
Eclectic Lectures Part III: 

Safe Bayes, 

Statistical Learning 

Peter Grünwald

Centrum Wiskunde & Informatica – Amsterdam

Mathematical Institute – Leiden University 

Joint work with Nishant 

Mehta, Thijs van Ommen, 

Rianne de Heide



:  

Invariably, 

𝑺 nonnegative



Rough Plan of Lectures

1. Safe Testing (Statistics/AB Testing)

2. Safe Testing (Information Theory)

3. Safe and Generalized Bayes

– Zhang-G.-Mehta Thm density estimation

4. Fast Rate Conditions in Statistical 

(stochastic) and Online (nonstochastic) 

Learning

– Zhang-G-Mehta Thm general loss fns

5. Safety and Luckiness



Generalized Posterior

• Let { 𝑝𝑓 ∶ 𝑓 ∈ F } be a model, i.e. a set of densities

• We define the 𝜂-generalized posterior to be

cf. Vovk (1990), Walker & Hjort (2001), Zhang (2006), 

G. (2011, 2012) 



𝜼 = 𝟏 (standard Bayes) behaves 

badly under misspecification; 

problem goes away with 𝜼 < 𝟎. 𝟒

• See G. and Van Ommen. Inconsistency of Bayesian 

Inference for Misspecified Linear Models, and a 

Proposal for Repairing it . Bayesian Analysis, 

December 2017 (also ISBA 2016). Also R. de Heide, 

Master’s Thesis, Leiden 2016 (real-world data)



The Critical  𝜼

Let 𝑍1, 𝑍2, … ∼ i.i.d. 𝑃

Let 𝑓∗ be element of ℱ minimizing KL divergence to 𝑃

Let  𝜂 be largest 𝜂 > 0 such that for all 𝑓 ∈ ℱ , 

(assume both 𝑓∗ and  𝜂 exist for now)

𝜂-Bayes “works” for any 𝜂 <  𝜂



What is critical  𝜼 ? 

• Define 

• If model correct,  𝜂= 1, since

...and 𝐴 0 = 1 and 𝐴 𝜂

is (strictly) convex



Misspecified Case

• If model ℱ is convex, then (Li ‘99) for all 𝑓 ∈ F

so again, 𝜂-Bayes with any 𝜂 ≤ 1 will work...  

This is just the

Reverse Information Projection Theorem! 



Misspecified Case

• If model ℱ is convex, then (Li ‘99) for all 𝑓 ∈ F

so again, 𝜂-Bayes with any 𝜂 ≤ 1 will work...  

• We require set of densities to be convex; most 

statistical models are not convex in this sense. e.g. 

linear regression with convex set of regression 

functions is not.



Convex Luckiness

• We say that convex luckiness holds if 

(Van Erven et al. ’15, G & Mehta ’17b) 

• Under convex luckiness, we can ‘get away’ with 

(almost) standard Bayes:  𝜂-Bayes with any 𝜂 < 1 will 

“work”...  



Bad and Good Misspecification



Bad and Good Misspecification



Misspecified Case, Example

• Standard Linear Regression Model with Fixed 

Variance  𝜎2, i.e. ℱ is set of functions 𝒳 → 𝒴 = ℝ

• Suppose “true” 𝑃 𝑌 𝑋 has exponentially small tails*, 

and for some 𝑓∗ ∈ ℱ

and variance                                                 

(signal well-specified, noise misspecified) 

• ...then



Simple Example - Critical  𝜼 < 1

• Let 𝑋1, 𝑋2, … be i.i.d. Bernoulli 𝑝∗

• Model is 𝑝 ∈ 0.2,0.8 ,

• Prior is 𝑤 0.2 = 𝑤 0.8 = 1/2. 

• “True” 𝑝∗ =½ (in practice: close to ½)

• By CLT: 𝑤 𝑝 𝑋𝑛 = 𝑂(𝑒−𝜂√𝑛) for either 𝑝 = 0.2 or 

𝑝 = 0.8

• Bayes is very convinced that one of the two 

hypotheses is true, even though they’re equally false

• If we set 𝜂 = 1/√𝑛, this will not happen. Indeed this 

is ‘optimal’ value in this case. 



• Model is 𝑝 ∈ [0.2,0.8]. 

• “True” 𝑝∗ = 1 (hence we see 1,1,1,1....)

•  𝑝 = 0.8 is closest to 𝑝∗ in KL divergence.

• Now data are more informative for learning  𝑝 than 

you would expect them to be if  𝑝 where true... 

• ...hence it makes sense to learn faster than usual: 

set 𝜂 ≫ 1 (  𝜂 = ∞ → Bayes puts all mass on ML 

estimator  𝑝 = 0.8)

• In realistic cases  𝜂 not so high but might still be > 1

Critical  𝜼 > 𝟏: borderline case



Reasons why using 𝜼 <  𝜼 does 

work 

1. Union Bound/Zhang-G.M. Convergence 

Theorem 

2. “No Hypercompression” Theorem

3. 𝜂-generalized Bayes becomes standard 

Bayes for modified model!



Posterior Concentration Theorem

For all 0 < 𝜂 <  𝜂 , under no further conditions

represents KL-optimal density

is generalized KL div.  

G. & Mehta, 2017b

Retrieve Ghosal, Gosh, 

VDVaart (2000), under 

weaker conditions !



So why 𝜼 <  𝜼 rather than 𝜼 =  𝜼?

• If we take 𝜂 =  𝜂 then this is sufficient to 

prove consistency/convergence (at right rate) 

of Bayes posterior predictive distribution 

i.e. 

where the convergence is ‘in mean sum’      

(Barron ISBA ‘98, Grünwald ‘07)



So why 𝜼 <  𝜼 rather than 𝜼 =  𝜼?

• If we take 𝜂 =  𝜂 then this is sufficient to prove 

consistency/convergence (at right rate) of Bayes 

posterior predictive distribution 

• But if we want concentration of the posterior,  then 

something weird can (and sometimes does) 

happen...

• Barron (ISBA ‘99), Cziszar & Shields 

(inconsistency of Bayes model selection for 

Markov models) and Zhang (‘06)...

• Very different from Diaconis-Freedman Bayes 

inconsistency!



Bad Posterior, Good Predictive



Zhang, G. and Mehta

• Posterior Concentration Theorem is slight extension 

of Zhang’s (2006) bound, itself related to 

Catoni/Audibert’s bounds

• Zhang’s bound also applies to general loss fns 

rather than log likelihood)

• In recent work, G&M (2016, 2017) tremendously 

generalized Zhang’s bound

• Plan:

1. Posterior concentration version of Zhang’s bound

2. Extension to general loss fns

3. Our Extensions



Zhang’s (’06) Bound, Special Case

For every learning algorithm  Π𝑛 ≔  Π|Zn that outputs a 

distribution on model     , every ‘prior’ Π0 every 0 < 𝜂 <  𝜂 :



Zhang’s (’06) Bound

For every learning algorithm  Π𝑛 ≔  Π|Zn that outputs a 

distribution on model     , every ‘prior’ Π0 every 0 < 𝜂 <  𝜂 :

generalized Hellinger distance: under  𝜂 = 1 and 

well-specification, this becomes squared standard 

Hellinger distance: 



Zhang’s (’06) Bound

For every learning algorithm  Π𝑛 ≔  Π|Zn that outputs a 

distribution on model     , every ‘prior’ Π0 every 0 < 𝜂 <  𝜂 :



Zhang’s (’06) Bound

For every learning algorithm  Π𝑛 ≔  Π|Zn that outputs a 

distribution on model     , every ‘prior’ Π0 every 0 < 𝜂 <  𝜂 :

Example: F finite,  Π𝑛 implements ML, i.e. puts probability 

1 on ML estimator  𝑓 : 



Zhang’s (’06) Bound

For every learning algorithm  Π𝑛 ≔  Π|Zn that outputs a 

distribution on model     , every ‘prior’ Π0 every 0 < 𝜂 <  𝜂 :

Example: F finite,  Π𝑛 implements ML, i.e. puts probability 

1 on ML estimator  𝑓 : 



Zhang’s (’06) Bound

For every learning algorithm  Π𝑛 ≔  Π|Zn that outputs a 

distribution on model     , every ‘prior’ Π0 every 0 < 𝜂 <  𝜂 :

Example: F finite,  Π𝑛 implements ML, i.e. puts probability 

1 on ML estimator  𝑓 : 



Zhang’s (’06) Bound

For every learning algorithm  Π𝑛 ≔  Π|Zn that outputs a 

distribution on model     , every ‘prior’ Π0 every 0 < 𝜂 <  𝜂 :

Example: F finite,  Π𝑛 implements ML, i.e. puts probability 

1 on ML estimator  𝑓 , 𝚷𝟎 uniform: 



Zhang’s (’06) Bound

For every learning algorithm  Π𝑛 ≔  Π|Zn that outputs a 

distribution on model     , every ‘prior’ Π0 every 0 < 𝜂 <  𝜂 :



Zhang’s  (’06) bound

For 𝜼-generalized Bayes posterior  Π𝑛 ≔  Π|Zn based 

on arbitrary ‘prior’ Π0 every 0 < 𝜂 <  𝜂 :



Zhang’s  (’06) bound

For 𝜼-generalized Bayes posterior  Π𝑛 ≔  Π|Zn based 
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Zhang’s  (’06) bound

For 𝜼-generalized Bayes posterior  Π𝑛 ≔  Π|Zn based 

on arbitrary ‘prior’ Π0 every 0 < 𝜂 <  𝜂 :



Zhang’s  (’06) bound

For 𝜼-generalized Bayes posterior  Π𝑛 ≔  Π|Zn based 

on arbitrary ‘prior’ Π0 every 0 < 𝜂 <  𝜂 :

Retrieve Ghosal, 

Gosh, VDVaart!



Zhang, G. and Mehta

• Posterior Concentration Theorem is slight extension 

of Zhang’s (2006) bound, itself related to 

Catoni/Audibert’s bounds

• Zhang’s bound also applies to general loss fns 

rather than log likelihood

• In recent work, G&M (2016, 2017) tremendously 

generalized Zhang’s bound

• Plan:

1. Posterior concentration version of Zhang’s bound

2. Extension to general loss fns

3. Our Extensions



First Extension: ESI notation

For every learning algorithm  Π𝑛 ≔  Π|Zn that outputs a 

distribution on model     , every ‘prior’ Π0 every 0 < 𝜂 <  𝜂 :

Here         means inequality holds both in expectation and 

with very high probability over 

𝑍𝑛 = 𝑍1, … , 𝑍𝑛 = 𝑋1, 𝑌1, , … , 𝑋𝑛, 𝑌𝑛 ∼ i.i.d. 𝑃



Generalized Bayes posteriors

• { 𝑝𝑓 ∶ 𝑓 ∈ F } set of densities



Generalized and Gibbs posteriors

• { 𝑝𝑓 ∶ 𝑓 ∈ F } set of densities

• ℱ set of predictors

• ℓ𝑓: 𝒵 → ℝ loss function for predictor 𝑓

e.g. squared error loss, 

𝑍𝑖 = (𝑋𝑖 , 𝑌𝑖) ;  ℓ𝑓( 𝑥, 𝑦 ) = 𝑦 − 𝑓 𝑥
2



Generalized and Gibbs posteriors

• { 𝑝𝑓 ∶ 𝑓 ∈ F } set of densities

• ℱ set of predictors

• ℓ𝑓: 𝒵 → ℝ loss function for predictor 𝑓

• works for arbitrary loss functions; for log-loss, 

ℓ𝑓 𝑍 = − log 𝑝𝑓(𝑍), Gibbs posterior reduces to 

generalized posterior



Zhang’s (2004,2006)  PAC-Bayes

Excess Risk Bound

holds for general distribution-output estimators    

(including deterministic estimators, e.g. ERM)

distribution can be, but need not be, a 

generalized posterior/Gibbs distribution   

For every learning algorithm  Π𝑛 ≔  Π|Zn that outputs a 

distribution on model     , every ‘prior’ Π0 every 𝜂 > 0 :



Zhang’s Excess Risk Bound

G. & Mehta 2016 mostly about extending the 

left-hand side

G. & Mehta 2017a mostly about the right-hand 

side

For every learning algorithm  Π𝑛 ≔  Π|Zn that outputs a 

distribution on model     , every ‘prior’ Π0 every 𝜂 > 0 :



Here         means inequality holds both in expectation and 

with very high probability over 

𝑍𝑛 = 𝑍1, … , 𝑍𝑛 = 𝑋1, 𝑌1, , … , 𝑋𝑛, 𝑌𝑛 ∼ i.i.d. 𝑃

For every learning algorithm  Π𝑛 ≔  Π|Zn that outputs a 

distribution on model     , every ‘prior’ Π0 every 𝜂 > 0 :

Zhang’s Excess Risk Bound



Here         means inequality holds both in expectation and 

with very high probability over 

𝑍𝑛 = 𝑍1, … , 𝑍𝑛 = 𝑋1, 𝑌1, , … , 𝑋𝑛, 𝑌𝑛 ∼ i.i.d. 𝑃

For every learning algorithm  Π𝑛 ≔  Π|Zn that outputs a 

distribution on model     , every ‘prior’ Π0 every 𝜂 > 0 :

Zhang’s Excess Risk Bound



𝑟𝑓 𝑍 ≔ ℓ𝑓 𝑍 − ℓ𝑓∗ 𝑍 is excess loss on 𝑍

For every learning algorithm  Π𝑛 ≔  Π|Zn that outputs a 

distribution on model     , every ‘prior’ Π0 every 𝜂 > 0 :

Zhang’s Excess Risk Bound



𝑟𝑓 𝑍 ≔ ℓ𝑓 𝑍 − ℓ𝑓∗ 𝑍 is excess loss on 𝑍

ℓ can be any loss function

e.g. 𝑍 = 𝑋, 𝑌 , ℓ𝑓 (𝑋, 𝑌) = |𝑌 − 𝑓 𝑋 | (0/1-loss)

𝑍 = 𝑋, 𝑌 , ℓ𝑓 (𝑋, 𝑌) = 𝑌 − 𝑓 𝑋
2

(sq. Err. loss)

ℓ𝑓 𝑍 = − log 𝑝𝑓(𝑍) (log loss)

For every learning algorithm  Π𝑛 ≔  Π|Zn that outputs a 

distribution on model     , every ‘prior’ Π0 every 𝜂 > 0 :

Zhang’s Excess Risk Bound



𝑟𝑓 𝑍 ≔ ℓ𝑓 𝑍 − ℓ𝑓∗ 𝑍 is excess loss on 𝑍

ℓ can be any loss function (0/1, square, log-loss, ...) 

𝑓∗ is risk minimizer in      :      

For every learning algorithm  Π𝑛 ≔  Π|Zn that outputs a 

distribution on model     , every ‘prior’ Π0 every 𝜂 > 0 :

Zhang’s Excess Risk Bound



Zhang’s Excess Risk Bound

For every learning algorithm  Π𝑛 ≔  Π|Zn that outputs a 

distribution on model     , every ‘prior’ Π0 every 𝜂 > 0 :



Special Case of Deterministic  𝒇

For every learning algorithm  𝑓 that upon observing 𝑍𝑛

outputs predictor  𝑓|𝑍𝑛 in countable subset             , every 

‘prior’ mass fn 𝜋0 every 𝜂 > 0 :



Special Case of Deterministic  𝒇

𝑟𝑓 𝑍 ≔ ℓ𝑓 𝑍 − ℓ𝑓∗ 𝑍 is excess loss on 𝑍

For every learning algorithm  𝑓 that upon observing 𝑍𝑛

outputs predictor  𝑓|𝑍𝑛 in countable subset            , every 

‘prior’ mass fn 𝜋0 every 𝜂 > 0 :



Special Case of Deterministic  𝒇

𝑟𝑓 𝑍 ≔ ℓ𝑓 𝑍 − ℓ𝑓∗ 𝑍 is excess loss on 𝑍

Left-hand side: ‘annealed’ excess risk. 

Can under some conditions be replaced by actual excess 

risk for sufficiently small 𝜂

Let us assume that we can do this for now!

For every learning algorithm  𝑓 that upon observing 𝑍𝑛

outputs predictor  𝑓|𝑍𝑛 in countable subset            , every 

‘prior’ mass fn 𝜋0 every 𝜂 > 0 :



Special Case of Deterministic  𝒇

𝑟𝑓 𝑍 ≔ ℓ𝑓 𝑍 − ℓ𝑓∗ 𝑍 is excess loss on 𝑍

Left-hand side: ‘annealed’ excess risk. 

Can under some conditions be replaced by actual excess 

risk for sufficiently small 𝜂

Let us assume that we can do this for now!

For every learning algorithm  𝑓 that upon observing 𝑍𝑛

outputs predictor  𝑓|𝑍𝑛 in countable subset            , every 

‘prior’ mass fn 𝜋0 every 𝜂 > 0 :



Special Case of Deterministic  𝒇

𝑟𝑓 𝑍 ≔ ℓ𝑓 𝑍 − ℓ𝑓∗ 𝑍 is excess loss on 𝑍

Example: ERM (empirical risk minimization)

(think of e.g. least squares)

For every learning algorithm  𝑓 that upon observing 𝑍𝑛

outputs predictor  𝑓|𝑍𝑛 in countable subset             , every 

prior mass fn 𝜋0 , under appropriate conds. on (𝑃, ℓ𝑓, 𝜂)



Special Case of Deterministic  𝒇

𝑟𝑓 𝑍 ≔ ℓ𝑓 𝑍 − ℓ𝑓∗ 𝑍 is excess loss on 𝑍

Example: ERM (empirical risk minimization)

For every learning algorithm  𝑓 that upon observing 𝑍𝑛

outputs predictor  𝑓|𝑍𝑛 in countable subset             , every 

prior mass fn 𝜋0 , under appropriate conds. on (𝑃, ℓ𝑓, 𝜂)



Special Case of Deterministic  𝒇

𝑟𝑓 𝑍 ≔ ℓ𝑓 𝑍 − ℓ𝑓∗ 𝑍 is excess loss on 𝑍

Example: ERM (empirical risk minimization)

...with uniform prior and finite F ...

For every learning algorithm  𝑓 that upon observing 𝑍𝑛

outputs predictor  𝑓|𝑍𝑛 in countable subset             , every 

prior mass fn 𝜋0 , under appropriate conds. on (𝑃, ℓ𝑓, 𝜂)



Special Case of Deterministic  𝒇

𝑟𝑓 𝑍 ≔ ℓ𝑓 𝑍 − ℓ𝑓∗ 𝑍 is excess loss on 𝑍

Example: ERM (empirical risk minimization)

...with uniform prior and finite F ...

get O(1/n) convergence rate!

For every learning algorithm  𝑓 that upon observing 𝑍𝑛

outputs predictor  𝑓|𝑍𝑛 in countable subset             , every 

prior mass fn 𝜋0 , under appropriate conds. on (𝑃, ℓ𝑓, 𝜂)



Log-Loss

𝑟𝑓 𝑍 ≔ ℓ𝑓 𝑍 − ℓ𝑓∗ 𝑍 is excess loss on 𝑍.

For log-loss, left-hand side is generalized KL divergence 

and right-hand side is log-likelihood ratio!

For every learning algorithm  𝑓 that upon observing 𝑍𝑛

outputs predictor  𝑓|𝑍𝑛 in countable subset             , every 

prior mass fn 𝜋0 , under appropriate conds. on (𝑃, ℓ𝑓, 𝜂)



KL vs Hellinger

• Apparently, if the ‘special conditions’ hold 

that allow us to replace annealed excess risk 

by actual excess risk and we consider log-

loss, we get original version of Zhang’s 

theorem back but with a KL instead of a 

Hellinger on the left!

(works also with probabilistic estimator)

• Both stronger and conceptually nicer!



𝒇’s empirical 

excess risk

annealed excess 

risk of draw of 

𝒇 according to 

‘posterior’ data-dependent 

complexity term

Zhang’s Excess Risk Bound



Zhang’s Excess Risk Bound

annealed excess risk 



Zhang’s Excess Risk Bound

But we are really interested in the actual excess risk           !

annealed excess risk 



Zhang’s Excess Risk Bound

But we are really interested in the actual excess risk           !

Annealed excess risk is lower bound on actual excess risk

(can even be negative!)

Indeed with annealed risk result holds completely generally, 

no further conditions! (that’s why we state it like this)

annealed excess risk 



Zhang’s Excess Risk Bound

But we are really interested in the actual excess risk           !

annealed excess risk is lower bound on actual excess risk

but for right choice of 𝜂 also upper bounds actual excess risk

up to constant factor

annealed excess risk 



From Annealed Risk to Hellinger:

• log-loss with well-specified probability model: for any 

𝜂 < 1 annealed risk larger than constant times 

Hellinger distance2 (Zhang ‘06)

• log-loss with misspecified model: for any 𝜂 <
 𝜂 annealed risk larger than constant times 

generalized Hellinger distance2 (G&M ’17a)

• But from now on we are only interested in excess 

risk on the left

• For log-loss & well-specified this is nicer

• For other loss fns / misspecified this is essential! 

(otherwise noninterpretable)



Zhang’s Excess Risk Bound

For every learning algorithm  Π𝑛 ≔  Π|Zn that outputs a 

distribution on model     , every ‘prior’ Π0 every 𝜂 > 0 :



U-Central Condition

Suppose there exists an increasing function                      

such that  :             

then we say that the 𝒖-central condition holds.

Probability that any fixed 𝑓 performs much better than 

optimal-in-expectation 𝑓∗ is exponentially small 

(Van Erven et al. 2015)



U-Central Condition

Suppose there exists an increasing function                      

such that  :             

then we say that the 𝒖-central condition holds. 

Eqv. to:   



U-Central Condition

Suppose there exists an increasing function                      

such that  :             

then we say that the 𝒖-central condition holds. 

eqv. to:   

log-loss: if there is a fixed critical  𝜼 then u-central 

holds for the special case with 𝒖 ≡  𝜼 constant!

Our main equation is back!



U-Central Condition

Suppose there exists an increasing function                      

such that  :             

then we say that the 𝒖-central condition holds. 

eqv. to:   

For general loss fns, we say that strong central holds if 

𝑢-central holds for constant 𝑢 0 = 𝑢 𝜖 =  𝜂 (best case!)

If it only holds for 𝑢 with lim
𝜖↓0

𝑢 𝜖 = 0, then we say that 

weak central holds



Theorem for general u-central

Suppose loss bounded and 𝑢-central holds, i.e.

Then (G. & Mehta 2016) there is 𝐶 > 0 such that for        

every 

C is linear in loss range



Theorem for general u-central

Suppose loss bounded and 𝑢-central holds, i.e.

Then (G. & Mehta 2016) there is 𝐶 > 0 such that for        

every 

C is linear in loss range



Theorem for general u-central

Suppose loss bounded and 𝑢-central holds*, i.e.

Then there is 𝐶 > 0 such that for every distribution-output 

learning algorithm Πn , every prior Π0 every                    :

...so  now annealed risk on left replaced by actual risk

(symmetric result)



Theorem for general u-central

Suppose loss bounded and 𝑢-central holds*, i.e.

Then there is 𝐶 > 0 such that for every distribution-output 

learning algorithm Πn , every prior Π0 every                    :

...so  now annealed risk on left replaced by actual risk

(symmetric result)

Proof: simply plug previous result into Zhang!



Theorem for general u-central

Suppose loss bounded and 𝑢-central holds*, i.e.

Then there is 𝐶 > 0 such that for every distribution-output 

learning algorithm Πn , every prior Π0 every                    :

...best case for strong central/critical  𝜼: 𝑶(𝑲𝑳 /𝒏) bounds



Theorem for general u-central

Suppose loss bounded and 𝑢-central holds*, i.e.

Then there is 𝐶 > 0 such that for every distribution-output 

learning algorithm Πn , every prior Π0 every                    :

For bounded loss, u-central with linear u always holds:

Can always get                       rate



Fast vs. Slow Excess Risk Rates

• Convergence Rate of order

called slow rate in machine learning theory

• Convergence Rate of order

called fast rate in machine learning theory

• G-Mehta-Zhang Thm implies that slow rate can 

always be achieved for bounded losses

• Fast rate can be achieved under strong central

• Intermediate rates                          can be achieved 

under 𝑢 −central with 𝑢 𝜖 = 𝜖𝛽, 0 < 𝛽 < 1



The Fast Rate

• Fast Rate thus achieveable for log-loss, for well-

specified (  𝜂 = 1) and convex models (  𝜂 ≥ 1) and 

more generally  𝜂 > 0 for misspecified models with 

‘exponentially small loss tails’

• Strong central also holds, and fast rate therefore 

achieveable, for every mixable loss function as long 

as convex luckiness holds Van Erven et al., 2015



The Fast Rate

• Strong central also holds, and fast rate therefore 

achieveable, for every mixable loss function as long 

as convex luckiness holds

• log-loss, bounded range is mixable

• every strongly convex loss is exp-concave. Every 

exp-concave loss is mixable

• e.g. squared loss, bounded range is mixable; 

logistic loss (classification)  is mixable



The Fast Rate

• Strong central also holds, and fast rate therefore 

achieveable, for every mixable loss function as long 

as convex luckiness holds



Convex Luckiness

• We say that convex luckiness holds if 

(Van Erven et al. ’15, G & Mehta ’17b) 



Convexily Unlucky



Convexily Lucky



The Fast Rate

• Strong central also holds, and fast rate therefore 

achieveable, for every mixable loss function as long 

as convex luckiness holds

• Every convex loss satisfies convex luckiness as long 

as either

• the set of predictors is convex, or

• the Bayes predictor against 𝑃 is contained in  F. 



The Fast Rate

• Strong central also holds, and fast rate therefore 

achieveable, for every mixable loss function as long 

as convex luckiness holds

• Every convex loss satisfies convex luckiness as long 

as either

• the set of predictors is convex, or

• the Bayes predictor against 𝑃 is contained in  F. 

very strong condition for density estimation, 

not so strong for some other losses



Bernstein, Central

• Bounded losses: for 𝛽 ∈ [0,1] : 

• 𝑢 𝑥 ≍ 𝑥𝛽 − central equivalent to 1 − 𝛽 -

Bernstein condition (Van Erven et al., 2015):

• Bernstein condition, a generalization of the 

Tsybakov noise condition, is the condition studied 

in statistical learning theory that allows for fast rates 

of ERM, Gibbs and related methods (cf. Tsybakov 

‘04, Audibert ‘04, Bartlett and Mendelson, ‘06)



Bernstein, Central

• Bounded losses: for 𝛽 ∈ [0,1] : 

• 𝑢 𝑥 ≍ 𝑥𝛽 − central equivalent to 1 − 𝛽 -

Bernstein condition (Van Erven et al., 2015):

• Bernstein/Tsybakov often hold in realistic situations 

even if loss fn not convex! (classification loss)



Theorem for general u-central

Suppose loss bounded and 𝑢-central holds*, i.e.

Then there is 𝐶 > 0 such that for every distribution-output 

learning algorithm Πn , every prior Π0 every                    :



Theorem for general u-central

Suppose loss bounded and 𝑢-central holds*, i.e.

Then there is 𝐶 > 0 such that for every distribution-output 

learning algorithm Πn , every prior Π0 every                    :

Can we also replace annealed excess risk on left by true 

excess risk in some unbounded cases?  



Theorem (G. & Mehta, 2016)

Suppose loss potentially unbounded and 𝑢-central holds

and 

Then there is 𝐶 > 0 such that for every                    : 

????



Theorem (G. & Mehta, 2016)

Suppose loss potentially unbounded and 𝑢-central holds

and Witness-of-Badness Condition holds

Then there is 𝐶 > 0 such that for every                    : 



Theorem (G. & Mehta, 2016)

Suppose risk (not loss) bounded and 𝑢-central holds

and Witness-of-Badness Condition holds

Then 



Witness-of-Badness

There is 𝐴, 𝑐 > 0 such that:   

• automatically holds for bounded loss

• there should be no 𝑓 that is extremely bad with 

extremely small probability 

• Condition requires that we  witness 𝑓’s badness in the 

training set! 

• If we don’t, learning does seem impossible...



Witness-of-Badness

There is 𝐴, 𝑐 > 0 such that:   

• automatically holds for bounded loss

• condition surprisingly weak: hold e.g. for squared error 
loss with convex F as long as E 𝑌 3 𝑋 bounded



Unbounded Loss: 

One-Sided Conditions

Suppose risk bounded and 𝒖-central holds

. 

and witness  holds: there is 𝐴, 𝑐 > 0 such that:   

Then ... ...

i.e.

exponential tail-control of −𝑟𝑓

much weaker sort of tail-control of 𝑟𝑓



Zhang-G-M with Witness/Central

Suppose witness condition and 𝑢-central holds*, i.e.

Then there is 𝐶 > 0 such that for every distribution-output 

learning algorithm Πn , every prior Π0 every                    :

...result holds with annealed excess risk (generalized 

Hellinger) replaced by real excess risk (KL divergence)



Left vs Right Zhang

• G & Mehta, 2016 is about extending left-

hand side of Zhang’s Theorem

• central, witness, fast rate conditions etc.

• G & Mehta, 2017a is about extending the 

right-hand side!

• Relation to data compression, “really complex” 

models, etc. 



Some History

• The oldest precursor of the Zhang-G-M bound is 

probably Barron & Cover (1991), Minimum 

Complexity Density Estimation: log-loss, 
Hellinger/Rényi on left, countable F , in-probability 

• Barron & Yang (‘98), Birgé & Massart (‘98) give tight 

bounds between KL and Hellinger/Rényi divergence 

if ratio of probability densities is bounded

• Wong & Shen (‘95) give condition under which ratio 

KL/Hellinger is bounded by log-factor for some 

unbounded cases

• Witness Condition/Theorem generalizes all these 

results to misspecification, general loss functions



Some History

• The oldest precursor of the Zhang-G-M bound is 

probably Barron & Cover (1991), Minimum 

Complexity Density Estimation: log-loss, 
Hellinger/Rényi on left, countable F , in-probability 

• Barron & Yang (‘98), Birgé & Massart (‘98) give tight 

bounds between KL and Hellinger/Rényi divergence 

if ratio of probability densities is bounded

• Wong & Shen (‘95) give condition under which ratio 

KL/Hellinger is bounded by log-factor for some 

unbounded cases

• Witness Condition/Theorem generalizes all these 

results to misspecification, general loss functions

extended to in-expectation by Barron (2000)



Some History

• McAllester (1998) gives first PAC-Bayesian 

generalization bound with KL on the right (avoiding 
need for countable F ): with prob. at least 1 − 𝛿 ,

• Catoni (’03), Audibert (‘04) give various extensions 

of this bound focusing on excess risk instead of 

generalization bounds

• Zhang (Ann. Stats’ 06, IEEE Tr. Inf. Th. ‘06) is first to 

connect both strands of work into a single bound

• G&M add witness and u-central on the left, and also 

extensions on right 



Rough Plan of Lectures

1. Safe Testing (Statistics/AB Testing)

2. Safe Testing (Information Theory!)

3. Safe and Generalized Bayes

– Zhang-G.-Mehta Thm density estimation

4. Fast Rate Conditions in Statistical 

(stochastic) and Online (nonstochastic) 

Learning

– Zhang-G-Mehta Thm general loss fns

5. Safety and Luckiness



Thank you 

for your attention!
Further Reading: 

• Van Erven, G., Mehta, Reed, Williamson. Fast Rates in 

Statistical and Online Learning. Journal of Machine 

Learning Research, 2015

• G. and Van Ommen, Bayesian Analysis, Dec. 2017

• G. and Mehta, Fast Rates for Unbounded Losses, arXiv 

(2016)

• G. and Mehta. A Tight Excess Risk bound in terms of a 

Unified PAC-Bayesian-Rademacher-MDL Complexity, arXiv 

(2017)


