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• Model

expresses

where ² is 0-mean, ¾2 –variance Gaussian random 

variable, extended to n outcomes by independence:

Use standard (Gaussian/Inv. Gamma) priors on ¯, ¾2
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Experiment: 

Bayes Factor Model Selection for 

Polynomial Regression

• Model instantiated to 

• Let’s experiment to see what happens if data are 

sampled from following “true” distribution:

• Note: model is (for now!) correct

Y =

kX

j=0

¯jX
j + ²

Xi » Unif.[¡1;1]; i.i.d.
Yi = 0+ ²i; ²i » Normal(0;1); i.i.d.



Experiment

• Model instantiated to 

• Let’s experiment to see what happens if data are 

sampled from following “true” distribution:

• Note: model is (for now!) correct

• ...and Bayes works perfectly well, selects 0-degree 

model after just a few outcomes and keeps on doing 

so for ever

Y =

kX

j=0

¯jX
j + ²

Xi » Unif.[¡1;1]; i.i.d.
Yi = 0+ ²i; ²i » Normal(0;1); i.i.d.



Experiment

• Model instantiated to 

• Let’s experiment to see what happens if data are 

sampled from following “true” distribution:

• At each i, we independently toss a fair coin

• if coin lands heads, as before:

• if tails, we generate an easy example (“in-lier”)

Y =

kX

j=0

¯jX
j + ²

Xi » Unif.[¡1;1]; i.i.d.
Yi = 0+ ²i; ²i » Normal(0;1); i.i.d.

(Xi; Yi) = (0;0)







Risk Graph

Risk measured in Expected Squared Loss on a new outcome

¾2 = 1=20! 1=40 = 0:025



Important Remark

• If nr of basis functions is finite, then problem 

does go away at some point

• Real issue: if we take an infinite nr of basis 

functions (e.g. polynomials of all degree)

• Bayes converges straight away if model 

correct

• Bayes never converges if model contains 

50% easy points
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Generalized Posterior

• Let { 𝑝𝑓 ∶ 𝑓 ∈ F } be a model, i.e. a set of densities

• We define the 𝜂-generalized posterior to be

cf. Vovk (1990), Walker & Hjort (2001), Zhang (2006), 

G. (2011, 2012) 



𝜼 = 𝟏 (standard Bayes) behaves 

badly under misspecification; 

problem goes away with 𝜼 < 𝟎. 𝟒

• See G. and Van Ommen. Inconsistency of Bayesian 

Inference for Misspecified Linear Models, and a 

Proposal for Repairing it . Bayesian Analysis, 

December 2017 (also ISBA 2016). Also R. de Heide, 

Master’s Thesis, Leiden 2016 (real-world data)



The Critical  𝜼

Let 𝑍1, 𝑍2, … ∼ i.i.d. 𝑃

Let 𝑓∗ be element of ℱ minimizing KL divergence to 𝑃

Let  𝜂 be largest 𝜂 > 0 such that for all 𝑓 ∈ ℱ , 

(assume both 𝑓∗ and  𝜂 exist for now)



The Critical  𝜼

Let  𝜂 be largest 𝜂 > 0 such that for all 𝑓 ∈ ℱ , 



What is critical  𝜼 ? 

• Define 

• If model correct,  𝜂= 1, since

...and 𝐴 0 = 1 and 𝐴 𝜂

is (strictly) convex



First (Frequentist) Reason for  𝜼

Let 𝑍1, 𝑍2, … ∼ i.i.d. 𝑃 . Let

• “Theorem” For any 0 < 𝜂 <  𝜂 , 𝜂-generalized Bayes 

tends to concentrate around 𝑓∗ at minimax rate up to 

log factors (parametric and nonparametric settings)

• Reason, abstractly put:

For 𝜂 ≤  𝜂,                   defines a supermartingale

For 𝜂 <  𝜂, it defines a strictly-super-martingale



First (Frequentist) Reason for  𝜼

Let 𝑍1, 𝑍2, … ∼ i.i.d. 𝑃 . Let

• “Theorem” For any 0 < 𝜂 <  𝜂 , 𝜂-generalized Bayes 

tends to concentrate around 𝑓∗ at minimax rate up to 

log factors (parametric and nonparametric settings)

• Reason, abstractly put:

For 𝜂 ≤  𝜂,                   defines a supermartingale

For 𝜂 <  𝜂, it defines a strictly-super-martingale

indeed can extend notion to non-iid settings:  



First Reason for  𝜼

• Posterior Concentration Theorem

• Follows because, abstractly put,               

defines supermartingale

• Less abstractly put: 

Markov’s inequality with union bound

e.g. for countable F



Posterior Concentration Theorem

For all 0 < 𝜂 <  𝜂 , under no further conditions

represents KL-optimal density

is generalized KL div.  

G. & Mehta, 2017b

Retrieve Ghosal, Gosh, 

VDVaart (2000), under 

weaker conditions !



Well-Specified Case

Theorem thus says that if model is correct, then 

generalized Bayes with any 𝜂 < 1 has posterior 

convergence property solely under the prior-KL-property

• Previous nonparametric posterior concentration 

results invariably

• either have additional (more complicated) 

conditions (GGV: entropy nr condition ; 

Barron/Schervish/Wasserman/Zhang condition) 

• or also require 𝜂 < 1 ...

(Walker, Hjort ’01; Zhang ‘06; Barron & Cover, ’91 (!)) 



Misspecified Case

• If model ℱ is convex, then (Li ‘99) for all 𝑓 ∈ F

so again, 𝜂-Bayes with any 𝜂 ≤ 1 will work...  

This is just the

Reverse Information Projection Theorem! 



Misspecified Case

• If model ℱ is convex, then (Li ‘99) for all 𝑓 ∈ F

so again, 𝜂-Bayes with any 𝜂 ≤ 1 will work...  

• We require set of densities to be convex; most 

statistical models are not convex in this sense. e.g. 

linear regression with convex set of regression 

functions is not.



Convex Luckiness

• We say that convex luckiness holds if 

(Van Erven et al. ’15, G & Mehta ’17b) 

• Under convex luckiness, we can ‘get away’ with 

(almost) standard Bayes:  𝜂-Bayes with any 𝜂 < 1 will 

“work”...  



Bad and Good Misspecification



Bad and Good Misspecification



Misspecified Case, Example

• Standard Linear Regression Model with Fixed 

Variance  𝜎2, i.e. ℱ is set of functions 𝒳 → 𝒴 = ℝ

• Suppose “true” 𝑃 𝑌 𝑋 has exponentially small tails*, 

and for some 𝑓∗ ∈ ℱ

and variance                                                 

(signal well-specified, noise misspecified) 

• ...then



Generalized Linear Models

• Similar result holds for GLMs. Suppose that:

1. for some 𝜆 > 0 ,

2. 𝑝𝑓: 𝑓 ∈ ℱ contains true conditional mean, i.e.  

there exists 𝑓∗ ∈ ℱ with  

3. boring technical stuff about link function

...then  𝜂 > 0 and moreover  𝜂 converges to 

as 𝜖 → 0 , i.e. we “shrink” model to 𝑓∗ (G. & Mehta,’17b) 
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“Don’t Touch the Likelihood!”

Even though...

• even for well-specified models, anomalies can 

occur with 𝜂 = 1 , i.e. standard Bayes (Barron ‘99, 

Zhang ‘06, Csiszar & Shields, ‘00)  

• Under misspecification, 𝜂 = 1 can yield 

disastrous results and 𝜂 ≪ 1 works fine

• Posterior concentration can be proven under 

much weaker conditions once 𝜂 < 1 ..

...Bayesians are hesitant to use generalized 

Bayes....even frequentist Bayesians are...



“Don’t Touch the Likelihood!”

• In G. and van Ommen (2017, Section 4.1), we give a 

novel interpretation of generalized Bayes that, we 

hope, will help convince people...



Entropification

• Following G. (’98), Li (‘99), Van Erven et al. (‘15), 

define reweighted measures

• For 𝜂 ≤  𝜂 , we have for all 𝑓 ∈ ℱ:  𝑝′
𝑓,𝜂 𝑧 𝑑𝜇(𝑧) ≤ 1



Entropification

• Following G. (’98), Li (‘99), Van Erven et al. (‘15), 

define reweighted measures

• For 𝜂 ≤  𝜂 , we have for all 𝑓 ∈ ℱ:  𝑝𝑓,𝜂
′ 𝑧 𝑑𝜇(𝑧) ≤ 1

• Let 𝒵′ = 𝒵 ∪ {∘}, where ∘ is a fake outcome that will

never actually occur. Extend 𝑝𝑓,𝜂
′ to 𝒵′ by setting

• Now {𝑝𝑓,𝜂
′ ∶ 𝑓 ∈ ℱ} is a probability model



INSIGHT 1: {𝑝𝑓,𝜂
′ ∶ 𝑓 ∈ ℱ} , even though it 

contains many silly distributions that waste some 

of their mass on things that will never happen, is 

a well-specified model for every 𝜂 > 0!



INSIGHT 1: {𝑝𝑓,𝜂
′ ∶ 𝑓 ∈ ℱ} is well-specified model!

INSIGHT 2: The standard Bayesian posterior for 

this new model coincides with the  𝜂-Bayesian 

posterior for model { 𝑝𝑓: 𝑓 ∈ ℱ} 

G. and van Ommen, BA 2017, Section 4.1.

(this is new insight, not to be found in earlier arxiv version

and ISBA 2016 presentation!)



Touch the Likelihood!

INSIGHT 1: {𝑝𝑓,𝜂
′ ∶ 𝑓 ∈ ℱ} is well-specified model!

INSIGHT 2: The standard Bayesian posterior for 

this new model coincides with the  𝜂-Bayesian 

posterior for model { 𝑝𝑓: 𝑓 ∈ ℱ} 

• Thus, under misspecification, generalized Bayes 

with right 𝜂 actually has interpretation as applying 

Bayes’ theorem to a well-specified model;

standard Bayes does not!

• So once you accept misspecification it’s more 

Bayesian to touch the likelihood than to not touch it!



We should perhaps embrace 𝜼 −
Bayes more fully!

• We often use pseudo-likelihoods to simplify 

computations etc. 

• variational Bayes, substitution likelihood, 

rank-based likelihood....

• Our interpretation suggests that in all such 

cases, it might be better to use appropriate 

𝜂 ≠ 1 since then our posterior is still 

interpretable as applying Bayes rule to a 

correct model!



So why 𝜼 <  𝜼 rather than 𝜼 =  𝜼?

• If we take 𝜂 =  𝜂 then this is sufficient to 

prove consistency/convergence (at right rate) 

of Bayes posterior predictive distribution 

i.e. 

where the convergence is ‘in mean sum’      

(Barron ISBA ‘98, Grünwald ‘07)



So why 𝜼 <  𝜼 rather than 𝜼 =  𝜼?

• If we take 𝜂 =  𝜂 then this is sufficient to prove 

consistency/convergence (at right rate) of Bayes 

posterior predictive distribution 

• But if we want concentration of the posterior,  then 

something weird can (and sometimes does) 

happen...

• Barron (ISBA ‘99), Cziszar & Shields 

(inconsistency of Bayes model selection for 

Markov models) and Zhang (‘06)...



Bad Posterior, Good Predictive



Posterior concentration

Posterior concentration guaranteed if we take 𝜂 strictly 

(but slightly) smaller than  𝜂, since 

(a) model remains correct, i.e.          remains true 

distribution, wasting 0 mass to fake outcomes 

(b) convergence/consistency thm remains valid 

(although convergence will be slightly slower) 

(c) ...



Posterior concentration

Posterior concentration guaranteed if we take 𝜂 strictly 

(but slightly) smaller than  𝜂, since 

(a) model remains correct, i.e.          remains true 

distribution, wasting 0 mass to fake outcomes 

(b) convergence/consistency thm remains valid 

(although convergence will be slightly slower) 

(c) all other        now assign strictly positive probability 

to fake outcomes... hence so do their mixtures, so these 

mixtures can never become competitive with

• ...hence convergence of the predictive now implies 

concentration of the posterior 



 𝜼

derivative of 𝐴 𝜂 = 𝐸
𝑝𝑓

𝑝𝑓∗

𝜂

at 𝜂 =  𝜂 “proportional” to 𝐷𝑃(𝑓∗||𝑓)

the worse 𝑓 , the more mass it will start wasting:



 𝜼

derivative of 𝐴 𝜂 = 𝐸
𝑝𝑓

𝑝𝑓∗

𝜂

at 𝜂 =  𝜂 “proportional” to 𝐷𝑃(𝑓∗||𝑓)

the worse 𝑓 , the more mass it will start wasting:

Prediction easier than 

identification!



Safe Bayes, Safe Probability

• In previous work, I used phrase ‘safe Bayes’ in two 

senses:

1. Specific algorithm for learning 𝜂 from the data 

(‘G. ‘12, The Safe Bayesian; G. and vOmmen ‘17)

2. General idea that probabilities should not be 

taken fully seriously; their application should be 

restricted to safe uses 



Safe Bayes, Safe Probability

• In previous work, I used phrase ‘safe Bayes’ in two 

senses:

1. Specific algorithm for learning 𝜂 from the data 

(‘G. ‘12, The Safe Bayesian; G. and vOmmen ‘17)

• R Package on CRAN for regression using 𝜂-generalized 

Bayes and SafeBayes (De Heide, ’16)

• Provably finds ‘right  𝜂’ for bounded likelihood ratios

• In practice significantly outperforms Bayesian Lasso   

(De Heide, ‘16)

• I am not wed to this algorithm however!

• I am wed to claim that ‘  𝜂 < 𝜂’ is ‘right value to use’!

(INVITE: write R packages for other models than regression)



Safe Bayes, Safe Probability

• In previous work, I used phrase ‘safe Bayes’ in two 

senses:

1. Specific algorithm for learning 𝜂 from the data 

(‘G. ‘12, The Safe Bayesian; G. and vOmmen ‘17)

2. General idea that probabilities should not be 

taken fully seriously; their application should be 

restricted to safe uses 



Safe Probability

General idea that probabilities should not be taken 

fully seriously; their application should be restricted to 

safe uses

• misspecification: If your model is incorrect, then you 

might still converge (with the right 𝜂 ) to a distribution that 

estimates the conditional mean correctly, but perhaps not 

the conditional median; or that would give a very bad idea 

about the noise distribution (cf Watson & Holmes ‘16, 

contextuality of misspecification) 

• priors...even if model correct



Safe Misspecified Bayes

• KL-associated prediction tasks: those on which you 

can give guarantees, as long as you use right 𝜂 so 

that you converge to the KL-optimal distribution in 

your model

• For linear regression model, 2 KL-associated tasks:

• Optimality of squared error predictions of 𝑝𝑓∗

• Safety of your error assessment thereof



Safe Bayes, Safe Probability

Even if your model is correct, in Bayesian practice you 

often cannot assume that your prior really captures your 

beliefs



Safe Priors

Even if your model is correct, in Bayesian practice you 

often cannot assume that your prior really captures your 

beliefs

In that case, you should restrict the applicability of your 

prior: state what it can be used for and not. 



Safe Priors

Even if your model is correct, in Bayesian practice you 

often cannot assume that your prior really captures your 

beliefs

Example 1: Bernoulli with Jeffreys’ prior. If you really 

believe the prior, you would be willing to play the following 

game: 10000 outcomes will be generated ; then: 

• if empirical average is between 0.45-0.55, you pay 9$

• If between 0 and 0.05 you get 1$ 

• Otherwise nothing happens

Who in this room would actually want to play this game!?



Safe Priors

Even if your model is correct, in objective Bayes 

approaches (that’s what we’re here for!) you cannot 

assume that your prior really captures your beliefs

In that case, you should restrict the applicability of your 

prior: state what it can be used for and not. 



A Vision: Safe Probability

A principled way to state what your model/prior should 

and should not be used for. For example, if you do a 

Bayesian regression analysis, you could, depending on 

how sure you are of model/prior, state that 

– inference is safe for learning the optimal squared 

error predictor within your model

– inference is safe for learning the true regression 

function (i.e. you have to be right conditional on 𝑋)

– inference is safe for making probability rather than 

in-expectation statements of 𝑌 (noise process 

correct)



A Vision: Safe Probability

In hypothesis testing, you could state for example:

– my priors are safe for a given sampling plan

– my priors are safe under optional continuation 

– my priors are safe under optional stopping

– my priors are safe for gambling

• you really believe them in the sense that you would be 

willing to pay 1$ for a bet that pays out 2$ if 𝜃 lies in a set of 

prior prob > ½)

If we would all adopt such a stance, it would lead to 

(yes!) safer statistics.

A first, theoretical stab in this direction is made by G. 

2017, Safe Probability, Journ.Stat. Planning & Inference



Thank you 

for your attention!
Further Reading and Doing: 

• G. and Van Ommen, Bayesian Analysis, Dec. 2017

• G. and Mehta, Fast Rates for Unbounded Losses, arXiv

(2016, 2017b – first part is about Bayesian consistency and 

convergence under misspecification)

• G. Safe Probability. Journal of Statistical Planning and 

Inference, 2017

• R-Package SafeBayes for regression



Additional Material



Part II: 

Safe Bayes, Safe Probability

• In previous work, I used phrase ‘safe Bayes’ in two 

senses:

1. Specific algorithm for learning 𝜂 from the data 

(‘G. ‘12, The Safe Bayesian; G. and vOmmen ‘17)

2. General idea that in practice probabilities should 

not be taken fully seriously; their application 

should be restricted to safe uses 

(G., Safe Probability, JSPI ‘18) 



Two Extreme Views on Learning –

yet using almost same methods

• Vapnik’s ML Theory                          

(‘statistical learning theory’, 50000 citations)

Can only do one single thing with the function 

learned from data

• Bayesian Inference (at least De Finetti brand)

Every single inference task that can be 

formulated in terms of measurable fns on my 

domain can be answered by my posterior



Two Extremist Views on Learning 

– yet using almost same methods

• Vapnik’s ML Theory                          

(‘statistical learning theory’, 50000 citations)

Can only do one single thing with the function I 

learned from data

• Bayesian Inference (at least De Finetti brand)

Every single inference task that can be 

formulated in terms of measurable fns on my 

domain can be answered by my posterior



Example: Ridge/Lasso Regression

V: assume 𝑋𝑖 , 𝑌𝑖 i.i.d.∼ 𝑃 .For large enough 𝑛, ‘right’ 

𝜆, we have

“Hence I can get small squared error when predicting a 

new 𝑌 based on a new 𝑋 from the same distribution”



V: assume 𝑋𝑖 , 𝑌𝑖 i.i.d.∼ 𝑃 .For large enough 𝑛, ‘right’ 

𝜆, we have

“Hence I can get small squared error when predicting a 

new 𝑌 based on a new 𝑋 from the same distribution”

Q: What if new X drawn from different distribution?

V: You can’t say anything!



V: assume 𝑋𝑖 , 𝑌𝑖 i.i.d.∼ 𝑃 .For large enough 𝑛, ‘right’ 

𝜆, we have

“Hence I can get small squared error when predicting a 

new 𝑌 based on a new 𝑋 from the same distribution”

Q: What if new X drawn from different distribution?

V: You can’t say anything!

Q: Does          give a good estimate of                ?

V: Can’t say!  



B:  𝛽𝑛 is also posterior mean (even with prior on 𝜎2 )

So I agree that I can get small squared error when 

predicting a new 𝑌 based on a new 𝑋 from same distr.

Q: What if new X drawn from different distribution?

B: You’ll still be o.k.!

Q: Does          give a good estimate of                ?

B: Of course!



B:  𝛽𝑛 is also posterior mean (even with prior on 𝜎2 )

So I agree that I can get small squared error when 

predicting a new 𝑌 based on a new 𝑋 from same distr.

Q: What if new X drawn from different distribution?

B: You’ll still be o.k.!

Q: Does          give a good estimate of                ?

B: Of course!

Q: Does          give good estimate of median of 𝑌 given 𝑋?

B: Of course!

Q: Is 𝑃 𝑌 𝑋 unimodal? B: Of course! Etc etc



B:  𝛽𝑛 is also posterior mean (even with prior on 𝜎2 )

So I agree that I can get small squared error when 

predicting a new 𝑌 based on a new 𝑋 from same distr.

Q: What if new X drawn from different distribution?

B: You’ll still be o.k.!

Q: Does          give a good estimate of                ?

B: Of course!

Q: Does          give good estimate of median of 𝑌 given 𝑋?

B: Of course!

Q: Is 𝑃 𝑌 𝑋 unimodal? B: Of course! Etc etc

V&B use almost same method but draw 

very weak vs very strong conclusions! 



Safe Statistics: Go Inbetween

• In reality one is often ‘somewhere inbetween’

• If I do 𝜂 −Bayesian linear regression with normal 

prior on 𝛽 , standard prior on variance 𝜎2 and 𝜂 <  𝜂 , 

then if data i.i.d. I can guarantee convergence to KL 

optimal 𝑓∗ 𝑥 = 𝛽∗𝑇𝑥 and 𝜎∗ which will also satisfy

• Optimality of squared error predictions of 𝑝𝑓∗

• Safety of your error assessment thereof



Safe Statistics: Go Inbetween

• If I assume data i.i.d. I can guarantee

• Optimality of squared error predictions of 𝑝𝑓∗

• Safety of error assessment thereof

• If(f) I am further willing to assume that F contains 

Bayes-optimal decision rule...

....then I can guarantee that  

• If on top I want to assume that 𝑃 𝑌 𝑋 is symmetric 

then I can guarantee that 𝑓∗ 𝑋 is median of 𝑃 𝑌 𝑋



I have a Dream

• Imagine a world in which statisticians/data 

analysts would, as a matter of principle, be 

asked to express what their model can be 

used for and what not. 

• Then indeed we would have a safer statistics

• ...in the paper  ‘Safe Probability’ I make a 

first attempt to develop a formal language for 

specifying this



New Mathematical 

Questions/Concepts

• Optimality: If I assume <X>, for what 

inference/prediction tasks am I (sufficiently) optimal?

• Some scattered nontrivial results exist in machine 

learning theory literature.



New Mathematical 

Questions/Concepts

• Optimality: If I assume <X>, for what 

inference/prediction tasks am I (sufficiently) optimal?

• Some scattered nontrivial results exist in machine 

learning theory literature. For example:

if you do logistic regression ((penalized) conditional 

likelihood maximization of logistic model) and you are 

really interested in classification, then your KL optimal 

parameters (to which you’ll converge) also give you the 

smallest expected 0/1-loss when used for classification 

if your model contains the Bayes optimal classifier 

(Bartlett, Jordan, McAullife ‘06)



New Mathematical 

Questions/Concepts

• Optimality: If I assume <X>, for what 

inference/prediction tasks am I (sufficiently) optimal? 

• Safety: central concept of G. 2018.

A distribution  𝑃 is safe for predicting against loss 

function 𝐿 with ‘true’ distribution 𝑃 if it holds that 

where 𝛿  𝑃 is the Bayes act according to  𝑃



• Optimality: If I assume <X>, for what 

inference/prediction tasks am I (sufficiently) optimal? 

• Safety: Simplest form: 

A distribution  𝑃 is safe for predicting against loss 

function 𝐿 with ‘true’ distribution 𝑃 if it holds that 

where 𝛿  𝑃 is the Bayes act according to  𝑃

If you act as your model prescribes, the world behaves as 

your model predicts, even though your model may be 

wrong and there may be better predictions!

Safe Probability

Optional stopping!


