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Rough Plan of Lectures

1. Safe Testing (Statistics/AB Testing)

2. Safe Testing (Information Theory!)

3. Safe and Generalized Bayes

4. Fast Rate Conditions in Statistical (stochastic) and 

Online (nonstochastic) Learning

5. Safety and Luckiness – A Philosophy of Learning 

and Inference



The GROW S-Value

• The GROW (growth-optimal in worst-case) S-value 

relative to 𝐻1,𝛿 is the S-value achieving 

where the supremum is over all 𝑆-values relative to 𝐻0

• ...so we don’t expect to gain anything when investing 

in 𝑆 under 𝐻0

• ...but among all such 𝑆 we pick the one(s) that make 

us rich fastest if we keep reinvesting in new gambles 



The GROW S-Value and the JIPr

• The GROW (growth-optimal in worst-case) S-value 

relative to 𝐻1,𝛿 is the S-value 𝑆∗achieving 

• Second Main Theorem: under conditions on 𝐻0, 𝐻1,𝛿:  

...and 𝑆∗ = 𝑝∗ / ⌊𝑝∗⌋𝐻0
where (𝑝∗, ⌊𝑝∗⌋𝐻0

) achieves the 

minimum on the left and ⌊𝑝∗⌋𝐻0
is the RIPr for 𝑝∗



Reverse Information Projection

 𝑷𝟏

𝐻0

is 
 𝑃0
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Crucial Idea for Proof

• For any fixed  𝑃1, 

...given by 𝑆 =  𝑝1/⌊  𝑝1⌋𝐻0
where ⌊  𝑝1⌋𝐻0

is RIPr of  𝑝1

(this is surprising because the  𝑝1 inside logarithm is not 

fixed here!)

• Hence

...is achieved for 𝑝 =  𝑝1



Crucial Idea for Proof

• For any fixed  𝑃1, 

...given by 𝑆 =  𝑝1/⌊  𝑝1⌋𝐻0
where ⌊  𝑝1⌋𝐻0

is RIPr of  𝑝1

(this is surprising because the  𝑝1 inside logarithm is not 

fixed here!)

• Hence

...is achieved for 𝑝 =  𝑝1

Proper scoring rule



GROW S-Value for simple 𝑯𝟎:

• Jeffreys sets

• where 𝑝𝜇,𝜎 is density of 𝑛 i.i.d. N( 𝜇, 𝜎) RVs and 

𝒘 𝝁 𝝈 is a standard Cauchy with scale 𝝈

• Instead we want to pick the GROW 𝑆-value under the 

constraint that |𝜇/𝜎| ≥ 𝛿0 for some ‘minimally 

clinically relevant effect size’

• It turns out that this 𝑆-value is given by the Bayes 

factor with the right Haar prior and a 2-point prior on 

𝜇/𝜎 with probability ½ on 𝛿0 and ½ on - 𝛿0



GROW S-Value for simple 𝑯𝟎

• The GROW S-value relative to 𝐻1,𝛿 achieves

• In case we are ‘also’ a classical frequentist, we are 

given an 𝛼 and may want to pick 𝐻1,𝛿 ⊂ 𝐻1 such that 

power is maximized

• 𝐻0 = { 𝑃0}, 𝐻1 = { 𝑃𝜃 ∶ 𝜃 > 0 } 1-dim exponential 

family: solution is to put point prior putting mass 1 on 

𝜃𝑛
∗ such that 𝐷 𝑃0| 𝑃𝜃𝑛

∗ ) = n−1 ⋅ log (
1

𝛼
) 

• ....so that 𝑆 = 𝑝𝜃𝑛
∗ (𝑋𝑛)/𝑝_0 𝑋𝑛



GROW S-Value for simple 𝑯𝟎

• The GROW S-value relative to 𝐻1,𝛿 achieves

• In case we are ‘also’ a classical frequentist, we are 

given an 𝛼 and may want to pick 𝐻1,𝛿 ⊂ 𝐻1 such that 

power is maximized

• 𝐻0 = { 𝑃0}, 𝐻1 = { 𝑃𝜃 ∶ 𝜃 > 0 } 1-dim exponential 

family: solution is to put point prior putting mass 1 on 

𝜃𝑛
∗ such that 𝐷 𝑃0| 𝑃𝜃𝑛

∗ ) = n−1 ⋅ log (
1

𝛼
) 

• ....so that 𝑆 = 𝑝𝜃𝑛
∗ (𝑋𝑛)/𝑝_0 𝑋𝑛 (depends on 𝑛 !)



• Neyman-Pearson null hypothesis testing rejects 𝐻0

at 5% level whenever (asymptotically) 

• Bayes with standard prior rejects 𝐻0 whenever 

• Bayes with JIPr-prior chosen so as to maximize 

power rejects 𝐻0 at 5% whenever

SubOptimal Power

Safe, Consistent

Rejection Regions for Simple 𝑯𝟎

Optimal Power

Not Safe, Not Consistent

Close to Optimal Power

Safe, Not Consistent



Menu

1. Some of the problems with p-values

2. Safe Testing

3. Safe Testing, simple (singleton) 𝐻0

• relation to Bayes

4. Safe Testing, Composite 𝐻0

• RIPr (Reverse Information Projection)

• JIPR (Joint Information Projection) 

5. Historical Perspective

6. S-Values and Test Martingales



• Jerzy Neyman (1930s): alternative exists, “inductive 

b    behaviour”, p-value vs ‘significance level’

Sir Ronald Fisher (1920s): test statistic rather than 

alternative, p-value indicates “unlikeliness”

• Sir Harold Jeffreys (1930s): Bayesian, alternative 

exists, absolutely no p-values

J. Berger (2003, IMS Medaillion Lecture ) Could 

Neyman, Fisher and Jeffreys have agreed on 

testing? 

The Three Classical Approaches 

to Testing



Sir Ronald Fisher: a statistical test should just 

report a “p-value”. This is a measure of evidence that 

indicates “unlikeliness” ; no explicit alternative 𝐻1

needs to be formulated

• “Goodness-of-Fit, Randomness Test”

Safe Tests comply: they can be formulated without clear 

alternatives (think of Ryabko-Monarev GZIP-test for 

randomness). But the p-value gets replaced by the 

more robust S-value!

Sir Ronald’s view on testing



Neyman’s View on Testing

• Before experiment is done, state significance level 𝛼
(e.g. 𝛼 = 0.05)

• Reject 𝐻0 iff p < 0.05

• This gives Type-I Error Guarantee of 𝛼

• If statisticians would follow this procedure for fixed 𝛼
in all their experiments, the fraction of times in which 

the null hypothesis would be true but they would 

reject, would be at most 𝛼

• alternative 𝐻1 is crucial: among all p-values, pick 

one maximizing power (minimizing Type-II error)

• ...actual p-value is of lesser (no!?!?) concern!
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Neyman and Fisher together

• To some extent, S-values do allow us to combine the 

features of Fisherian and Neymanian testing!

• S-value measures ‘unlikeliness’, even without 

alternative, just like p-value

• ...but behaves much better under optional 

continuation

• S-value leads to Type-I error/loss guarantees, even 

under optional continuation, and even if there are 

more than 2 actions



• Jerzy Neyman (1930s): alternative exists, “inductive 

b    behaviour”, p-value vs ‘significance level’

Sir Ronald Fisher (1920s): test statistic rather than 

alternative, p-value indicates “unlikeliness”

• Sir Harold Jeffreys (1930s): Bayesian, alternative 

exists, absolutely no p-values

J. Berger (2003, IMS Medaillion Lecture ) Could 

Neyman, Fisher and Jeffreys have agreed on 

testing? 

The Three Classical Approaches 

to Testing



Earlier Work on S-Values

• The simple 𝐻0 case (and related developments) 

was essentially covered in work by Volodya Vovk

and collaborators (1993, 2001, 2011,...)

• see esp. Shafer, Shen, Vereshchagin, Vovk: Test 

Martingales, Bayes Factors and p-values, 2011

• Also Jim Berger and collaborators have earlier 

ideas in this direction (1994, 2001, ...)

• In particular Berger was inspired by the great     

Jack Kiefer

• What is really radically new here is interpretation & 

the general treatment of composite 𝑯𝟎 and its 

relation to reverse/joint-information projection



Vovk’s Work on S-Values
• S-Value is natural weakening of the concept of a test 

martingale 

• Test martingales go back to Ville (1939), in the paper 

that introduced the modern concept of a martingale

• In fabulous 2011 paper, Shafer, Vovk et al. compare 

test martingales, p-values and S-values

• Very confusingly, they call S-values ‘Bayes 

factors’ (this is because they focus on simple 𝐻0)

• A lot more on S-values vs p-values in forthcoming 

book by Vovk and Shafer on game-theoretic 

probability



Menu

1. Some of the problems with p-values

2. Safe Testing

3. Safe Testing, simple (singleton) 𝐻0

• relation to Bayes

4. Safe Testing, Composite 𝐻0

• RIPr (Reverse Information Projection)

• JIPR (Joint Information Projection) 

5. Historical Perspective

6. S-Values and Test Martingales

• Optional Stopping vs Optional Continuation



Optional Stopping

• S-values defined as functions on data 𝑋𝑛 of fixed size 

𝑛 (or 𝑋𝜏 for fixed stopping rule 𝜏) 

• After each minibatch 𝑋𝑛𝑗−1, …𝑋𝑛𝑗+1
, can decide to 

stop or continue and do new test (and multiply 

results): optional continuation

• What if we want to be able to stop at each 𝑛 and not 

just at the end of each minibatch? (optional stopping)

• First idea: take mini-batches of size 1 ! 



Simple 𝑯𝟎, i.i.d.

Mini-Batches of size-1 idea works:

• start with prior 𝑤 on Θ1

•  𝑝𝑤 𝑋𝑛 =  Θ1
𝑝𝜃 𝑋𝑛 𝑤 𝜃 𝑑𝜃

• 𝑆1 =  𝑝𝑤 𝑋1 /𝑝0 𝑋1

• 𝑆2 =  𝑝𝑤 𝑋2 𝑋1 /𝑝0 𝑋2

• ....𝑆𝑛 =  𝑝𝑤 𝑋𝑛 𝑋𝑛−1 /𝑝0(𝑋𝑛)

Each 𝑆𝑘 is an S-value, and 𝑆1 ⋅ … ⋅ 𝑆𝑘 is equal to the 

single  S-value 𝑆 𝑘 we would have obtained if we had 

considered 𝑋1, … , 𝑋𝑘 as a single minibatch 



Simple 𝑯𝟎, i.i.d.

Mini-Batches of size-1 idea works:

• Each 𝑆𝑘 is an S-value, and 𝑆1 ⋅ … ⋅ 𝑆𝑘 is equal to the 

single  S-value 𝑆 𝑘 we would have obtained if we had 

considered 𝑋1, … , 𝑋𝑘 as a single minibatch 

• Thus, our earlier optional continuation implies that we 

can actually stop at any time we like (e.g. as soon as 

𝑆1 ⋅ … ⋅ 𝑆𝑘 ≥ 20 and the Type-I error guarantee will 

still be valid! 

• For simple 𝑯𝟎, testing with S-values is safe not 

just for ‘optional continuation’ but also for 

‘optional stopping’



Simple 𝑯𝟎, i.i.d.

For simple 𝑯𝟎, testing with S-values is safe not just 

for ‘optional continuation’ but also for ‘optional 

stopping’

But wait: what if we work with a ‘power optimizing prior’ 

that depends on 𝑛 , as before?



• Bayes with standard prior rejects 𝐻0 whenever 

• Bayes with GROW-prior chosen so as to maximize 

power at sample size 𝒏∗ rejects 𝐻0 at 5% when

but only if 𝑛 = 𝑛∗

Rejection Regions for Simple 𝑯𝟎
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Rejection Regions for Simple 𝑯𝟎

Safe for OS, but no 

good power properties if 

𝒏∗ ≠ 𝒏

Safe for Optional Stopping, 

bound holds for all 𝒏
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power at sample size 𝒏∗ rejects 𝐻0 at 5% when

but only if 𝑛 = 𝑛∗
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Stopping but with a 1/𝑛 rejection region (hence 

good power) for all 𝑛 ? A: NO (LIL!)
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• Q: can we get an S-value that is safe for Optional 

Stopping but with a 1/𝑛 rejection region (hence 

good power) for all 𝑛 ? A: NO (Lille!)

• ...but we can get an S-value that is safe for OS 

and satisfies, for all n:

• ...this is obtained by replacing  𝑝1 with the switch 

distribution (Van Erven et al., NIPS 2007, G. and 

Van der Pas, Stat. Sinica 2018) 

Rejection Regions for Simple 𝑯𝟎

(still ‘better’ than Bayes)



What about composite 𝑯𝟎?

• Optional Stopping (with interesting little caveat) is still 

possible for S-values that are Bayes factors with right 

Haar priors (Bayes t-test etc.) 

• Minibatch of size 1 idea still works

• (Hendriksen, De Heide & G., 2018)



What about composite 𝑯𝟎?

• ...yet in general, ‘minibatch of size 1’ idea does not 

work any more...

• 2x2 contingency table test: take arbitrary prior 𝑤1 on 

Θ1, define  𝑝1 𝑋𝑛 =  𝑝𝜃 𝑋𝑛 𝑤1 𝜃 𝑑𝜃

• Create S-value for 𝑛 = 1 by doing reverse information 

projection. This gives  𝑝0(𝑋1) such that 𝑆 =  𝑝1(𝑋1)/
 𝑝0 𝑋1 is 𝑆-value

• Surprisingly, however, we find that 𝑆 = 1 (it doesn’t 

listen to the data...)

• “All Bayes marginals for 𝑛 = 1 relative to 𝐻1 are also 

Bayes margonals relative to 𝐻0”



What about composite 𝑯𝟎 ? 

• Many open questions:

• Can we use ‘minibatches of size 2’? 

• Can we obtain S-values that allow OS at all?

• If so, can we make sure they have rejection regions 

of size 



Test Martingales vs S-Values

• Suppose we are given a sequence of S-Values 

𝑆1, S2, … for data (𝑋1, … , 𝑋𝑛1) , (𝑋𝑛1+1, … , 𝑋𝑛2
) , ....

• The random process 𝑆 1 , 𝑆 2 , … ,  𝑆 𝑘 ≔  𝑗=1..𝑘 𝑆𝑗
is a nonnegative supermartingale

• Our earlier ‘optional continuation’ theorem is instance 

of Doob’s optional stopping theorem for martingales

• In situations in which the ‘minibatch of size 1’ idea 

works, we have 𝑆𝑗 a function of 𝑋𝑗 only.

• ...then we can indeed stop at any 𝑛 we like. For such 

cases, 𝑆 𝑘 has been called test martingale

(gambling at each 𝑛 rather than each minibatch)



Conclusion First Part



Safe Testing has a frequentist (type-I error) 

interpretation. Advantages over Standard 

frequentist testing:  

1. Combining (in)dependent tests, adding extra data

2. More than two decisions: not just “accept/reject”

Bayes tests with very special priors are 

SafeTests. Advantages over Standard Bayes 

priors/tests:  

1. Combining (in)dependent tests, adding extra 

data

2. Possible to do pure ‘randomness test’ (no clear 

alternative available) 



Safe Testing has a frequentist (type-I error) 

interpretation. Advantages over Standard 

frequentist testing:  

1. Combining (in)dependent tests, adding extra data

2. More than two decisions: not just “accept/reject”

Bayes tests with very special priors are SafeTests, 

even in composite case. Advantages over Standard 

Bayes priors/tests:  

1. Combining (in)dependent tests, adding extra 

data

2. Possible to do pure ‘randomness test’ (no clear 

alternative available) 

All Safe Tests have a gambling and MDL (data 

compression) interpretation 

(with again, advantages over standard MDL tests)



Additional Material



NP philosophy depends heavily on 

counterfactuals, S-values a little, 

TMs do not
• Suppose I plan to test a new medication on exactly 100 

patients. I do this and obtain a (just) significant result   

(p =0.03 based on fixed n=100). But just to make sure I 

ask a statistician whether I did everything right. 
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I’m not sure, I would have asked my boss for money to 

test another 50 patients”. 



The Counterfactual Issue

• Suppose I plan to test a new medication on exactly 100 

patients. I do this and obtain a (just) significant result   

(p =0.03 based on fixed n=100). But just to make sure I 

ask a statistician whether I did everything right. 

• Now the statistician asks: what would you have done if 

your result had been ‘almost-but-not-quite’ significant?

• I say “Well I never thought about that. Well, perhaps, but 

I’m not sure, I would have asked my boss for money to 

test another 50 patients”. 

• Now the statistician has to say: that means your result 

is not significant any more!



A Big Issue with Testing as 

currently practiced  / p-values 

• The standard way of doing null hypothesis testing is 

an amalgam of Fisher’s and Neyman’s ideas

• We reject if 𝑝 ≤ 𝛼 but we do report 𝑝, and claim that 

we have  ‘a lot more evidence’ if 𝑝 ≪ 𝛼

• But how to interpret an observation like 𝑝 < 0.01
when we a priori set 𝛼 = 0.05?



A Big Issue with Testing as 

currently practiced  / p-values 

• The standard way of doing null hypothesis testing is 

an amalgam of Fisher’s and Neyman’s ideas

• We reject if 𝑝 ≤ 𝛼 but we do report 𝑝, and claim that 

we have  ‘a lot more evidence’ if 𝑝 ≪ 𝛼

• But how to interpret an observation like 𝑝 < 0.01
when we a priori set 𝛼 = 0.05?

“in those cases where we observe 𝑝 < 0.01 , we will 

only make a Type I error (false reject) 1%  of the time”

NO! We might make a Type I error in fact in 100% of the 

time in those cases!



A Big Issue with Testing as 

currently practiced  / p-values 

• How to interpret an observation like 𝑝 < 0.01 when 

we a priori set 𝛼 = 0.05?

• Perhaps Wald’s reinterpretation of NP tests in terms 

of loss functions can come to the rescue?



47

Neyman-Pearson Decision Theory 
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In terms of Loss Functions:

•
Loss you make when 𝑯𝒊 is the case, yet 𝒂𝒋 is what you decide

Now decision rule better interpreted as:  



49

In terms of Loss Functions:

•

Frequentist Type-I Error Guarantee:

For simplicity assume

where
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In terms of Loss Functions:

Frequentist Type-I Error Guarantee:

In terms of Loss Functions: 

For simplicity assume

as long as                                

L(µ0; a0) = L(µ1; a1) = 0
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In terms of Loss Functions:

Frequentist Type-I Error Guarantee:

In terms of Loss Functions: 

For simplicity assume

as long as                                

L(µ0; a0) = L(µ1; a1) = 0
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What if there are more than 2 actions? 

±(X) =

8
>>>>><
>>>>>:

a0 : \do nothing"

a1 : \do a second, more expensive investigation"

a2 : \start an expensive anti-meat eating campaign"'

a3 : \ban meat right away"

We want procedure that guarantees:
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Just 2 actions:  

We want procedure that guarantees:

We achieve this by setting
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3 actions:  

We want procedure that guarantees:

It seems we achieve this by setting: 
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3 actions:  

We want procedure that guarantees:

It seems we achieve this by setting: 

doesn’t work!
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3 actions:  

It seems we achieve this by setting: 

doesn’t work!
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Many actions:  

We want procedure that guarantees:

But “natural” decision rule based on p-value gives
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Many actions:  

We want procedure that guarantees:

But “natural” decision rule based on p-value gives

Yet “natural” decision rule based on S-value does give
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3 actions:  

Everything works fine if we set: 
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3 actions:  

Everything works fine if we set: 

(works also with countably ∞ many actions)



A Big Issue with Testing as 

currently practiced  / p-values 

• The standard way of doing null hypothesis testing is 

an amalgam of Fisher’s and Neyman’s ideas

• We reject if 𝑝 ≤ 𝛼 but we do report 𝑝, and claim that 

we have  ‘a lot more evidence’ if 𝑝 ≪ 𝛼

• But how to interpret an observation like 𝑝 < 0.01
when we a priori set 𝛼 = 0.05?

...I claim: interpretation with p-values is terribly unclear.

S-value is better...



Safe Testing and...

• “Amount of evidence against 𝑯𝟎” is thus 

measured in terms of how much money you gain 

in a game that would allow you not to make 

money in the long run if 𝑯𝟎 were true

• ≈ Nonnegative supermartingales introduced by 

Ville (1939) and Vovk’s  (1993) Test Martingales  

every test martingale defines an 

S-value, but not vice versa! 


