Today

- 1. Complexity
 - Individual Sequence Prediction with Log-Loss: the NML distribution and Complexity
 - Extending the Right-Hand Side of Zhang's Bound
- 2. Safe Probability, Safe Statistics

Three Complexity Notions

- Shtarkov or NML Complexity
 - central notion in nonstochastic log-loss individual sequence prediction.
- PAC-Bayesian Complexity
 - right-hand side in a strong excess risk bound in (stochastic) statistical learning for arbitrary loss fns
 - especially suited for (pseudo-) Bayesian methods but not for very large classes
- Rademacher Complexity
 - right-hand side in stochastic excess risk bound that deals well with large classes but not with log-loss and priors

The Shtarkov/MDL Complexity

 Minimax Cumulative Regret for Individual Sequence Prediction with Log Loss (Shtarkov '88, Rissanen '96), also known as Shtarkov complexity or MDL/stochastic complexity:

$$\mathcal{M} = \{P_{\theta} : \theta \in \Theta\}$$
$$\operatorname{comp}_{n}(\mathcal{M}) = \log \sum_{y^{n} \in \mathcal{Y}^{n}} p_{\widehat{\theta}(y^{n})}(y^{n})$$

On-Line "Probabilistic" Prediction

- Consider sequence y_1, y_2, \cdots , all $y_i \in \mathcal{Y}$
- Goal: sequentially predict y_i given past $y^{i-1} = y_1, \ldots, y_{i-1}$ using a 'probabilistic prediction' P_i (distribution on \mathcal{Y})
- prediction strategy S is function mapping, for all i,
 'histories' y₁,..., y_{i-1} to distributions for i -th
 outcome

 $S: \cup_{n=1}^{\infty} \mathcal{Y}^n \to \text{set of distributions on } \mathcal{Y}$

prediction strategy = distribution

• If we think that $Y_1, \ldots, Y_n \sim P$ (not necessarily i.i.d !) then should predict Y_i using conditional distribution

$$P(\cdot \mid y^{i-1}) := P(Y_i = \cdot \mid Y_1 = y_1, \dots, Y_{i-1} = y_{i-1})$$

• note that then joint probability mass/density is equal to the product of the predictions: $P(y^n) = \prod_{i=1}^n P(y_i \mid y^{i-1})$

prediction strategy = distribution

• If we think that $Y_1, \ldots, Y_n \sim P$ (not necessarily i.i.d !) then should predict Y_i using conditional distribution

$$P(\cdot \mid y^{i-1}) := P(Y_i = \cdot \mid Y_1 = y_1, \dots, Y_{i-1} = y_{i-1})$$

• note that then joint probability mass/density is equal to the product of the predictions: $P(y^n) = \prod_{i=1}^n P(y_i \mid y^{i-1})$

Conversely, every prediction strategy *S* may be thought of as a distribution on (Y_1, \ldots, Y_n) , by defining:

$$P(\cdot \mid y^{i-1}) := S(y^{i-1})$$
$$P(y_1, \dots, y_n) := \prod_{i=1}^n P(y_i \mid y^{i-1})$$

Logarithmic Loss

- To compare performance of different prediction strategies, we need a measure of prediction quality
- One popular measure of quality is the log loss:

$$loss(y, P) := -\log_2 P(y)$$

$$loss(y_1 \dots, y_n, S) := \sum_{i=1}^n loss(y_i, S(y_1, \dots, y_{i-1}))$$

- corresponds to two important practical settings:
 - data compression: $loss(y_1 \dots, y_n, S)$ is number of bits needed to encode y_1, \dots, y_n using code S
 - 'Kelly' gambling: loss = log capital growth factor

Log loss & likelihood

• For every "prediction strategy" P, all n,

$$\sum_{i=1}^{n} \log(y_i, P(\cdot \mid y^{i-1})) = \sum_{i=1}^{n} -\log P(y_i \mid y^{i-1}) = -\log P(y_1, \dots, y_n)$$

$$\sum_{i=1}^{n} -\log P(y_i \mid y^{i-1}) = -\log \prod_{i=1}^{n} P(y_i \mid y^{i-1}) = -\log \prod \frac{P(y_i)}{P(y^{i-1})} = -\log P(y_1, \dots, y_n)$$

Log loss & likelihood

• For every "prediction strategy" P, all n,

 $\sum_{i=1}^{n} \operatorname{loss}(y_i, P(\cdot \mid y^{i-1})) = \sum_{i=1}^{n} -\log P(y_i \mid y^{i-1}) = -\log P(y_1, \dots, y_n)$

• Accumulated log loss = minus log likelihood

Dawid '84, Rissanen '84

- Let *M* = {*P*_θ : θ ∈ Θ} be a set of predictors (identified with probability distributions on *Y*[∞])
 - Simplest example: \mathcal{M} is the Bernoulli model
 - Nonparametric example: ${\cal Y}$ is unit interval, ${\cal M}$ is set of all monotonically decreasing probability ensities
- GOAL: given \mathcal{M} , construct a new predictor predicting data 'almost as well' as any of the $P_{\theta} \in \mathcal{M}$ no matter what data arrive (a nonstochastic setting!)

• More concretely: find, for fixed *n*, the predictor *P* achieving the minimax cumulative log-loss regret

$$\min_{P} \left\{ \sup_{y^n \in \mathcal{Y}^n} \left(\mathsf{loss}(y^n, P) - [\inf_{\theta \in \Theta} \mathsf{loss}(y^n, P_\theta)] \right) \right\}$$

where
$$loss(y^{n}, Q) = \sum_{i=1}^{n} - \log Q(y_{i} | y^{i-1})$$

• Solution was given by Shtarkov in 1988 (!)

• More concretely: find, for fixed *n*, the predictor *P* achieving the minimax cumulative log-loss regret

$$\min_{P} \left\{ \sup_{y^{n} \in \mathcal{Y}^{n}} \left(\operatorname{loss}(y^{n}, P) - [\inf_{\theta \in \Theta} \operatorname{loss}(y^{n}, P_{\theta})] \right) \right\}$$

$$= \min_{P} \left\{ \sup_{y^{n} \in \mathcal{Y}^{n}} \left(-\log P(y^{n}) - [\inf_{\theta \in \Theta} -\log P_{\theta}(y^{n})] \right) \right\}$$

$$= \min_{P} \left\{ \sup_{y^{n} \in \mathcal{Y}^{n}} \left(-\log P(y^{n}) + \log P_{\widehat{\theta}(y^{n})}(y^{n}) \right) \right\}$$

$$\min_{P} \left\{ \sup_{y^n \in \mathcal{Y}^n} \left(-\log P(y^n) + \log P_{\widehat{\theta}(y^n)}(y^n) \right) \right\}$$

 uniquely achieved* by Shtarkov or NML (Normalized Maximum Likelihood) Distribution, given by

$$P_{\mathsf{nml}}(y^n) = \frac{P_{\widehat{\theta}(y^n)}(y^n)}{\sum_{y^n \in \mathcal{Y}^n} P_{\widehat{\theta}(y^n)}(y^n)}$$

- ...and its regret satisfies, for all $y^n \in \mathcal{Y}^n$,

 $-\log P_{\mathsf{nml}}(y^n) - \left[-\log P_{\widehat{\theta}(y^n)}(y^n)\right] = \operatorname{comp}_n(\mathcal{M}) = \log \sum_{y^n \in \mathcal{Y}^n} p_{\widehat{\theta}y^n}(y^n)$

• So
$$\operatorname{comp}_n(\mathcal{M}) = \log \sum_{y^n \in \mathcal{Y}^n} p_{\widehat{\theta}(y^n)}(y^n)$$

is cumulative minimax regret relative to model \mathcal{M} For *d*-dimensional exponential families with bounded density ratios (Rissanen '96, G. '07),

$$\operatorname{comp}_n(\mathcal{M}) = \frac{d}{2}\log\frac{n}{2\pi} + \log\int\sqrt{\det I(\theta)} + o(1) = O(\log n)$$

$$\operatorname{comp}_n(\mathcal{M}) = \frac{d}{2} \log \frac{n}{2\pi} + \log \int \sqrt{\det I(\theta)} + o(1) = O(\log n)$$

...whereas the Bayesian marginal likelihood $P_{\mathsf{Bayes}}(y^n) = \int P_{\theta}(y^n) w(\theta) d\theta$

is known to satisfy*

$$-\log P_{\text{Bayes}}(y^n) - \left[-\log P_{\widehat{\theta}(y^n)}(y^n)\right] = \frac{d}{2}\log \frac{n}{2\pi} - \log w(\theta) + \log \sqrt{\det I(\theta)} + o(1) = O(\log n)$$

$$\operatorname{comp}_n(\mathcal{M}) = \frac{d}{2} \log \frac{n}{2\pi} + \log \int \sqrt{\det I(\theta)} + o(1) = O(\log n)$$

...whereas the Bayesian marginal likelihood $P_{\mathsf{Bayes}}(y^n) = \int P_{\theta}(y^n) w(\theta) d\theta$

is known to satisfy*

$$-\log P_{\text{Bayes}}(y^n) - \left[-\log P_{\widehat{\theta}(y^n)}(y^n)\right] = \frac{d}{2}\log \frac{n}{2\pi} - \log w(\theta) + \log \sqrt{\det I(\theta)} + o(1) = O(\log n)$$

for Jeffreys' prior, $w(\theta) \propto \sqrt{\det I(\theta)}$ asymptotically same!

- the Minimum Description Length principle
- In its simplest form, the MDL Principle (Rissanen, '89) states that to compare 2 statistical models $\mathcal{M}_0, \mathcal{M}_1$ for the same data, one should associate them both with a lossless universal code (i.e. a code that gives small codelengths whenever 'the model fits the data well' ...)
- ... and then pick the model which allows for the shortest codelength of the data
- A lossless code is just a sequential log-loss prediction strategy... It is a good universal code if it has small regret

- the Minimum Description Length principle
- pick the model \mathcal{M}_j which allows for shortest codelength of data if encoded with good universal code
- A lossless code is just a sequential log-loss prediction strategy... it is a good universal code if it has small regret
- i.e. MDL tells you to pick \mathcal{M}_1 with 'confidence' K > 0 iff $-\log P_{nml}(y^n \mid \mathcal{M}_1) - (-\log P_{nml}(y^n \mid \mathcal{M}_0)) \leq -K$

- the Minimum Description Length principle
- pick the model \mathcal{M}_j which allows for shortest codelength of data if encoded with good universal code
- A lossless code is just a sequential log-loss prediction strategy... it is a good universal code if it has small regret
- i.e. MDL tells you to pick \mathcal{M}_1 with 'confidence' K > 0 iff $-\log P_{nml}(y^n \mid \mathcal{M}_1) - (-\log P_{nml}(y^n \mid \mathcal{M}_0)) \leq -K$

i.e.
$$\frac{P_{\mathsf{nml}}(y^n \mid \mathcal{M}_1)}{P_{\mathsf{nml}}(y^n \mid \mathcal{M}_0)} \ge 2^K$$

the Minimum Description Length principle

• pick \mathcal{M}_1 with 'confidence' K > 0 iff

$$S = \frac{P_{\mathsf{nml}}(y^n \mid \mathcal{M}_1)}{P_{\mathsf{nml}}(y^n \mid \mathcal{M}_0)} \ge 2^K$$

- If null model is simple, then S is an S-value ($E[S] \le 1$)
- ... More generally, one also allows ratios of other P's that correspond to codes with small regret, such as Bayesian, 'prequential', 'switch'
- Ryabko & Monarev:

$$S = \frac{P_{gzip}(y^n)}{P_0(y^n)}$$

$$\operatorname{comp}_n(\mathcal{M}) = \frac{d}{2} \log \frac{n}{2\pi} + \log \int \sqrt{\det I(\theta)} + o(1) = O(\log n)$$

...whereas the Bayesian marginal likelihood $P_{\mathsf{Bayes}}(y^n) = \int P_{\theta}(y^n) w(\theta) d\theta$

is known to satisfy*

$$-\log P_{\text{Bayes}}(y^n) - \left[-\log P_{\widehat{\theta}(y^n)}(y^n)\right] = \frac{d}{2}\log \frac{n}{2\pi} - \log w(\theta) + \log \sqrt{\det I(\theta)} + o(1) = O(\log n)$$

for Jeffreys' prior, $w(\theta) \propto \sqrt{\det I(\theta)}$ asymptotically same!

Nonparametric Models

• Opper & Haussler ('96), Cesa-Bianchi & Lugosi ('01) and more recently Rakhlin and Sridharan ('15) gave bounds using chaining based on L_{∞} -covering nrs:

$$\operatorname{comp}_n(\mathcal{M}) \leq \inf_{\epsilon > 0} \log N_{\infty}(\mathcal{M}, \epsilon) + 24 \int_0^{\epsilon} \sqrt{\log N_{\infty}(\mathcal{M}, \delta)} d\delta$$

• If the model is i.i.d., then $N_{\infty}(\mathcal{M}, \epsilon)$ is ϵ -covering nr under metric $d(P, Q) = \sup_{y \in \mathcal{Y}} |-\log P(Y) + \log Q(Y)|$

Nonparametric Models

• Opper & Haussler ('96), Cesa-Bianchi & Lugosi ('01) and more recently Rakhlin and Sridharan ('15) gave bounds using chaining based on L_{∞} -covering nrs:

$$\operatorname{comp}_n(\mathcal{M}) \leq \inf_{\epsilon > 0} \log N_{\infty}(\mathcal{M}, \epsilon) + 24 \int_0^{\epsilon} \sqrt{\log N_{\infty}(\mathcal{M}, \delta)} d\delta$$

- If the model is i.i.d., then $N_{\infty}(\mathcal{M}, \epsilon)$ is ϵ -covering nr under metric $d(P, Q) = \sup_{y \in \mathcal{Y}} |-\log P(Y) + \log Q(Y)|$
- With this bound they obtained for variety of nonparametric models $comp_n(\mathcal{M}) = O(n^{\gamma})$

Two Observations

$$\operatorname{comp}_{n}(\mathcal{M}) \leq \inf_{\epsilon > 0} \log N_{\infty}(\mathcal{M}, \epsilon) + 24 \int_{0}^{\epsilon} \sqrt{\log N_{\infty}(\mathcal{M}, \delta)} d\delta$$

- Bound is often **better** than best regret bound that can be given for prediction by Bayes marginal likelihood $(n^{\gamma} \text{ vs. } n^{\beta} \text{ for } \beta > \gamma)$
 - ...and for some models it is indeed known that Bayesian prediction has larger worst-case regret
- ...yet bound is void if $N_{\infty}(\mathcal{M}, \epsilon) = \infty$

Two Observations

$$\operatorname{comp}_{n}(\mathcal{M}) \leq \inf_{\epsilon > 0} \log N_{\infty}(\mathcal{M}, \epsilon) + 24 \int_{0}^{\epsilon} \sqrt{\log N_{\infty}(\mathcal{M}, \delta)} d\delta$$

- 1. Bound is often **better** than best regret bound that can be given for prediction by Bayes marginal likelihood (n^{γ} vs. n^{β} for $\beta > \gamma$)
 - ...and for some \mathcal{M} it is indeed known that Bayesian prediction has larger worst-case regret
- 2. ...yet bound is void if $N_{\infty}(\mathcal{M}, \epsilon) = \infty$
 - Take e.g. *M* to be all i.i.d. extensions of monotonically decreasing densities (bounded away from 0 and ∞) on unit interval

Two Complexity Notions, Two Results

- Shtarkov or NML Complexity
 - central notion in log-loss individual sequence prediction. Existing bounds are in terms of L_{∞} -entropy nrs; we have bound in terms of $L_{1/2}(P)$ nrs.
- PAC-Bayesian Complexity
 - right-hand side in a strong excess risk bound in (stochastic) statistical learning for arbitrary loss fns; not suited for very large classes. We will unify with Shtarkov Complexity and thus make bound suitable for large classes.

For every learning algorithm $\widehat{\Pi}_n := \widehat{\Pi} | \mathbb{Z}^n$ that outputs a distribution on model \mathcal{F} , every 'prior' Π_0 every $\eta > 0$:

$$\mathbf{E}_{f \sim \hat{\Pi}_n} \mathbf{E}_{Z \sim P}^{\operatorname{ann}, \eta} \left[r_f(Z) \right] \leq_{\eta n} \mathbf{E}_{f \sim \hat{\Pi}_n} \left[\frac{1}{n} \sum_{i=1}^n r_f(Z_i) \right] + \frac{\operatorname{KL}(\hat{\Pi}_n \| \Pi_0)}{\eta \cdot n}$$

• G. & Mehta 2016 mostly about extending the left-hand side

• TODAY: G. & Mehta 2017a; mostly about the righthand side

For every learning algorithm $\widehat{\Pi}_n \coloneqq \widehat{\Pi} | \mathbb{Z}^n$ that outputs a distribution on model \mathcal{F} , every 'prior' Π_0 every $\eta > 0$:

$$\mathbf{E}_{f \sim \hat{\Pi}_n} \mathbf{E}_{Z \sim P}^{\mathrm{ann}, \eta} \left[\mathbf{r}_f(Z) \right] \leq_{\eta n} \mathbf{E}_{f \sim \hat{\Pi}_n} \left[\frac{1}{n} \sum_{i=1}^n \mathbf{r}_f(Z_i) \right] + \frac{\mathrm{KL}(\hat{\Pi}_n \| \Pi_0)}{\eta \cdot n}$$

 $r_f(Z) \coloneqq \ell_f(Z) - \ell_{f^*}(Z)$ is excess loss on Z

For every learning algorithm $\widehat{\Pi}_n \coloneqq \widehat{\Pi} | \mathbb{Z}^n$ that outputs a distribution on model \mathcal{F} , every 'prior' Π_0 every $\eta > 0$:

$$\mathbf{E}_{f \sim \hat{\Pi}_n} \mathbf{E}_{Z \sim P}^{\mathrm{ann}, \eta} \left[\mathbf{r}_f(Z) \right] \leq_{\eta n} \mathbf{E}_{f \sim \hat{\Pi}_n} \left[\frac{1}{n} \sum_{i=1}^n \mathbf{r}_f(Z_i) \right] + \frac{\mathrm{KL}(\hat{\Pi}_n \| \Pi_0)}{\eta \cdot n}$$

 $r_f(Z) \coloneqq \ell_f(Z) - \ell_{f^*}(Z)$ is excess loss on Z ℓ can be any loss function

e.g.
$$Z = (X, Y), \ \ell_f((X, Y)) = |Y - f(X)|$$
 (0/1-loss)
 $Z = (X, Y), \ \ell_f((X, Y)) = (Y - f(X))^2$ (sq. Err. loss)
 $\ell_f(Z) = -\log p_f(Z)$ (log loss)

For every learning algorithm $\widehat{\Pi}_n \coloneqq \widehat{\Pi} | \mathbb{Z}^n$ that outputs a distribution on model \mathcal{F} , every 'prior' Π_0 every $\eta > 0$:

$$\mathbf{E}_{f \sim \hat{\Pi}_n} \mathbf{E}_{Z \sim P}^{\mathrm{ann}, \eta} \left[\mathbf{r}_f(Z) \right] \leq_{\eta n} \mathbf{E}_{f \sim \hat{\Pi}_n} \left[\frac{1}{n} \sum_{i=1}^n \mathbf{r}_f(Z_i) \right] + \frac{\mathrm{KL}(\hat{\Pi}_n \| \Pi_0)}{\eta \cdot n}$$

$$\begin{split} r_f(Z) &\coloneqq \ell_f(Z) - \ell_{f^*}(Z) \text{ is excess loss on } Z \\ \ell \text{ can be any loss function (0/1, square, log-loss, ...)} \\ f^* \text{ is risk minimizer in } \mathcal{F} : \end{split}$$

$$f^* \coloneqq \arg\min_{f\in\mathcal{F}} \mathbf{E}_{Z\sim P}[\ell_f(Z)]$$

For every learning algorithm $\widehat{\Pi}_n \coloneqq \widehat{\Pi} | \mathbb{Z}^n$ that outputs a distribution on model \mathcal{F} , every 'prior' Π_0 every $\eta > 0$:

$$\mathbf{E}_{f \sim \hat{\Pi}_n} \mathbf{E}_{Z \sim P}^{\mathrm{ann}, \eta} \left[\mathbf{r}_f(Z) \right] \leq_{\eta n} \mathbf{E}_{f \sim \hat{\Pi}_n} \left[\frac{1}{n} \sum_{i=1}^n \mathbf{r}_f(Z_i) \right] + \frac{\mathrm{KL}(\hat{\Pi}_n \| \Pi_0)}{\eta \cdot n}$$

For every learning algorithm $\widehat{\Pi}_n \coloneqq \widehat{\Pi} | \mathbb{Z}^n$ that outputs a distribution on model \mathcal{F} , every 'prior' Π_0 every $\eta > 0$:

$$\mathbf{E}_{f \sim \hat{\Pi}_n} \mathbf{E}_{Z \sim P}^{\operatorname{ann}, \eta} [r_f(Z)] \trianglelefteq_{\eta n} C_\eta \cdot \left(\mathbf{E}_{f \sim \hat{\Pi}_n} \left[\underbrace{\mathbf{p}_{i=1}}^n \overbrace{\mathcal{Q}_i}^n + \frac{\operatorname{KL}(\hat{\Pi}_n \| \Pi_0)}{\eta \cdot n} \right] - \frac{1}{\eta \cdot n} \cdot \log \frac{p'_{f, \eta}(Z^n)}{p'_{f^*, \eta}(Z^n)}$$

where $p'_{f,\eta}(z) = p(z) \cdot e^{-\eta r_f(z)} = p(z) \cdot e^{-\eta (\ell_f(z) - \ell_f^*(z))}$ are the 'entropified' probabilities we discussed earlier

For every 'prior' Π_0 , every $0 < \eta$, for the generalized η -Bayesian posterior, every 'prior' Π_0 every $\eta > 0$:

$$\mathbf{E}_{f \sim \hat{\Pi}_{n}} \mathbf{E}_{Z \sim P}^{\operatorname{ann}, \eta} [r_{f}(Z)] \trianglelefteq_{\eta n} C_{\eta} \cdot \left(\mathbf{E}_{f \sim \hat{\Pi}_{n}} \left[\underbrace{\frac{1}{p}}_{i=1}^{n} \underbrace{Z_{i}}_{j} + \underbrace{\operatorname{KL}(\hat{\Pi}_{n} \parallel \Pi_{0})}_{\eta} \right) - \frac{1}{\eta \cdot n} \cdot \log \frac{\int_{\mathcal{F}} p_{f,\eta}'(Z^{n}) d\Pi_{0}(f)}{p_{f^{*},\eta}'(Z^{n})} \right)$$

For every 'prior' Π_0 , every $0 < \eta$, for the generalized η -Bayesian posterior, every 'prior' Π_0 every $\eta > 0$:

$$\mathbf{E}_{f \sim \hat{\Pi}_{n}} \mathbf{E}_{Z \sim P}^{\operatorname{ann}, \eta} [r_{f}(Z)] \trianglelefteq_{\eta n} C_{\eta} \cdot \left(\mathbf{E}_{f \sim \hat{\Pi}_{n}} \left[\underbrace{\frac{1}{p}}_{i=1}^{n} \underbrace{\frac{1}{p}}_{i=$$

Insight: excess risk bound in terms of the cumulative logloss of a Bayesian prediction strategy

Two Observations

$$\operatorname{comp}_n(\mathcal{M}) \leq \inf_{\epsilon > 0} \log N_{\infty}(\mathcal{M}, \epsilon) + 24 \int_0^{\epsilon} \sqrt{\log N_{\infty}(\mathcal{M}, \delta)} d\delta$$

- 1. Bound is often **better** than best regret bound that can be given for prediction by Bayes marginal likelihood (n^{γ} vs. n^{β} for $\beta > \gamma$)
 - ...and for some \mathcal{M} it is indeed known that Bayesian prediction has larger worst-case regret

Recall: Two Complexity Notions

- Shtarkov or NML Complexity
 - central notion in log-loss individual sequence prediction
- PAC-Bayesian Complexity
 - right-hand side in a strong excess risk bound in (stochastic) statistical learning for arbitrary loss fns; not suited for very large classes. We will unify with Shtarkov Complexity and thus make bound suitable for large classes.

G & M Excess Risk Bound (Thm)

For every $\widehat{\Pi}_n = \widehat{\Pi} \mid Z^n$, every prior Π_0 , every $\eta > 0$:

$$\mathbf{E}_{f \sim \hat{\Pi}_n} \mathbf{E}_{Z \sim P}^{\operatorname{ann}, \eta} \left[r_f(Z) \right] \leq_{\eta n} \\ \mathbf{E}_{f \sim \hat{\Pi}_n} \left[\frac{1}{n} \sum_{i=1}^n r_f(Z_i) \right] + \frac{\operatorname{KL}(\hat{\Pi}_n \| \Pi_0)}{\eta \cdot n}$$

For every $\widehat{\Pi}_n = \widehat{\Pi} \mid Z^n$, every provide Π_0 , every $\eta > 0$:

$\mathbf{E}_{f \sim \hat{\Pi}_n} \ \mathbf{E}_{Z \sim P}^{\mathrm{ann}, \eta} \ \left[r_f(Z) \right] \leq_{\eta n} \\ \mathbf{E}_{f \sim \hat{\Pi}_n} \left[\frac{1}{n} \sum_{i=1}^n r_f(Z_i) \right] + \frac{\mathrm{KD}(\hat{\Pi}_n | \Pi_n)}{\eta \cdot n}$

For every $\widehat{\Pi}_n = \widehat{\Pi} \mid Z^n$, every **luckiness function** *w*, every $\eta > 0$:

$$\begin{split} \mathbf{E}_{f \sim \hat{\Pi}_{n}} \ \mathbf{E}_{Z \sim P}^{\mathrm{ann}, \eta} \ [r_{f}(Z)] \leq_{\eta n} \\ \mathbf{E}_{f \sim \hat{\Pi}_{n}} \left[\frac{1}{n} \sum r_{f}(Z_{i}) \right] + \mathrm{COMP}_{\eta}(\mathcal{F}, \hat{\Pi}, w, Z^{n}) \\ \mathrm{COMP}_{\eta}(\mathcal{F}, \hat{\Pi}_{n}, w, Z^{n}) = \frac{1}{\eta} \cdot \left(\mathbf{E}_{f \sim \hat{\Pi}_{n}} \left[-\log w(z^{n}, f) \right] + \log S(\mathcal{F}, \hat{\Pi}, w) \right) \\ \mathbf{1} \\ \mathrm{data-dependent part} \qquad \mathrm{data-independent part} \\ \end{split}$$

Bounding the novel complexity

- By different choices of w, $\operatorname{COMP}_{\eta}(\mathcal{F}, \hat{\Pi}, w, Z^n)$ can be further bounded so as to become a
 - KL divergence between prior and posterior (recovering and improving Zhang's bound)
 - Normalized Maximum Likelihood (NML) or Shtarkov Integral

which can be further bounded in terms of **Rademacher complexity**, VC dim, entropy nrs (right rates for polynomial entropy classes)

 Luckiness NML (useful for penalized estimators e.g. Lasso)

Bounding COMP for ERM/ML \hat{f}

- Let us take $\widehat{\Pi} \equiv \widehat{f}$ to be ERM (note that for the log loss, this is just maximum likelihood)
- and let us take $w(z^n, f) \equiv 1$ constant Assume bounded losses here!

For every $\widehat{\Pi}_n = \widehat{\Pi} \mid Z^n$, every luckiness fn w, every $\eta > 0$:

$$\begin{split} \mathbf{E}_{f \sim \hat{\Pi}_{n}} \ \mathbf{E}_{Z \sim P}^{\mathrm{ann}, \eta} \ \left[r_{f}(Z) \right] \leq_{\eta n} \\ \mathbf{E}_{f \sim \hat{\Pi}_{n}} \left[\frac{1}{n} \sum r_{f}(Z_{i}) \right] + \mathrm{COMP}_{\eta}(\mathcal{F}, \hat{\Pi}, w, Z^{n}) \\ \mathrm{COMP}_{\eta}(\mathcal{F}, \hat{\Pi}_{n}, w, Z^{n}) = \frac{1}{\eta} \cdot \left(\mathbf{E}_{f \sim \hat{\Pi}_{n}} \left[-\log w(z^{n}, f) \right] + \log S(\mathcal{F}, \hat{\Pi}, w) \right) \end{split}$$

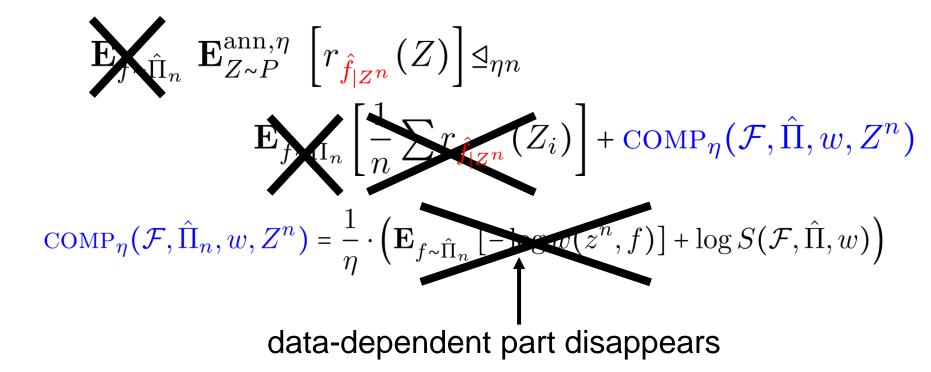
For every deterministic \hat{f} , every luckiness fn w, $\eta > 0$:

$$\begin{split} \mathbf{\hat{E}_{n}} \quad \mathbf{E}_{Z\sim P}^{\mathrm{ann},\eta} \left[r_{\hat{f}|Z^{n}}(Z) \right] \leq_{\eta n} \\ \mathbf{\hat{E}_{f}} \left[\mathbf{\hat{f}_{|Z^{n}}} \left[\frac{1}{n} \sum r_{\hat{f}|Z^{n}}(Z_{i}) \right] + \mathrm{COMP}_{\eta}(\mathcal{F},\hat{\Pi},w,Z^{n}) \\ \mathrm{COMP}_{\eta}(\mathcal{F},\hat{\Pi}_{n},w,Z^{n}) = \frac{1}{\eta} \cdot \left(\mathbf{E}_{f\sim\hat{\Pi}_{n}} \left[-\log w(z^{n},f) \right] + \log S(\mathcal{F},\hat{\Pi},w) \right) \end{split}$$

For every deterministic \hat{f} , constant $w \equiv 1$, $\eta > 0$:

$$\begin{split} \mathbf{E}_{\mathbf{\hat{\Pi}}_{n}} \mathbf{E}_{Z\sim P}^{\mathrm{ann},\eta} \left[r_{\hat{f}_{|Z^{n}}}(Z) \right] \leq_{\eta n} \\ \mathbf{E}_{\mathbf{\hat{f}}|\mathbf{\hat{I}}_{n}} \left[\frac{1}{n} \sum r_{\hat{f}_{|Z^{n}}}(Z_{i}) \right] + \mathrm{COMP}_{\eta}(\mathcal{F}, \hat{\Pi}, w, Z^{n}) \\ \mathrm{COMP}_{\eta}(\mathcal{F}, \hat{\Pi}_{n}, w, Z^{n}) = \frac{1}{\eta} \cdot \left(\mathbf{E}_{f\sim\hat{\Pi}_{n}} \left[\begin{array}{c} \mathbf{\hat{I}}_{n} \\ \mathbf{\hat{I}}_{n} \end{array}\right] + \log S(\mathcal{F}, \hat{\Pi}, w) \right) \\ \mathrm{data-dependent part disappears} \end{split}$$

For **ERM** \hat{f} , constant $w \equiv 1$, $\eta > 0$:



 $\mathbf{E}_{Z\sim P}^{\mathrm{ann},\eta}\left[r_{\hat{f}|Z^{n}}(Z)\right] \trianglelefteq_{\eta n} \eta^{-1} \cdot \log S(\mathcal{F},\hat{f},w_{\mathrm{uniform}})$

$$\mathbf{E}_{Z\sim P}^{\mathrm{ann},\eta}\left[r_{\hat{f}|Z^{n}}(Z)\right] \trianglelefteq_{\eta n} \eta^{-1} \cdot \log S(\mathcal{F},\hat{f},w_{\mathrm{uniform}})$$

...to define S, define probability density fns q_f as

$$q_f(z) \coloneqq p(z) \cdot \frac{e^{-\eta r_f(z)}}{\int p(z) e^{-\eta r_f(z)} d\nu(z)}$$

[note that with log-loss and $\eta = 1$ and a correctly specified model, $q_f(z) = p_f(z)$!]

Then

$$S(\mathcal{F}; \hat{f}, w_{\text{uniform}}) \coloneqq \int q_{\hat{f}|z^n}(z^n) d\nu(z^n) \leq \int q_{\hat{f}_{\mathbf{ML}|z^n}}(z^n) d\nu(z^n)$$

$$\mathbf{E}_{Z\sim P}^{\mathrm{ann},\eta} \left[r_{\hat{f}|Z^n}(Z) \right] \leq_{\eta n} \eta^{-1} \cdot \log S(\mathcal{F}, \hat{f}, w_{\mathrm{uniform}})$$

...where

$$S(\mathcal{F}; \hat{f}, w_{\text{uniform}}) \leq S(\mathcal{F}; \hat{f}_{\text{ML}}, w_{\text{uniform}}) = \int q_{\hat{f}_{\text{ML}|z^n}}(z^n) d\nu(z^n)$$

log *S* is cumulative minimax individual sequence regret for log-loss prediction relative to the set of densities $\{q_f : f \in \mathcal{F}\}$

$$\mathbf{E}_{Z\sim P}^{\mathrm{ann},\eta} \left[r_{\hat{f}|Z^n}(Z) \right] \trianglelefteq_{\eta n} \eta^{-1} \cdot \log S(\mathcal{F}, \hat{f}, w_{\mathrm{uniform}})$$

...where

$$S(\mathcal{F}; \hat{f}, w_{\text{uniform}}) \leq S(\mathcal{F}; \hat{f}_{\text{ML}}, w_{\text{uniform}}) = \int q_{\hat{f}_{\text{ML}|z^n}}(z^n) d\nu(z^n)$$

log *S* is cumulative minimax individual sequence regret for log-loss prediction relative to the set of densities $\{q_f : f \in \mathcal{F}\}$

...a.k.a. as Shtarkov or NML (normalized ML) complexity

For every $\widehat{\Pi}_n = \widehat{\Pi} \mid Z^n$, every luckiness fn w, every $\eta > 0$:

$$\begin{split} \mathbf{E}_{f \sim \hat{\Pi}_{n}} \ \mathbf{E}_{Z \sim P}^{\mathrm{ann}, \eta} \ \left[r_{f}(Z) \right] \leq_{\eta n} \\ \mathbf{E}_{f \sim \hat{\Pi}_{n}} \left[\frac{1}{n} \sum r_{f}(Z_{i}) \right] + \mathrm{COMP}_{\eta}(\mathcal{F}, \hat{\Pi}, w, Z^{n}) \\ \mathrm{COMP}_{\eta}(\mathcal{F}, \hat{\Pi}_{n}, w, Z^{n}) = \frac{1}{\eta} \cdot \left(\mathbf{E}_{f \sim \hat{\Pi}_{n}} \left[-\log w(z^{n}, f) \right] + \log S(\mathcal{F}, \hat{\Pi}, w) \right) \end{split}$$

For every deterministic \hat{f} , every luckiness fn w, $\eta > 0$:

$$\begin{split} \mathbf{\hat{E}_{A}} \mathbf{\hat{\mu}}_{n} \ \mathbf{E}_{Z\sim P}^{\mathrm{ann},\eta} \ \left[r_{\hat{f}|Z^{n}}(Z) \right] \leq_{\eta n} \\ \mathbf{\hat{E}_{f}} \mathbf{\hat{\mu}}_{n} \left[\frac{1}{n} \sum r_{\hat{f}|Z^{n}}(Z_{i}) \right] + \mathrm{COMP}_{\eta}(\mathcal{F}, \hat{f}, w, Z^{n}) \\ \mathrm{COMP}_{\eta}(\mathcal{F}, \hat{f}, w, z^{n}) = \frac{1}{\eta} \cdot \left(-\log w(z^{n}, \hat{f}|z^{n}) + \log S(\mathcal{F}, \hat{f}, w) \right) \end{split}$$

For every deterministic \hat{f} , every simple luckiness fn w:

$$\begin{split} \mathbf{E}_{\mathcal{I}_{n}} \mathbf{E}_{Z\sim P}^{\mathrm{ann},\eta} \left[r_{\hat{f}|Z^{n}}(Z) \right] \leq_{\eta n} \\ \mathbf{E}_{\mathcal{I}_{n}} \left[\frac{1}{n} \sum r_{\hat{f}|Z^{n}}(Z_{i}) \right] + \mathrm{COMP}_{\eta}(\mathcal{F}, \hat{f}, w, Z^{n}) \\ \mathrm{COMP}_{\eta}(\mathcal{F}, \hat{f}, w, z^{n}) = \frac{1}{\eta} \cdot \left(-\log w(z^{n}, \hat{\mathcal{K}}^{n}) + \log S(\mathcal{F}, \hat{f}, w) \right) \end{split}$$

$$\begin{split} \mathbf{\hat{E}_{f|Z^n}} & \mathbf{E}_{Z\sim P}^{\mathrm{ann},\eta} \left[r_{\hat{f}_{|Z^n}}(Z) \right] \leq_{\eta n} \\ & \mathbf{\hat{E}_{f|Z^n}} \left[\frac{1}{n} \sum r_{\hat{f}_{|Z^n}}(Z_i) \right] + \mathrm{COMP}_{\eta}(\mathcal{F}, \hat{f}, w, Z^n) \\ & \mathrm{COMP}_{\eta}(\mathcal{F}, \hat{f}, w, z^n) = \frac{1}{\eta} \cdot \left(-\log w(z^n, \hat{\mathbf{N}_n}) + \log S(\mathcal{F}, \hat{f}, w) \right) \\ & \dots \text{and now} \end{split}$$

$$S(\mathcal{F}, \hat{f}, w) \coloneqq \int q_{\hat{f}|z^n}(z^n) w(z^n) d\nu(z^n)$$

Bounds for Penalized ERM

For every deterministic \hat{f} , every simple luckiness fn w: $\mathbf{E}_{Z\sim P}^{\mathrm{ann},\eta} \left[r_{\hat{f}|Z^{n}}(Z) \right] \leq_{\eta n} \frac{1}{n} \sum r_{\hat{f}|Z^{n}}(Z_{i}) + \mathrm{COMP}_{\eta}(\mathcal{F}, \hat{f}, w, Z^{n})$ $\mathrm{COMP}_{\eta}(\mathcal{F}, \hat{f}, w, z^{n}) = \frac{1}{\eta} \cdot \left(-\log w(z^{n}) + \log S(\mathcal{F}, \hat{f}, w) \right)$

Taking $w(z^n) = \exp(-\text{PEN}(\hat{f}_{|z^n}))$ for a penalization function PEN the bound is optimized if we take

$$\hat{f}_{|z^n} \coloneqq \arg\min_{f\in\mathcal{F}} \sum_{i=1}^n \ell_f(z_i) + \eta^{-1} \operatorname{PEN}(f)$$

Bounds for Penalized ERM

For every deterministic \hat{f} , every simple luckiness fn w: $\mathbf{E}_{Z\sim P}^{\mathrm{ann},\eta} \left[r_{\hat{f}|Z^n}(Z) \right] \leq_{\eta n} \frac{1}{n} \sum r_{\hat{f}|Z^n}(Z_i) + \mathrm{COMP}_{\eta}(\mathcal{F}, \hat{f}, w, Z^n)$ $\mathrm{COMP}_{\eta}(\mathcal{F}, \hat{f}, w, z^n) = \frac{1}{\eta} \cdot \left(-\log w(z^n) + \log S(\mathcal{F}, \hat{f}, w) \right)$

Taking $w(z^n) = \exp(-\text{PEN}(\hat{f}_{|z^n}))$ for a penalization function PEN the bound is optimized if we take

$$\hat{f}_{|z^n} \coloneqq \arg\min_{f \in \mathcal{F}} \sum_{i=1}^n \ell_f(z_i) + \eta^{-1} \operatorname{PEN}(f)$$

....we get (sharp!) bounds for Lasso and friends. We see that multiplier in Lasso is 'just like' learning rate in Bayes

Bounds for 'Posteriors' including generalized Bayes

For every $\widehat{\Pi}_n = \widehat{\Pi} \mid Z^n$, every luckiness fn w, every $\eta > 0$:

$$\begin{split} \mathbf{E}_{f \sim \hat{\Pi}_{n}} \ \mathbf{E}_{Z \sim P}^{\mathrm{ann}, \eta} \ \left[r_{f}(Z) \right] \leq_{\eta n} \\ \mathbf{E}_{f \sim \hat{\Pi}_{n}} \left[\frac{1}{n} \sum r_{f}(Z_{i}) \right] + \mathrm{COMP}_{\eta}(\mathcal{F}, \hat{\Pi}, w, Z^{n}) \\ \mathrm{COMP}_{\eta}(\mathcal{F}, \hat{\Pi}_{n}, w, Z^{n}) = \frac{1}{\eta} \cdot \left(\mathbf{E}_{f \sim \hat{\Pi}_{n}} \left[-\log w(z^{n}, f) \right] + \log S(\mathcal{F}, \hat{\Pi}, w) \right) \end{split}$$

 $S(\mathcal{F}, \hat{\Pi}, w) \coloneqq \mathbf{E}_{Z^n \sim P} \left[\exp\left(-\mathbf{E}_{f \sim \hat{\Pi} \mid Z^n} \left[\eta r_f(Z^n) + \log C(f) - \log w(Z^n, f)\right] \right) \right]$

Proposition

• Take arbitrary estimator $\widehat{\Pi}$ that outputs distribution over \mathcal{F} and arbitrary prior Π_0 . If we take

$$w(z^n, f) \coloneqq \frac{\pi_0(f)}{\pi(f|z^n)}$$
 then we have

$$S(\mathcal{F}, \hat{\Pi}, w) \leq 1$$

(Proof is just Jensen)

Now we reduce to Zhang...

For every $\widehat{\Pi}_n = \widehat{\Pi} \mid Z^n$, luckiness fn $w(z^n, f) \coloneqq \frac{\pi_0(f)}{\pi(f|z^n)}$

$$\begin{split} \mathbf{E}_{f \sim \hat{\Pi}_{n}} \ \mathbf{E}_{Z \sim P}^{\mathrm{ann}, \eta} \ \left[r_{f}(Z) \right] \leq_{\eta n} \\ \mathbf{E}_{f \sim \hat{\Pi}_{n}} \left[\frac{1}{n} \sum r_{f}(Z_{i}) \right] + \mathrm{COMP}_{\eta}(\mathcal{F}, \hat{\Pi}, w, Z^{n}) \\ \mathrm{COMP}_{\eta}(\mathcal{F}, \hat{\Pi}_{n}, w, Z^{n}) = \frac{1}{\eta} \cdot \left(\mathbf{E}_{f \sim \hat{\Pi}_{n}} \left[-\log w(z^{n}, f) \right] + \log S(\mathcal{F}, \hat{\Pi}, w) \right) \\ \mathbf{E}_{f \sim \hat{\Pi}_{n}} \left[-\log \frac{\pi_{0}(f)}{\hat{\pi}(f|z^{n})} \right] = \mathrm{KL}(\hat{\Pi}_{n} \| \Pi_{0}) \end{split}$$

Excess Risk \leq **Codelength Diff.**

- If we estimate by generalized Bayesian posterior, RHS has a log-Bayesian marginal likelihood interpretation = codelength under Bayesian code
- If we take deterministic \hat{f} and constant w then RHS has a NML codelength interpretation
- If we take deterministic \hat{f} and nonconstant w then RHS has a 'luckiness NML' (Bartlett et al. 2013) codelength interpretation

... Bayes and NML are two most important 'universal coding strategies' for data compression (G. 07) General insight: right-hand side of bound always has a codelength interpretation, different w's corresponding to different codes

More Remarks on Bound

Bound is sharp! Why?

• It says LHS $\trianglelefteq_{\eta n}$ RHS i.e. $\mathbf{E} \left[e^{\eta \cdot (\text{LHS}-\text{RHS})} \right] \le 1$

...but the proof (which is straightforward rewriting!) actually gives that

$$\mathbf{E}\left[e^{\eta\cdot(\mathrm{LHS-RHS})}\right] = 1$$

$$\begin{aligned} \text{LHS} &= \mathbf{E}_{f \sim \hat{\Pi}_n} \ \mathbf{E}_{Z \sim P}^{\text{ann}, \eta} \ \left[r_f(Z) \right] \\ \text{RHS} &= \mathbf{E}_{f \sim \hat{\Pi}_n} \left[\frac{1}{n} \sum r_f(Z_i) \right] + \text{COMP}_{\eta}(\mathcal{F}, \hat{\Pi}, w, Z^n) \end{aligned}$$

Two Observations

$$\operatorname{comp}_{n}(\mathcal{M}) \leq \inf_{\epsilon > 0} \log N_{\infty}(\mathcal{M}, \epsilon) + 24 \int_{0}^{\epsilon} \sqrt{\log N_{\infty}(\mathcal{M}, \delta)} d\delta$$

- 1. Bound is often **better** than best regret bound that can be given for prediction by Bayes marginal likelihood (n^{γ} vs. n^{β} for $\beta > \gamma$)
 - ...and for some \mathcal{M} it is indeed known that Bayesian prediction has larger worst-case regret
- 2. ...yet bound is void if $N_{\infty}(\mathcal{M}, \epsilon) = \infty$
 - Take e.g. *M* to be all i.i.d. extensions of monotonically decreasing densities (bounded away from 0 and ∞) on unit interval

Two Complexity Notions, Two Results

- Shtarkov or NML Complexity
 - central notion in log-loss individual sequence prediction. Existing bounds are in terms of L_{∞} entropy nrs; we have comparable bound in terms of $L_{1/2.}(P)$ nrs. (but haven't shown you)
- PAC-Bayesian Complexity
 - right-hand side in a strong excess risk bound in (stochastic) statistical learning for arbitrary loss fns with Bayesian codelength interpretation; not suited for very large classes. We have unified with Shtarkov Complexity (smaller codelengths) and thus made bound suitable for large classes.

Three Complexity Notions

- Shtarkov or NML Complexity
 - central notion in nonstochastic log-loss individual sequence prediction.
- PAC-Bayesian Complexity
 - right-hand side in a strong excess risk bound in (stochastic) statistical learning for arbitrary loss fns
 - especially suited for (pseudo-) Bayesian methods but not for very large classes
- Rademacher Complexity
 - right-hand side in stochastic excess risk bound that deals well with large classes but not with log-loss and priors

Thm 2: Shtarkov bounded by Rademacher Complexity

- Fix arbitrary $f^{\circ} \in \mathcal{F}$ and define $\mathcal{G} = \{\ell_f \ell_{f^{\circ}} : f \in \mathcal{F}\}$
- Define centered empirical process

$$T_n \coloneqq \sup_{f \in \mathcal{F}} \left\{ \sum_{j=1}^n \left(\ell_{f^\circ}(Z_j) - \ell_f(Z_j) \right) - \mathbf{E}_{Z^n \sim Q_{f^\circ}} \left[\sum_{j=1}^n \left(\ell_{f^\circ}(Z_j) - \ell_f(Z_j) \right) \right] \right\}$$

• For arbitrary deterministic estimators \hat{f} ,

 $\begin{aligned} \operatorname{COMP}_{\eta}(\mathcal{F}, \hat{f}, w_{\text{UNIFORM}}) &\leq 3 \cdot \mathbf{E}_{Z^{n} \sim Q_{f^{\circ}}} \left[T_{n} \right] + n \cdot \eta \cdot C \cdot \varepsilon^{2} \\ &\leq 6n \cdot \mathbf{E}_{Z^{n} \sim q_{f^{\circ}}} \left[\operatorname{RAD}_{n}(\mathcal{G} \mid Z^{n}) \right] + n \cdot \eta \cdot C \cdot \varepsilon^{2} \end{aligned}$

where ϵ is diameter of \mathcal{F} in $L_2(P)$ -pseudometric

$$\operatorname{Rad}_{n}(\mathcal{G} \mid Z^{n}) \coloneqq \operatorname{\mathbf{E}}_{\epsilon_{1},...,\epsilon_{n}} \left[\sup_{g \in \mathcal{G}} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} g(Z_{i}) \right| \right]$$

Bounding excess risk, minimax regret in terms of L_2 entropy nrs

• Recall Lugosi/Cesa-Bianchi log-loss result: $COMP_1(\mathcal{F}, \hat{f}, w_{UNIFORM}) \leq$

$$\inf_{\epsilon>0} \log N_{\infty}(\mathcal{F},\epsilon) + 24 \int_{0}^{\epsilon} \sqrt{\log N_{\infty}(\mathcal{F},\delta)} d\delta$$

 Via existing bounds on Rademacher using chaining we get

$$COMP_{\eta}(\mathcal{F}, \hat{f}, w_{UNIFORM}) \leq$$

$$inf \log N_{L_{2}(P)}(\mathcal{F}, \epsilon) + 24 \int_{0}^{\epsilon} \sqrt{\log N_{L_{2}(P)}(\mathcal{F}, \delta)} d\delta + Cn\eta\epsilon^{2}$$
For class of monotone decreasing densities, now get

 $O(n^{1/3})$ which is tight; previous bound was void

Today

- 1. Complexity
 - Individual Sequence Prediction with Log-Loss: the NML distribution and Complexity
 - Extending the Right-Hand Side of Zhang's Bound
- 2. Safe Inference

Safe Bayes, Safe Probability

- In previous work, I used phrase 'safe Bayes' in two senses:
 - 1. Specific algorithm for learning η from the data ('G. '12, The Safe Bayesian; G. and vOmmen '17)
 - General idea that in practice probabilities should not be taken fully seriously; their application should be restricted to safe uses

(G., Safe Probability, JSPI '18)

Two Extreme Views on Learning – yet using almost same methods

 Vapnik's ML Theory ('statistical learning theory', 50000 citations)
 Can only do one single thing with the function learned from data

• Bayesian Inference (at least De Finetti brand) Every single inference task that can be formulated in terms of measurable fns on my domain can be answered by my posterior

Two Extremist Views on Learning – yet using almost same methods

 Vapnik's ML Theory ('statistical learning theory', 50000 citations)
 Can only do one single thing with the function I learned from data

• Bayesian Inference (at least De Finetti brand) Every single inference task that can be formulated in terms of measurable fns on my domain can be answered by my posterior

Example: Ridge/Lasso Regression

$$\widehat{\beta}_n := \arg\min_{\beta \in \mathbb{R}^k} \sum_{i=1}^n (y_i - \beta^T x_i)^2 + \lambda \|\beta\|_2^2$$

•V: assume X_i , Y_i i.i.d.~ *P* .For large enough *n*, 'right' λ , we have

$$\mathbf{E}_{(X,Y)\sim P}(Y-\widehat{\beta}_n^T X)^2 \approx \min_{\beta \in \mathbb{R}^k} \mathbf{E}_{(X,Y)\sim P}(Y-\beta^T X)^2$$

•"Hence I can get small squared error when predicting a new *Y* based on a new *X* from the same distribution"

$$\widehat{\beta}_n := \arg\min_{\beta \in \mathbb{R}^k} \sum_{i=1}^n (y_i - \beta^T x_i)^2 + \lambda \|\beta\|_2^2$$

•V: assume X_i , Y_i i.i.d.~ P .For large enough n, 'right' λ , we have

$$\mathbf{E}_{(X,Y)\sim P}(Y-\widehat{\beta}_n^T X)^2 \approx \min_{\beta \in \mathbb{R}^k} \mathbf{E}_{(X,Y)\sim P}(Y-\beta^T X)^2$$

"Hence I can get small squared error when predicting a new Y based on a new X from the same distribution"
Q: What if new X drawn from different distribution?
V: You can't say anything!

$$\widehat{\beta}_n := \arg\min_{\beta \in \mathbb{R}^k} \sum_{i=1}^n (y_i - \beta^T x_i)^2 + \lambda \|\beta\|_2^2$$

•V: assume X_i , Y_i i.i.d.~ *P* .For large enough *n*, 'right' λ , we have

$$\mathbf{E}_{(X,Y)\sim P}(Y-\widehat{\beta}_n^T X)^2 \approx \min_{\beta \in \mathbb{R}^k} \mathbf{E}_{(X,Y)\sim P}(Y-\beta^T X)^2$$

"Hence I can get small squared error when predicting a new *Y* based on a new *X* from the same distribution"
Q: What if new X drawn from different distribution?
V: You can't say anything!
Q: Does β^T_n X give a good estimate of E[Y|X] ?
V: Can't say!

$$\widehat{\beta}_n := \arg\min_{\beta \in \mathbb{R}^k} \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \beta^T x_i)^2 + \frac{\lambda}{\sigma^2} \|\beta\|_2^2$$

•B: $\hat{\beta}_n$ is also posterior mean (even with prior on σ^2) •So I agree that I can get small squared error when predicting a new *Y* based on a new *X* from same distr. •Q: What if new X drawn from different distribution? •B: You'll still be o.k.! •Q: Does $\hat{\beta}_n^T X$ give a good estimate of $\mathbf{E}[Y|X]$? •B: Of course!

$$\widehat{\beta}_n := \arg\min_{\beta \in \mathbb{R}^k} \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \beta^T x_i)^2 + \frac{\lambda}{\sigma^2} \|\beta\|_2^2$$

•B: $\hat{\beta}_n$ is also posterior mean (even with prior on σ^2) •So I agree that I can get small squared error when predicting a new Y based on a new X from same distr. Q: What if new X drawn from different distribution? •B: You'll still be o.k.! •Q: Does $\hat{\beta}_n^T X$ give a good estimate of $\mathbf{E}[Y|X]$?

•B: Of course!

•Q: Does $\widehat{\beta}_n^T X$ give good estimate of median of Y given X? •B: Of course!

•Q: Is P(Y|X) unimodal? B: Of course! etc etc

V&B use almost same method but draw very weak vs very strong conclusions! $\widehat{\beta}_n := \arg\min_{\beta \in \mathbb{R}^k} \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \beta^T x_i)^2 + \frac{\lambda}{\sigma^2} \|\beta\|_2^2$

•B: $\hat{\beta}_n$ is also posterior mean (even with prior on σ^2) •So I agree that I can get small squared error when predicting a new Y based on a new X from same distr. •Q: What if new X drawn from different distribution? •B: You'll still be o.k.!

- •Q: Does $\hat{\beta}_n^T X$ give a good estimate of $\mathbf{E}[Y|X]$?
- •B: Of course!

•Q: Does $\widehat{\beta}_n^T X$ give good estimate of median of Y given X? •B: Of course!

•Q: Is P(Y|X) unimodal? B: Of course! Etc etc

Safe Statistics: Go Inbetween

- If I do η –Bayesian linear regression with normal prior on β , standard prior on variance σ^2 and $\eta < \overline{\eta}$, then if data i.i.d. I can guarantee convergence to KL optimal $f^*(x) = \beta^{*T} x$ and σ^* s.t.:
 - Optimality of squared error predictions of p_{f*}

$$\mathbf{E}_{(X,Y)\sim P}\left[(Y-f^*(X))^2\right] = \min_{f\in\mathcal{F}} \mathbf{E}_{(X,Y)\sim P}\left[(Y-f(X))^2\right]$$

• Safety of your error assessment thereof

$$\mathbf{E}_{Y \sim p_{f^*}} \left[(Y - f^*(X))^2 \mid X \right] = \sigma_2^* = \mathbf{E}_{(X,Y) \sim P} \left[(Y - f^*(X))^2 \right]$$

Safe Statistics: Go Inbetween

- If I assume data i.i.d. I can guarantee
- **Optimality** of squared error predictions of p_{f^*}
- **Safety** of error assessment thereof
- If(f) I am further willing to assume that \mathcal{F} contains Bayes-optimal decision rule...

$$\arg\min_{f:\mathcal{X}\to\mathbb{R}} \mathbf{E}_{(X,Y)\sim P}(Y-f(X))^2$$

- •....then I can guarantee that $f^*(X) = E[Y | X]$
- If on top I want to assume that P(Y|X) is symmetric then I can guarantee that f*(X) is median of P(Y | X)

I have a Dream

- Imagine a world in which statisticians/data analysts would, as a matter of principle, be asked to express what their probability model can be used for and what not.
- Then indeed we would have a safer statistics
- ...in the paper 'Safe Probability' I make a first attempt to develop a formal language for specifying this

Hypothesis Testing

- Suppose you test between two models using a Bayes factor
- If you choose $\bar{p}_0(y^n) = \int p_\theta(y^n) w_0(\theta) d\theta$ because your prior w_0 really expresses prior knowledge, and $\bar{p}_0(y^n) \gg \bar{p}_1(y^n)$, then you might be willing to use the Bayes posterior $w_0(\theta|y^n)$ for making actual predictions: you might claim it is safe for all bounded loss fns.
- But if you choose \bar{p}_0 because it is the RIPr of \bar{p}_1 , then you definitely cannot trust the poster and you do not want to make such claims!

New Mathematical Questions/Concepts

- Optimality: If I assume <X>, for what inference/prediction tasks am I (sufficiently) optimal?
- Some scattered nontrivial results exist in machine learning theory literature.

New Mathematical Questions/Concepts

- Optimality: If I assume <X>, for what inference/prediction tasks am I (sufficiently) optimal?
- Some scattered nontrivial results exist in machine learning theory literature. For example:

if you do logistic regression and you are really interested in classification, then your KL optimal parameters (to which you'll converge) also give you the smallest expected 0/1-loss when used for classification *if* your model contains the Bayes optimal classifier (Bartlett, Jordan, McAullife '06)

New Mathematical Questions/Concepts

- Optimality: If I assume <X>, for what inference/prediction tasks am I (sufficiently) optimal?
- Safety: central concept of G. 2018.

A distribution \tilde{P} is safe for predicting against loss function *L* with 'true' distribution *P* if it holds that

$$\mathbf{E}_{Z\sim P}\left[L(Z,\delta_{\tilde{P}})\right] = \mathbf{E}_{Z\sim \tilde{P}}\left[L(Z,\delta_{\tilde{P}})\right]$$

where $\delta_{\tilde{P}}$ is the Bayes act according to \tilde{P}

Safe Probability

• Safety: Simplest form:

A distribution \tilde{P} is safe for predicting against loss function *L* with 'true' distribution *P* if it holds that

$$\mathbf{E}_{Z\sim P}\left[L(Z,\delta_{\tilde{P}})\right] = \mathbf{E}_{Z\sim\tilde{P}}\left[L(Z,\delta_{\tilde{P}})\right]$$

where $\delta_{\tilde{P}}$ is the Bayes act according to \tilde{P}

If you act as your model prescribes, the world behaves as your model predicts, even though your model may be wrong and there may be better predictions!

Example

- If I do η –Bayesian linear regression with normal prior on β , standard prior on variance σ^2 and $\eta < \overline{\eta}$, then if data i.i.d. I can guarantee convergence to KL optimal $f^*(x) = \beta^{*T} x$ and σ^* s.t.:
 - Optimality of squared error predictions of p_{f*}

$$\mathbf{E}_{(X,Y)\sim P}\left[(Y-f^*(X))^2\right] = \min_{f\in\mathcal{F}} \mathbf{E}_{(X,Y)\sim P}\left[(Y-f(X))^2\right]$$

• Safety of your error assessment thereof

$$\mathbf{E}_{Y \sim p_{f^*}} \left[(Y - f^*(X))^2 \mid X \right] = \sigma_2^* = \mathbf{E}_{(X,Y) \sim P} \left[(Y - f^*(X))^2 \right]$$

Example 2

• The Weather Forecaster!

Monty Hall (3-door) Problem Monty Hall 1970

Monty Hall

 There are three doors in the TV studio. Behind one door is a car, behind both other doors a goat. You choose one of the doors. Monty Hall opens one of the other two doors, and shows that there is a goat behind it. You are now allowed to switch to the other door that is still closed. Is it smart to switch?

Monty Hall: The Wikipedia Wars

- I am interested in understanding the Wikipedia Wars (Gill 11, Mlodinow 08) on Monty Hall
 - Both sides agree that switching is smart and increases your chances of winning from 1/3 to 2/3!
 - The "war" is about how to *prove* this:
 - "strictly Bayesian": via conditioning (in the right space, with additional assumption that Monty chooses by tossing a fair coin) ("MaxEnt-style assumption")
 - Without additional assumptions, via decisiontheoretic argument

Safe Probability applied to Monty Hall

- Under a symmetric loss function as in the original formulation of the problem, assuming that Monty flips a fair coin if he has a choice and then conditioning is safe and minimax optimal
 - 'asymmetric' means e.g. that if the car is behind door B, it is a Ferrari; if it is behind door C, it is a Fiat Panda
- Still holds if same candidate plays each week and can reinvest his prize, hedging over several doors (horse race losses), even if prizes asymmetric
- But *not* if loss functions are asymmetric and reinvestment impossible

Thank you! Further Reading:

- G. and T. van Ommen, Inconsistency of Bayesian Inference for Misspecied Linear Models, and a Proposal for Repairing It. *Bayesian Analysis, Dec. 2017*
- G. and N. Mehta, Fast Rates for Unbounded Losses, arXiv (2016)
- G. and N. Mehta. A Tight Excess Risk bound in terms of a Unified PAC-Bayesian-Rademacher-MDL Complexity, arXiv (2017)
- G. Safe Probability, *Journal of Stat. Planning and Inference*, 2018
- T. van Ommen, W. Koolen and G. *Robust Probability Updating, Intern. Journ. of Approx. Reasoning*, 2016