayes can be unsafe!

• ...for Bayes factor we can in general only guarantees

• In general Bayesian factors with composite 𝐻0 are 

not S-values 

• ...but there do exist very special priors (in general 

dependent on  𝑷 ⋅ 𝑯𝟏 , and highly unlike the 

priors that people tend to use!) for which Bayes 

factors become S-values

• I will now show you how to construct such priors! 



Reverse Information Projection

• Let  𝐻0 be a convex set of prob distrs, and let 𝑄 be a 

prob distr, such that 𝑄 and all 𝑃 ∈  𝐻0 have densities 

relative to the same underlying measure. 

The reverse I-projection of 𝑸 onto 𝑷𝟎 is the prob. 

measure  𝑃0 achieving



Reverse Information Projection

• Let  𝐻0 be convex set of prob distrs, and let 𝑄 be a 

prob distr, such that 𝑄 and all 𝑃 ∈  𝐻0 have densities 

relative to the same underlying measure. 

The reverse I-projection of 𝑸 onto  𝑯𝟎 is the prob. 

measure  𝑃0 ∈  𝐻0 achieving 

is Kullback-Leibler divergence between 𝑃 and 𝑄

Here



Reverse Information Projection

• Let  𝐻0 be convex set of prob distrs, and let 𝑄 be a 

prob distr, such that 𝑄 and all 𝑃 ∈  𝐻0 have densities 

relative to the same underlying measure. 

The reverse I-projection of 𝑸 onto  𝑯𝟎 is the prob. 

Measure  𝑃0 ∈  𝐻0 achieving

• Theorem (Li, Barron 1999):  𝑃0 generally exists, is 

unique, has density*, and satisfies, for all 𝑃0 ∈ 𝐻0,  



Reverse Information Projection

𝑄

𝐻0

is 
 𝑃0



Proof (Easy but Crucial Part)

• Suppose I-projection of 𝑸 onto  𝑯𝟎 exists, i.e.  

there is a prob. measure  𝑃0 ∈  𝐻0 achieving

• Let 𝑃0 ∈  𝐻0 with density 𝑝0. Calculate 
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• Suppose I-projection of 𝑸 onto  𝑯𝟎 exists, i.e.  

there is a prob. measure  𝑃0 ∈  𝐻0 achieving

• Let 𝑃0 ∈  𝐻0 with density 𝑝0. Calculate 



Proof (Easy but Crucial Part)

• Suppose I-projection of 𝑸 onto  𝑯𝟎 exists, i.e.  

there is a prob. measure  𝑃0 ∈  𝐻0 achieving

• Let 𝑃0 ∈  𝐻0 with density 𝑝0. Calculate 

• This is > 0 at all 0 ≤ 𝛼 ≤ 1 so fn is convex

• Since 1 − 𝛼  𝑃0 + 𝛼 𝑃0 ∈  𝐻0, first derivative must be 

≥ 0 at 𝛼 = 0



Proof (Easy but Crucial Part)

• Suppose I-projection of 𝑸 onto  𝑯𝟎 exists, i.e.  

there is a prob. measure  𝑃0 ∈  𝐻0 achieving

• Let 𝑃0 ∈  𝐻0 with density 𝑝0. First dervative 

at 𝛼 = 0 is given by



Towards Main Result

• Associate composite 𝐻1 with single “representing” 

distribution  𝑃1 restricted to 𝑛 outcomes, e.g. 

for some prior 𝑊 over Θ1

• Let  𝐻0 be set of Bayes marginals over 𝐻0, i.e. all 

distributions with densities of form  

... for some distribution 𝑊 on Θ0. Note  𝐻0 is convex!



Reverse Information Projection

• Let  𝐻0 be convex set of prob distrs, and let 𝑄 be a 

prob distr, such that 𝑄 and all 𝑃 ∈  𝐻0 have densities 

relative to the same underlying measure. 

The reverse I-projection of 𝑸 onto  𝑯𝟎 is the prob. 

Measure  𝑃0 ∈  𝐻0 achieving

• Theorem (Li, Barron 1999):  𝑃0 generally exists, is 

unique, has density*, and satisfies, for all 𝑃0 ∈ 𝐻0,  



Towards Main Result

• Associate composite 𝐻1 with single “representing” 

distribution  𝑃1 restricted to 𝑛 outcomes

• For now we will be Bayesian about 𝐻1 (but not 

𝐻0) and assume that we can come up with a prior 𝑊
on Θ1 such that we can simply set 



Towards Main Result

• Associate composite 𝐻1 with single “representing” 

distribution  𝑃1 restricted to 𝑛 outcomes

• Let  𝐻0 be set of Bayes marginals over 𝐻0, i.e. all 

distributions with densities of form  

... for some distribution 𝑊 on Θ0. Note  𝐻0 is convex!

Hence by Barron-Li result, there exists*  𝑃0 ∈  𝐻0 with 

for all 𝑃0 ∈  𝐻0,



Towards Main Result

• Associate composite 𝐻1 with single “representing” 

distribution  𝑃1 restricted to 𝑛 outcomes

• By Barron-Li result: there exists* distribution  𝑃0 with 

density  

• i.e. a Bayes marginal, such that for all 𝑃0 ∈ 𝐻0, 



Towards Main Result

• Associate composite 𝐻1 with single “representing” 

distribution  𝑃1 restricted to 𝑛 outcomes

• By Barron-Li result: there exists* distribution  𝑃0 with 

density  

• i.e. a Bayes marginal, such that for all 𝑃0 ∈ 𝐻0, 

or equivalently (!!!): 



First Main Result : 

A General Method for S-Value 

construction with Composite 𝑯𝟎

• This shows that reverse I-projection  𝑃0 of  𝑃1 onto 

composite  𝐻0 defines an S-value 𝑆∗ =
 𝑝1

 𝑝0

• Moreover, among all S-values 𝑆 against 𝐻0 this 𝑆∗ is 

optimal in the sense that it maximizes the                
 𝑃1- expected capital growth rate

• This works for completely arbitrary 𝑯𝟎 and 𝑯𝟏



Example 1: 

Jeffreys’ (1961) Bayesian t-test 

• In general Bayes factor tests are not safe

• But lo and behold, Jeffreys’ uses very special priors 

and his Bayesian t-test is a Safe Test!

• ...but not the “frequentist best” (highest 

power/captital growth) safe test!

𝐻0: 𝑋𝑖 ∼𝑖.𝑖.𝑑. 𝑁 0, 𝜎2 vs. 𝐻1 : 𝑋𝑖 ∼𝑖.𝑖.𝑑. 𝑁 𝜇, 𝜎2 for some 𝜇 ≠ 0

𝜎2 unknown (‘nuisance’) parameter

𝐻0 = 𝑃𝜎 𝜎 ∈ 0,∞ } 𝐻1 = 𝑃𝜎,𝜇 𝜎 ∈ 0,∞ , 𝜇 ∈ ℝ ∖ {0}}



Example 1: 

Jeffreys’ (1961) Bayesian t-test 

• In general Bayes factor tests are not safe

• But lo and behold, Jeffreys’ uses very special priors 

and his Bayes factor is an 𝑆-value, so his Bayesian 

t-test is a Safe Test!

𝐻0: 𝑋𝑖 ∼𝑖.𝑖.𝑑. 𝑁 0, 𝜎2 vs. 𝐻1 : 𝑋𝑖 ∼𝑖.𝑖.𝑑. 𝑁 𝜇, 𝜎2 for some 𝜇 ≠ 0

𝜎2 unknown (‘nuisance’) parameter

𝐻0 = 𝑃𝜎 𝜎 ∈ 0,∞ } 𝐻1 = 𝑃𝜎,𝜇 𝜎 ∈ 0,∞ , 𝜇 ∈ ℝ ∖ {0}}



Example 1: 

Jeffreys’ (1961) Bayesian t-test 

Jeffreys uses improper right-Haar prior 𝑤 𝜎 = 1/𝜎
within both models, and uses Cauchy on 𝜇/𝜎

• With this choice 𝑆 has same distribution under all 

𝑃 ∈ 𝐻0, and

𝐻0: 𝑋𝑖 ∼𝑖.𝑖.𝑑. 𝑁 0, 𝜎2 vs. 𝐻1 : 𝑋𝑖 ∼𝑖.𝑖.𝑑. 𝑁 𝜇, 𝜎2 for some 𝜇 ≠ 0

𝜎2 unknown (‘nuisance’) parameter



Example 1: 

Jeffreys’ (1961) Bayesian t-test 

Jeffreys uses improper right-Haar prior 𝑤 𝜎 = 1/𝜎
within both models, and uses Cauchy on 𝜇/𝜎

In fact, for improper right-Haar prior combined with 

every 0-symmetric prior on effect size 𝜇/𝜎 we get that 

𝑆 has same distribution under all 𝑃 ∈ 𝐻0, and

𝐻0: 𝑋𝑖 ∼𝑖.𝑖.𝑑. 𝑁 0, 𝜎2 vs. 𝐻1 : 𝑋𝑖 ∼𝑖.𝑖.𝑑. 𝑁 𝜇, 𝜎2 for some 𝜇 ≠ 0

𝜎2 unknown (‘nuisance’) parameter



Nuisance Parameters with 

Group Structure

• In many practical problems, only free parameter in 

𝐻0 is nuisance parameter (vector) (like 𝜎 in scale 

families such as in t-test, or (𝜇, 𝜎) in location-scale 

families) such that

• nuisance parameter also part of 𝐻1

• nuisance parameter/distributions satisfy 

appropriate group structure

• Berger et al. ‘98, Dass & Berger, ‘03 give many 

examples 



Nuisance Parameters with 

Group Structure

• In many practical problems, only free parameter in 

𝐻0 is nuisance parameter (vector) (like 𝜎 in scale 

families such as in t-test, or (𝜇, 𝜎) in location-scale 

families) such that

• nuisance parameter also part of 𝐻1

• nuisance parameter/distributions satisfy 

appropriate group structure

• In all such cases, the Bayes factor based on the 

improper right Haar prior is also an 𝑆-value! 

• But what if the ‘nuisance’ parameter has no group 

structure?



Example 2: Independence Testing

• 𝑋𝑖 ∈ {0,1} ; 𝑍𝑖 ∈ {𝑚, 𝑓}

• 𝐻0:  𝑋1, 𝑋2, … , 𝑋𝑛 ∣ 𝑍1, … , 𝑍𝑛 iid Bernoulli(𝜃), 

• 𝐻1:  𝑋1, 𝑋2, … , 𝑋𝑛 iid Bernoulli(𝜃) , but   

𝑃 𝑋𝑖 = 1 𝑍𝑖 = 𝑚 = 𝜃𝑚

𝑃 𝑋𝑖 = 1 𝑍𝑖 = 𝑓 = 𝜃𝑓 ≠ 𝜃𝑚

• Are both populations same or different?

• ...can calculate RIPr numerically, encouraging 

results 



How to design S-Values?

• The RIPr gives us an S-value for every given  𝑃1

representing 𝐻1. 

• If we want to be Bayesian about 𝐻1 can pick   

....and we’re done

• (as Berger et al. (2016) argue, many frequentists are 

in fact secretly Bayesian about 𝐻1)



How to design S-Values?

• The RIPr gives us an S-value for every given  𝑃1

representing 𝐻1. 

• If we want to be Bayesian about 𝐻1 can pick   

....and we’re done

• (as Berger et al. (2016) argue, many frequentists are 

in fact secretly Bayesian about 𝐻1)

• ...but what if we don’t know how to pick prior 𝑾𝟏

on 𝚯𝟏? 



How to design S-Values?

• The RIPr gives us an S-value for every given  𝑃1

representing 𝐻1...but what if we don’t know how to 

pick  𝑃1, prior 𝑊1 on Θ1?

• ...suppose we are willing to admit that we’ll only be 

able to tell 𝐻0 and 𝐻1 apart if 𝑃 ∈ 𝐻0 ∪ 𝐻1,𝛿 for some 

𝐻1,𝛿 ⊂ 𝐻1 that excludes points that are ‘too close’ to 

𝐻0 (e.g. 𝐻1 = 𝑃𝜃 ∶ | 𝜃 − 𝜃0||2 ≥
𝐶

𝑛
) 

• We can then look for  GROW (growth-optimal in 

worst-case) S-value achieving 



The GROW S-Value

• The GROW (growth-optimal in worst-case) S-value 

relative to 𝐻1,𝛿 is the S-value achieving 

where the supremum is over all 𝑆-values relative to 𝐻0

• ...so we don’t expect to gain anything when investing 

in 𝑆 under 𝐻0

• ...but among all such 𝑆 we pick the one(s) that make 

us rich fastest if we keep reinvesting in new gambles 



The GROW S-Value and the JIPr

• The GROW (growth-optimal in worst-case) S-value 

relative to 𝐻1,𝛿 is the S-value 𝑆∗achieving 

• Second Main Theorem: under conditions on 𝐻0, 𝐻1,𝛿:  

...and 𝑆∗ = 𝑝∗ / ⌊𝑝∗⌋𝐻0
where (𝑝∗, ⌊𝑝∗⌋𝐻0

) achieves the 

minimum on the left and ⌊𝑝∗⌋𝐻0
is the RIPr for 𝑝∗



The GROW S-Value and the JIPr

• The GROW (growth-optimal in worst-case) S-value 

relative to 𝐻1,𝛿 is the S-value 𝑆∗achieving 

• Second Main Theorem: under conditions on 𝐻0, 𝐻1,𝛿:  

...and 𝑆∗ = 𝑝∗ / ⌊𝑝∗⌋𝐻0
where (𝑝∗, ⌊𝑝∗⌋𝐻0

) achieves the 

minimum on the left and ⌊𝑝∗⌋𝐻0
is the RIPr for 𝑝∗

JIPr = Joint Information Projection



Crucial Idea for Proof

• For any fixed  𝑃1, 

...given by 𝑆 =  𝑝1/⌊  𝑝1⌋𝐻0
where ⌊  𝑝1⌋𝐻0

is RIPr of  𝑝1

(this is surprising because the  𝑝1 inside logarithm is not 

fixed here!)

• Hence

...is achieved for 𝑝 =  𝑝1



The GROW S-Value and the JIPr

• The GROW (growth-optimal in worst-case) S-value 

relative to 𝐻1,𝛿 is the S-value 𝑆∗achieving 

• Second Main Theorem: under conditions on 𝐻0 and 

𝐻1,𝛿 we have: 

...and 𝑆∗ = 𝑝∗ / ⌊𝑝∗⌋𝐻0
where (𝑝∗, ⌊𝑝∗⌋𝐻0

) achieves the 

minimum on the left and ⌊𝑝∗⌋𝐻0
is the RIPr for 𝑝∗



The GROW S-Value and the JIPr

• The GROW (growth-optimal in worst-case) S-value 

relative to 𝐻1,𝛿 is the S-value 𝑆∗achieving 

• Second Main Theorem: under conditions on 𝐻0, 𝐻1,𝛿:  

...and 𝑆∗ = 𝑝∗ / ⌊𝑝∗⌋𝐻0
where (𝑝∗, ⌊𝑝∗⌋𝐻0

) achieves the 

minimum on the left and ⌊𝑝∗⌋𝐻0
is the RIPr for 𝑝∗



GROW Safe T-Test:

• Jeffreys sets

• where 𝑝𝜇,𝜎 is density of 𝑛 i.i.d. N( 𝜇, 𝜎) RVs and 

𝒘 𝝁 𝝈 is a standard Cauchy with scale 𝝈

• Instead we want to pick the GROW 𝑆-value under the 

constraint that |𝜇/𝜎| ≥ 𝛿0 for some ‘minimally 

clinically relevant effect size’

• It turns out that this 𝑆-value is given by the Bayes 

factor with the right Haar prior and a 2-point prior on 

𝜇/𝜎 with probability ½ on 𝛿0 and ½ on - 𝛿0



GROW Safe T-Test:

• Jeffreys sets

• where 𝑝𝜇,𝜎 is density of 𝑛 i.i.d. N( 𝜇, 𝜎) RVs and 

𝒘 𝝁 𝝈 is a standard Cauchy with scale 𝝈

• Instead we want to pick the GROW 𝑆-value under the 

constraint that |𝜇/𝜎| ≥ 𝛿0 for some ‘minimally 

clinically relevant effect size’

• It turns out that this 𝑆-value is given by the Bayes 

factor with the right Haar prior and a 2-point prior on 

𝜇/𝜎 with probability ½ on 𝛿0 and ½ on - 𝛿0



• Neyman-Pearson null hypothesis testing rejects 𝐻0

at 5% level whenever (asymptotically) 

• Bayes with standard prior rejects 𝐻0 whenever 

• Bayes with JIPr-prior chosen so as to maximize 

power rejects 𝐻0 at 5% whenever

SubOptimal Power

Safe, Consistent

Type II Error for Simple 𝑯𝟎

Optimal Power

Not Safe, Not Consistent

Close to Optimal Power

Safe, Not Consistent



What about power?

• Fixed 𝑛 at small sample sizes: need about 30% 

more data to achieve same power as with classical 

Neyman-Pearson test

• But: for subclass of safe tests, we are allowed to do 

optional stopping (stronger requirement than 

optional continuation, which is always possible)

• possible for t-test, but not for independence test

• ...with optional stopping sometimes need less data 

than with classical approach!



Menu

1. Some of the problems with p-values

2. Safe Testing

3. Safe Testing, simple (singleton) 𝐻0

• relation to Bayes

4. Safe Testing, Composite 𝐻0

• Magic: RIPr (Reverse Information Projection)

• JIPR (Joint Information Projection) Allows for a 

general construction of Safe Tests 

• Examples: Safe t-test, Safe independence test

5. Historical Perspective 



Some Historical Perspective



• Jerzy Neyman (1930s): alternative exists, “inductive 

b    behaviour”, p-value vs ‘significance level’

Sir Ronald Fisher (1920s): test statistic rather than 

alternative, p-value indicates “unlikeliness”

• Sir Harold Jeffreys (1930s): Bayesian, alternative 

exists, absolutely no p-values

J. Berger (2003, IMS Medaillion Lecture ) Could 

Neyman, Fisher and Jeffreys have agreed on 

testing? 

The Three Classical Approaches 

to Testing



Sir Ronald Fisher: a statistical test should just 

report a “p-value”. This is a measure of evidence that 

indicates “unlikeliness” ; no explicit alternative 𝐻1

needs to be formulated

• “Goodness-of-Fit, Randomness Test”

Safe Tests comply: they can be formulated without clear 

alternatives (think of Ryabko-Monarev GZIP-test for 

randomness). But the p-value gets replaced by the 

more robust S-value!

Sir Ronald’s view on testing



Neyman’s View on Testing

• Before experiment is done, state significance level 𝛼
(e.g. 𝛼 = 0.05)

• Reject 𝐻0 iff p < 0.05

• This gives Type-I Error Guarantee of 𝛼

• If statisticians would follow this procedure for fixed 𝛼
in all their experiments, the fraction of times in which 

the null hypothesis would be true but they would 

reject, would be at most 𝛼

• alternative 𝐻1 is crucial: among all p-values, pick 

one maximizing power (minimizing Type-II error)

• ...actual p-value is of lesser (no!?!?) concern!



A Big Issue with Testing as 

currently practiced  / p-values 

• The standard way of doing null hypothesis testing is 

an amalgam of Fisher’s and Neyman’s ideas

• We reject if 𝑝 ≤ 𝛼 but we do report 𝑝, and claim that 

we have  ‘a lot more evidence’ if 𝑝 ≪ 𝛼

• But how to interpret an observation like 𝑝 < 0.01
when we a priori set 𝛼 = 0.05?



A Big Issue with Testing as 

currently practiced  / p-values 

• The standard way of doing null hypothesis testing is 

an amalgam of Fisher’s and Neyman’s ideas

• We reject if 𝑝 ≤ 𝛼 but we do report 𝑝, and claim that 

we have  ‘a lot more evidence’ if 𝑝 ≪ 𝛼

• But how to interpret an observation like 𝑝 < 0.01
when we a priori set 𝛼 = 0.05?

“in those cases where we observe 𝑝 < 0.01 , we will 

only make a Type I error (false reject) 1%  of the time”

NO! We might make a Type I error in fact in 100% of the 

time in those cases!



A Big Issue with Testing as 

currently practiced  / p-values 

• How to interpret an observation like 𝑝 < 0.01 when 

we a priori set 𝛼 = 0.05?

• Perhaps Wald’s reinterpretation of NP tests in terms 

of loss functions can come to the rescue?
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Neyman-Pearson Decision Theory 

In a Classical Null-Hypothesis test we fix some     and set: ®
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In terms of Loss Functions:

•
Loss you make when 𝑯𝒊 is the case, yet 𝒂𝒋 is what you decide

Now decision rule better interpreted as:  
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In terms of Loss Functions:

•

Frequentist Type-I Error Guarantee:

For simplicity assume

where
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In terms of Loss Functions:

Frequentist Type-I Error Guarantee:

In terms of Loss Functions: 

For simplicity assume

as long as                                

L(µ0; a0) = L(µ1; a1) = 0
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In terms of Loss Functions:

Frequentist Type-I Error Guarantee:

In terms of Loss Functions: 

For simplicity assume

as long as                                

L(µ0; a0) = L(µ1; a1) = 0



124

What if there are more than 2 actions? 

±(X) =

8
>>>>><
>>>>>:

a0 : \do nothing"

a1 : \do a second, more expensive investigation"

a2 : \start an expensive anti-meat eating campaign"'

a3 : \ban meat right away"

We want procedure that guarantees:
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Just 2 actions:  

We want procedure that guarantees:

We achieve this by setting
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3 actions:  

We want procedure that guarantees:

It seems we achieve this by setting: 
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3 actions:  

We want procedure that guarantees:

It seems we achieve this by setting: 

doesn’t work!
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3 actions:  

It seems we achieve this by setting: 

doesn’t work!
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Many actions:  

We want procedure that guarantees:

But “natural” decision rule based on p-value gives
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Many actions:  

We want procedure that guarantees:

But “natural” decision rule based on p-value gives

Yet “natural” decision rule based on S-value does give



131

3 actions:  

Everything works fine if we set: 
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3 actions:  

Everything works fine if we set: 

(works also with countably ∞ many actions)



A Big Issue with Testing as 

currently practiced  / p-values 

• The standard way of doing null hypothesis testing is 

an amalgam of Fisher’s and Neyman’s ideas

• We reject if 𝑝 ≤ 𝛼 but we do report 𝑝, and claim that 

we have  ‘a lot more evidence’ if 𝑝 ≪ 𝛼

• But how to interpret an observation like 𝑝 < 0.01
when we a priori set 𝛼 = 0.05?

...I claim: interpretation with p-values is terribly unclear!

S-values resolve this issue!



Neyman’s View on Testing

• Before experiment is done, state significance level 𝛼
(e.g. 𝛼 = 0.05)

• Reject 𝐻0 iff p < 0.05

• This gives Type-I Error Guarantee of 𝛼

• If statisticians would follow this procedure for fixed 𝛼
in all their experiments, the fraction of times in which 

the null hypothesis would be true but they would 

reject, would be at most 𝛼

• alternative 𝐻1 is crucial: among all p-values, pick 

one maximizing power (minimizing Type-II error)

• ...actual p-value is of lesser (no!?!?) concern!



Neyman and Fisher together

• To some extent, S-values do allow us to combine the 

features of Fisherian and Neymanian testing!

• S-value measures ‘unlikeliness’, even without 

alternative, just like p-value

• ...but behaves much better under optional 

continuation

• S-value leads to Type-I error/loss guarantees, even 

under optional continuation, and even if there are 

more than 2 actions



• Jerzy Neyman (1930s): alternative exists, “inductive 

b    behaviour”, p-value vs ‘significance level’

Sir Ronald Fisher (1920s): test statistic rather than 

alternative, p-value indicates “unlikeliness”

• Sir Harold Jeffreys (1930s): Bayesian, alternative 

exists, absolutely no p-values

J. Berger (2003, IMS Medaillion Lecture ) Could 

Neyman, Fisher and Jeffreys have agreed on 

testing? 

The Three Classical Approaches 

to Testing



Earlier Work on S-Values

• The simple 𝐻0 case (and related developments) 

was essentially covered in work by Volodya Vovk

and collaborators (1993, 2001, 2011,...)

• see esp. Shafer, Shen, Vereshchagin, Vovk: Test 

Martingales, Bayes Factors and p-values, 2011

• Also Jim Berger and collaborators have earlier 

ideas in this direction (1994, 2001, ...)

• In particular Berger was inspired by the great     

Jack Kiefer

• What is really radically new here is interpretation & 

the general treatment of composite 𝑯𝟎 and its 

relation to reverse/joint-information projection



Vovk’s Work on S-Values
• S-Value is natural weakening of the concept of a test 

martingale (more about this next lecture)

• Test martingales go back to Ville (1939), in the paper 

that introduced the modern concept of a martingale

• In fabulous 2011 paper, Shafer, Vovk et al. compare 

test martingales, p-values and S-values

• Very confusingly, they call S-values ‘Bayes 

factors’ (this is because they focus on simple 𝐻0)

• A lot more on S-values vs p-values in forthcoming 

book by Vovk and Shafer on game-theoretic 

probability



Conclusion First Part



Safe Testing has a frequentist (type-I error) 

interpretation. Advantages over Standard 

frequentist testing:  

1. Combining (in)dependent tests, adding extra data

2. More than two decisions: not just “accept/reject”

Bayes tests with very special priors are 

SafeTests. Advantages over Standard Bayes 

priors/tests:  

1. Combining (in)dependent tests, adding extra 

data

2. Possible to do pure ‘randomness test’ (no clear 

alternative available) 



Safe Testing has a frequentist (type-I error) 

interpretation. Advantages over Standard 

frequentist testing:  

1. Combining (in)dependent tests, adding extra data

2. More than two decisions: not just “accept/reject”

Bayes tests with very special priors are SafeTests, 

even in composite case. Advantages over Standard 

Bayes priors/tests:  

1. Combining (in)dependent tests, adding extra 

data

2. Possible to do pure ‘randomness test’ (no clear 

alternative available) 

All Safe Tests have a gambling and MDL (data 

compression) interpretation 

(with again, advantages over standard MDL tests)



Additional Material



Read more?

• G. Shafer, A. Shen, N. K. Vereshchagin, and V. Vovk. Test 

martingales, Bayes Factors and p-values. Statistical Science, 2011

• G. Safe Probability. Journal of Stat. Planning and Inference, 2018

• Reversed I-Projection: G. & Mehta, Fast Rates for Unbounded 

Losses: from ERM to Generalized Bayes, arXiv, 2017

• G., De Heide, Koolen. Safe Testing. In preparation.

•More to come...

safe tests!



Safe Testing and...

• “Amount of evidence against 𝑯𝟎” is thus 

measured in terms of how much money you gain 

in a game that would allow you not to make 

money in the long run if 𝑯𝟎 were true

• ≈ Nonnegative supermartingales introduced by 

Ville (1939) and Vovk’s  (1993) Test Martingales  

every test martingale defines an 

S-value, but not vice versa! 



Undiscovered Gems

• Jonathan Li’s (1999) Ph.D. Thesis supervised by 

Andrew Barron – establishes basic properties of 

reverse information projection, shows that they 

generally exist*

• Shafer, Shen, Vovk, Vereshchagin (2011)

• Shafer & Vovk (2001, 2018): Probability and Finance, 

it’s only a game!


