
Today

1. Complexity

• Individual Sequence Prediction with Log-

Loss: the NML distribution and Complexity

• Extending the Right-Hand Side of Zhang’s 

Bound

2. Safe Probability, Safe Statistics



Three Complexity Notions

• Shtarkov or NML Complexity

• central notion in nonstochastic log-loss individual 

sequence prediction. 

• PAC-Bayesian Complexity

• right-hand side in a strong excess risk bound in 

(stochastic) statistical learning  for arbitrary loss fns

• especially suited for (pseudo-) Bayesian methods 

but not for very large classes

• Rademacher Complexity

• right-hand side in stochastic excess risk bound that 

deals well with large classes but not with log-loss 

and priors



The Shtarkov/MDL Complexity

• Minimax Cumulative Regret for Individual Sequence 

Prediction with Log Loss (Shtarkov ‘88, Rissanen ‘96), 

also known as Shtarkov complexity or MDL/stochastic 

complexity: 



On-Line “Probabilistic” Prediction

• Consider sequence                     , all                

• Goal: sequentially predict      given past                      

using a ‘probabilistic prediction’     (distribution on     )

• prediction strategy 𝑆 is function mapping, for all i,  

‘histories’                      to distributions for i -th

outcome 



prediction strategy = distribution

• If we think that                         (not necessarily i.i.d !) 

then should predict      using conditional distribution 

• note that then joint probability mass/density is equal to 

the product of the predictions: 



prediction strategy = distribution

• If we think that                         (not necessarily i.i.d !) 

then should predict      using conditional distribution 

• note that then joint probability mass/density is equal to 

the product of the predictions: 

Conversely, every prediction strategy S may be thought 

of as a distribution on                  , by defining: 



Logarithmic Loss

• To compare performance of different prediction 

strategies, we need a measure of prediction quality

• One popular measure of quality is the log loss:

• corresponds to two important practical settings:

• data compression:                              is number 

of bits needed to encode                  using code 𝑆

• ‘Kelly’ gambling: loss = log capital growth factor                                             



Log loss & likelihood

• For every “prediction strategy” P, all n,

•



Log loss & likelihood

• For every “prediction strategy” P, all n,

• Accumulated log loss   = minus log likelihood

Dawid ‘84, Rissanen ‘84



Universal Prediction

• Let                            be a set of predictors (identified with 

probability distributions on      )

• Simplest example:       is the Bernoulli model

• Nonparametric example:      is unit interval,       is set 

of all monotonically decreasing probability ensities

• GOAL: given      , construct a new predictor predicting 

data ‘almost as well’ as any of the             no matter what 

data arrive (a nonstochastic setting!)



Universal Prediction

• More concretely: find, for fixed 𝑛, the predictor 

𝑃 achieving the minimax cumulative log-loss regret

where 

• Solution was given by Shtarkov in 1988 (!)



Universal Prediction

• More concretely: find, for fixed 𝑛, the predictor 

𝑃 achieving the minimax cumulative log-loss regret



Universal Prediction

• uniquely achieved* by Shtarkov or NML (Normalized 

Maximum Likelihood) Distribution, given by    

• ...and its regret satisfies, for all                  , 



• So

is cumulative minimax regret relative to model M

For 𝑑-dimensional exponential families with bounded 

density ratios (Rissanen ’96, G. ‘07),  

Complexity for Parametric Models



...whereas the Bayesian marginal likelihood                   

is known to satisfy* 

Complexity for Parametric Models



...whereas the Bayesian marginal likelihood                   

is known to satisfy* 

for Jeffreys’ prior,                            asymptotically same! 

Complexity for Parametric Models



Aside

• In its simplest form, the MDL Principle (Rissanen, ’89) 

states that to compare 2 statistical models              for 

the same data, one should associate them both with a 

lossless universal code (i.e. a code that gives small 

codelengths whenever ‘the model fits the data well’ ...)

• ... and then pick the model which allows for the 

shortest codelength of the data

• A lossless code is just a sequential log-loss prediction 

strategy... It is a good universal code if it has small 

regret 



Aside

• pick the model       which allows for shortest codelength 

of data if encoded with good universal code

• A lossless code is just a sequential log-loss prediction 

strategy... it is a good universal code if it has small 

regret

• i.e. MDL tells you to pick       with ‘confidence’ 𝐾 > 0 iff 



Aside

• pick the model       which allows for shortest codelength 

of data if encoded with good universal code

• A lossless code is just a sequential log-loss prediction 

strategy... it is a good universal code if it has small 

regret

• i.e. MDL tells you to pick       with ‘confidence’ 𝐾 > 0 iff 

i.e.



Aside

• pick       with ‘confidence’ 𝐾 > 0 iff

• If null model is simple, then 𝑆 is an S-value (E[𝑆 ] ≤ 1)

• ... More generally, one also allows ratios of other 𝑃′s 

that correspond to codes with small regret, such as 

Bayesian, ‘prequential’, ‘switch’

• Ryabko & Monarev: 



...whereas the Bayesian marginal likelihood                   

is known to satisfy* 

for Jeffreys’ prior,                            asymptotically same! 

Complexity for Parametric Models



Nonparametric Models

• Opper & Haussler (‘96), Cesa-Bianchi & Lugosi (‘01) 

and more recently Rakhlin and Sridharan (‘15) gave 

bounds using chaining based on 𝐿∞-covering nrs:

• If the model is i.i.d., then                  is 𝜖-covering nr 

under metric



Nonparametric Models

• Opper & Haussler (‘96), Cesa-Bianchi & Lugosi (‘01) 

and more recently Rakhlin and Sridharan (‘15) gave 

bounds using chaining based on 𝐿∞-covering nrs:

• If the model is i.i.d., then                  is 𝜖-covering nr 

under metric

• With this bound they obtained                                    

for variety of nonparametric models  



Two Observations

• Bound is often better than best regret bound that can 

be given for prediction by Bayes marginal likelihood 

(𝑛𝛾 vs. 𝑛𝛽 for 𝛽 > 𝛾 )

• ...and for some models it is indeed known that 

Bayesian prediction has larger worst-case regret

• ...yet bound is void if 



Two Observations

1. Bound is often better than best regret bound that 

can be given for prediction by Bayes marginal 

likelihood (𝑛𝛾 vs. 𝑛𝛽 for 𝛽 > 𝛾 )

• ...and for some M it is indeed known that Bayesian 

prediction has larger worst-case regret

2. ...yet bound is void if

• Take e.g. M to be all i.i.d. extensions of 

monotonically decreasing densities (bounded 

away from 0 and ∞) on unit interval 



Two Complexity Notions, 

Two Results
• Shtarkov or NML Complexity

• central notion in log-loss individual sequence 

prediction. Existing bounds are in terms of 𝐿∞-

entropy nrs; we have bound in terms of 𝐿1/2.(𝑃)

nrs. 

• PAC-Bayesian Complexity

• right-hand side in a strong excess risk bound in 

(stochastic) statistical learning for arbitrary loss 

fns; not suited for very large classes. We will 

unify with Shtarkov Complexity and thus make 

bound suitable for large classes. 



Zhang’s Excess Risk Bound

• G. & Mehta 2016 mostly about extending the left-hand 

side

• TODAY: G. & Mehta 2017a; mostly about the right-

hand side

For every learning algorithm  Π𝑛 ≔  Π|Zn that outputs a 

distribution on model     , every ‘prior’ Π0 every 𝜂 > 0 :



𝑟𝑓 𝑍 ≔ ℓ𝑓 𝑍 − ℓ𝑓∗ 𝑍 is excess loss on 𝑍

For every learning algorithm  Π𝑛 ≔  Π|Zn that outputs a 

distribution on model     , every ‘prior’ Π0 every 𝜂 > 0 :

Zhang’s Excess Risk Bound



𝑟𝑓 𝑍 ≔ ℓ𝑓 𝑍 − ℓ𝑓∗ 𝑍 is excess loss on 𝑍

ℓ can be any loss function

e.g. 𝑍 = 𝑋, 𝑌 , ℓ𝑓 (𝑋, 𝑌) = |𝑌 − 𝑓 𝑋 | (0/1-loss)

𝑍 = 𝑋, 𝑌 , ℓ𝑓 (𝑋, 𝑌) = 𝑌 − 𝑓 𝑋
2

(sq. Err. loss)

ℓ𝑓 𝑍 = − log 𝑝𝑓(𝑍) (log loss)

For every learning algorithm  Π𝑛 ≔  Π|Zn that outputs a 

distribution on model     , every ‘prior’ Π0 every 𝜂 > 0 :

Zhang’s Excess Risk Bound



𝑟𝑓 𝑍 ≔ ℓ𝑓 𝑍 − ℓ𝑓∗ 𝑍 is excess loss on 𝑍

ℓ can be any loss function (0/1, square, log-loss, ...) 

𝑓∗ is risk minimizer in      :      

For every learning algorithm  Π𝑛 ≔  Π|Zn that outputs a 

distribution on model     , every ‘prior’ Π0 every 𝜂 > 0 :

Zhang’s Excess Risk Bound



Zhang’s Excess Risk Bound

For every learning algorithm  Π𝑛 ≔  Π|Zn that outputs a 

distribution on model     , every ‘prior’ Π0 every 𝜂 > 0 :



Zhang’s Excess Risk Bound

where 𝑝𝑓,𝜂
′ 𝑧 = 𝑝 𝑧 ⋅ 𝑒−𝜂𝑟𝑓 𝑧 = 𝑝 𝑧 ⋅ 𝑒−𝜂(ℓ𝑓 𝑧 −ℓ𝑓

∗ 𝑧 )

are the ‘entropified’ probabilities we discussed earlier

For every learning algorithm  Π𝑛 ≔  Π|Zn that outputs a 

distribution on model     , every ‘prior’ Π0 every 𝜂 > 0 :



Zhang’s Excess Risk Bound

For every ‘prior’ Π0 , every 0 < 𝜂, for the generalized 𝜂-

Bayesian posterior, every ‘prior’ Π0 every 𝜂 > 0 :



Zhang’s Excess Risk Bound

For every ‘prior’ Π0 , every 0 < 𝜂, for the generalized 𝜂-

Bayesian posterior, every ‘prior’ Π0 every 𝜂 > 0 :

Insight: excess risk bound in terms of  the cumulative log-

loss of a Bayesian prediction strategy



Two Observations

1. Bound is often better than best regret bound that 

can be given for prediction by Bayes marginal 

likelihood (𝑛𝛾 vs. 𝑛𝛽 for 𝛽 > 𝛾 )

• ...and for some M it is indeed known that Bayesian 

prediction has larger worst-case regret



Recall: Two Complexity Notions

• Shtarkov or NML Complexity

• central notion in log-loss individual sequence 

prediction

• PAC-Bayesian Complexity

• right-hand side in a strong excess risk bound in 

(stochastic) statistical learning for arbitrary loss 

fns; not suited for very large classes. We will 

unify with Shtarkov Complexity and thus make 

bound suitable for large classes. 



For every  Π𝑛 =  Π ∣ 𝑍𝑛, every prior Π0, every 𝜂 > 0 : 

G & M Excess Risk Bound (Thm)



For every  Π𝑛 =  Π ∣ 𝑍𝑛, every prior Π0, every 𝜂 > 0 : 

G & M Excess Risk Bound



For every  Π𝑛 =  Π ∣ 𝑍𝑛, every luckiness function 𝑤,  

every 𝜂 > 0 : 

G & M Excess Risk Bound

data-dependent part data-independent 

part



Bounding the novel complexity

• By different choices of 𝑤,                                   can 

be further bounded so as to become a

• KL divergence between prior and posterior 

(recovering and improving Zhang’s bound)

• Normalized Maximum Likelihood (NML)  or 

Shtarkov Integral

which can be further bounded in terms of 

Rademacher complexity, VC dim, entropy nrs 

(right rates for polynomial entropy classes)

• Luckiness NML

(useful for penalized estimators e.g. Lasso)



Bounding COMP for ERM/ML  𝒇

• Let us take  Π ≡  𝑓 to be ERM (note that for the log 

loss, this is just maximum likelihood) 

• and let us take 𝑤 𝑧𝑛, 𝑓 ≡ 1 constant

Assume bounded losses here!



For every  Π𝑛 =  Π ∣ 𝑍𝑛, every luckiness fn 𝑤 , every 𝜂 > 0 : 

G & M Excess Risk Bound



For every deterministic  𝑓, every luckiness fn 𝑤 , 𝜂 > 0 :    

G & M Excess Risk Bound



For every deterministic  𝑓, constant 𝑤 ≡ 1 , 𝜂 > 0 :    

G & M Excess Risk Bound

data-dependent part disappears



For ERM  𝑓, constant 𝑤 ≡ 1 , 𝜂 > 0 :    

G & M Excess Risk Bound

data-dependent part disappears



Excess Risk Bound for ERM



...to define 𝑆, define probability density fns 𝑞𝑓 as

[note that with log-loss and 𝜂 = 1 and a correctly specified 

model, 𝑞𝑓 𝑧 = 𝑝𝑓 (𝑧) !]

Then

Excess Risk Bound for ERM



...where

log 𝑆 is cumulative minimax individual sequence regret for 

log-loss prediction relative to the set of densities  

Excess Risk Bound for ERM



...where

log 𝑆 is cumulative minimax individual sequence regret for 

log-loss prediction relative to the set of densities  

...a.k.a. as Shtarkov or NML (normalized ML) complexity 

Excess Risk Bound for ERM



For every  Π𝑛 =  Π ∣ 𝑍𝑛, every luckiness fn 𝑤 , every 𝜂 > 0 : 

G & M Excess Risk Bound



For every deterministic  𝑓, every luckiness fn 𝑤 , 𝜂 > 0 : 

G & M Excess Risk Bound



For every deterministic  𝑓, every simple luckiness fn 𝑤 : 

G & M Excess Risk Bound



...and now 

G & M Excess Risk Bound



For every deterministic  𝑓, every simple luckiness fn 𝑤 : 

Taking                                       for a penalization function      

the bound is optimized if we take

Bounds for Penalized ERM



For every deterministic  𝑓, every simple luckiness fn 𝑤 : 

Taking                                       for a penalization function      

the bound is optimized if we take

....we get (sharp!) bounds for Lasso and friends. We see that 

multiplier in Lasso is ‘just like’ learning rate in Bayes 

Bounds for Penalized ERM



For every  Π𝑛 =  Π ∣ 𝑍𝑛, every luckiness fn 𝑤 , every 𝜂 > 0 : 

Bounds for ‘Posteriors’ including 

generalized Bayes



Proposition

• Take arbitrary estimator  Π that outputs distribution 
over F and arbitrary prior Π0. If we take

𝑤 𝑧𝑛, 𝑓 ≔
𝜋0 𝑓

𝜋 𝑓 𝑧𝑛 then we have 

(Proof is just Jensen)



For every  Π𝑛 =  Π ∣ 𝑍𝑛, luckiness fn 𝑤 𝑧𝑛, 𝑓 ≔
𝜋0 𝑓

𝜋 𝑓 𝑧𝑛

Now we reduce to Zhang...



Excess Risk ≤ Codelength Diff. 

• If we estimate by generalized Bayesian posterior, 

RHS has a log-Bayesian marginal likelihood 

interpretation = codelength under Bayesian code

• If we take deterministic  𝑓 and constant 𝑤 then RHS 

has a NML codelength interpretation

• If we take deterministic  𝑓 and nonconstant 𝑤 then 

RHS has a ‘luckiness NML’ (Bartlett et al. 2013) 

codelength interpretation

... Bayes and NML are two most important ‘universal 

coding strategies’ for data compression (G. 07)

General insight: right-hand side of bound always 

has a codelength interpretation, different w’s 

corresponding to different codes



More Remarks on Bound

Bound is sharp! Why? 

• It says

i.e. 

...but the proof  (which is straightforward rewriting!) 

actually gives that  



Two Observations

1. Bound is often better than best regret bound that 

can be given for prediction by Bayes marginal 

likelihood (𝑛𝛾 vs. 𝑛𝛽 for 𝛽 > 𝛾 )

• ...and for some M it is indeed known that Bayesian 

prediction has larger worst-case regret

2. ...yet bound is void if

• Take e.g. M to be all i.i.d. extensions of 

monotonically decreasing densities (bounded 

away from 0 and ∞) on unit interval 



Two Complexity Notions, 

Two Results
• Shtarkov or NML Complexity

• central notion in log-loss individual sequence 

prediction. Existing bounds are in terms of 𝐿∞-

entropy nrs; we have comparable bound in terms 

of 𝐿1/2.(𝑃) nrs. (but haven’t shown you) 

• PAC-Bayesian Complexity

• right-hand side in a strong excess risk bound in 

(stochastic) statistical learning for arbitrary loss 

fns with Bayesian codelength interpretation; not 

suited for very large classes. We have unified 

with Shtarkov Complexity (smaller codelengths) 

and thus made bound suitable for large classes. 



Three Complexity Notions

• Shtarkov or NML Complexity

• central notion in nonstochastic log-loss individual 

sequence prediction. 

• PAC-Bayesian Complexity

• right-hand side in a strong excess risk bound in 

(stochastic) statistical learning  for arbitrary loss fns

• especially suited for (pseudo-) Bayesian methods 

but not for very large classes

• Rademacher Complexity

• right-hand side in stochastic excess risk bound that 

deals well with large classes but not with log-loss 

and priors



Thm 2: Shtarkov bounded by 

Rademacher Complexity

• Fix arbitrary 𝑓∘ ∈ and define

• Define centered empirical process 

• For arbitrary deterministic estimators  𝑓,

where 𝜖 is diameter of F in 𝐿2(𝑃)-pseudometric



• Recall Lugosi/Cesa-Bianchi log-loss result:

• Via existing bounds on Rademacher using chaining 

we get 

Bounding excess risk, minimax 

regret in terms of 𝑳𝟐 entropy nrs

For class of monotone decreasing densities, now get 

O 𝑛1/3 which is tight; previous bound was void



Today

1. Complexity

• Individual Sequence Prediction with Log-

Loss: the NML distribution and Complexity

• Extending the Right-Hand Side of Zhang’s 

Bound

2. Safe Inference



Safe Bayes, Safe Probability

• In previous work, I used phrase ‘safe Bayes’ in two 

senses:

1. Specific algorithm for learning 𝜂 from the data 

(‘G. ‘12, The Safe Bayesian; G. and vOmmen ‘17)

2. General idea that in practice probabilities should 

not be taken fully seriously; their application 

should be restricted to safe uses 

(G., Safe Probability, JSPI ‘18) 



Two Extreme Views on Learning –

yet using almost same methods

• Vapnik’s ML Theory                          

(‘statistical learning theory’, 50000 citations)

Can only do one single thing with the function 

learned from data

• Bayesian Inference (at least De Finetti brand)

Every single inference task that can be 

formulated in terms of measurable fns on my 

domain can be answered by my posterior



Two Extremist Views on Learning 

– yet using almost same methods

• Vapnik’s ML Theory                          

(‘statistical learning theory’, 50000 citations)

Can only do one single thing with the function I 

learned from data

• Bayesian Inference (at least De Finetti brand)

Every single inference task that can be 

formulated in terms of measurable fns on my 

domain can be answered by my posterior



Example: Ridge/Lasso Regression

•V: assume 𝑋𝑖 , 𝑌𝑖 i.i.d.∼ 𝑃 .For large enough 𝑛, ‘right’ 

𝜆, we have

•“Hence I can get small squared error when predicting a 

new 𝑌 based on a new 𝑋 from the same distribution”



•V: assume 𝑋𝑖 , 𝑌𝑖 i.i.d.∼ 𝑃 .For large enough 𝑛, ‘right’ 

𝜆, we have

•“Hence I can get small squared error when predicting a 

new 𝑌 based on a new 𝑋 from the same distribution”

•Q: What if new X drawn from different distribution?

•V: You can’t say anything!



•V: assume 𝑋𝑖 , 𝑌𝑖 i.i.d.∼ 𝑃 .For large enough 𝑛, ‘right’ 

𝜆, we have

•“Hence I can get small squared error when predicting a 

new 𝑌 based on a new 𝑋 from the same distribution”

•Q: What if new X drawn from different distribution?

•V: You can’t say anything!

•Q: Does          give a good estimate of                ?

•V: Can’t say!  



•B:  𝛽𝑛 is also posterior mean (even with prior on 𝜎2 )

•So I agree that I can get small squared error when 

predicting a new 𝑌 based on a new 𝑋 from same distr.

•Q: What if new X drawn from different distribution?

•B: You’ll still be o.k.!

•Q: Does          give a good estimate of                ?

•B: Of course!



•B:  𝛽𝑛 is also posterior mean (even with prior on 𝜎2 )

•So I agree that I can get small squared error when 

predicting a new 𝑌 based on a new 𝑋 from same distr.

•Q: What if new X drawn from different distribution?

•B: You’ll still be o.k.!

•Q: Does          give a good estimate of                ?

•B: Of course!

•Q: Does          give good estimate of median of 𝑌 given 𝑋?

•B: Of course!

•Q: Is 𝑃 𝑌 𝑋 unimodal? B: Of course! etc etc



•B:  𝛽𝑛 is also posterior mean (even with prior on 𝜎2 )

•So I agree that I can get small squared error when 

predicting a new 𝑌 based on a new 𝑋 from same distr.

•Q: What if new X drawn from different distribution?

•B: You’ll still be o.k.!

•Q: Does          give a good estimate of                ?

•B: Of course!

•Q: Does          give good estimate of median of 𝑌 given 𝑋?

•B: Of course!

•Q: Is 𝑃 𝑌 𝑋 unimodal? B: Of course! Etc etc

•

V&B use almost same method but draw 

very weak vs very strong conclusions! 



Safe Statistics: Go Inbetween

• If I do 𝜂 −Bayesian linear regression with normal 

prior on 𝛽 , standard prior on variance 𝜎2 and 𝜂 <  𝜂 , 

then if data i.i.d. I can guarantee convergence to KL 

optimal 𝑓∗ 𝑥 = 𝛽∗𝑇𝑥 and 𝜎∗ s.t.:

• Optimality of squared error predictions of 𝑝𝑓∗

• Safety of your error assessment thereof



Safe Statistics: Go Inbetween

• If I assume data i.i.d. I can guarantee

• Optimality of squared error predictions of 𝑝𝑓∗

• Safety of error assessment thereof

• If(f) I am further willing to assume that F contains 

Bayes-optimal decision rule...

•....then I can guarantee that  

• If on top I want to assume that 𝑃 𝑌 𝑋 is symmetric 

then I can guarantee that 𝑓∗ 𝑋 is median of 𝑃 𝑌 𝑋



I have a Dream

• Imagine a world in which statisticians/data analysts 

would, as a matter of principle, be asked to express 

what their probability model can be used for and 

what not. 

• Then indeed we would have a safer statistics

• ...in the paper  ‘Safe Probability’ I make a first 

attempt to develop a formal language for specifying 

this



Hypothesis Testing

• Suppose you test between two models using a Bayes 

factor 

• If you choose  𝑝0 𝑦𝑛 = ∫ 𝑝𝜃 𝑦𝑛 𝑤0 𝜃 𝑑𝜃 because 

your prior 𝑤0 really expresses prior knowledge, and 

 𝑝0 𝑦𝑛 ≫  𝑝1 𝑦𝑛 , then you might be willing to use 

the Bayes posterior 𝑤0 𝜃 𝑦𝑛) for making actual 

predictions: you might claim it is safe for all bounded 

loss fns.

• But if you choose  𝑝0 because it is the RIPr of  𝑝1 , 

then you definitely cannot trust the poster and you do 

not want to make such claims!



New Mathematical 

Questions/Concepts

• Optimality: If I assume <X>, for what 

inference/prediction tasks am I (sufficiently) optimal?

• Some scattered nontrivial results exist in machine 

learning theory literature.



New Mathematical 

Questions/Concepts

• Optimality: If I assume <X>, for what 

inference/prediction tasks am I (sufficiently) optimal?

• Some scattered nontrivial results exist in machine 

learning theory literature. For example:

if you do logistic regression and you are really 

interested in classification, then your KL optimal 

parameters (to which you’ll converge) also give you 

the smallest expected 0/1-loss when used for 

classification if your model contains the Bayes 

optimal classifier (Bartlett, Jordan, McAullife ‘06)



New Mathematical 

Questions/Concepts

• Optimality: If I assume <X>, for what 

inference/prediction tasks am I (sufficiently) optimal? 

• Safety: central concept of G. 2018.

A distribution  𝑃 is safe for predicting against loss 

function 𝐿 with ‘true’ distribution 𝑃 if it holds that 

where 𝛿  𝑃 is the Bayes act according to  𝑃



• Safety: Simplest form: 

A distribution  𝑃 is safe for predicting against loss 

function 𝐿 with ‘true’ distribution 𝑃 if it holds that 

where 𝛿  𝑃 is the Bayes act according to  𝑃

If you act as your model prescribes, the world behaves as 

your model predicts, even though your model may be 

wrong and there may be better predictions!

Safe Probability



Example

• If I do 𝜂 −Bayesian linear regression with normal 

prior on 𝛽 , standard prior on variance 𝜎2 and 𝜂 <  𝜂 , 

then if data i.i.d. I can guarantee convergence to KL 

optimal 𝑓∗ 𝑥 = 𝛽∗𝑇𝑥 and 𝜎∗ s.t.:

• Optimality of squared error predictions of 𝑝𝑓∗

• Safety of your error assessment thereof



Example 2

• The Weather Forecaster!



Monty Hall (3-door) Problem
Monty Hall 1970



Monty Hall

• There are three doors in the TV studio. Behind one 
door is a car, behind both other doors a goat. You 
choose one of the doors. Monty Hall opens one of the 
other two doors, and shows that there is a goat 
behind it. You are now allowed to switch to the other 
door that is still closed. Is it smart to switch?



Monty Hall: The Wikipedia Wars

• I am interested in understanding the Wikipedia Wars 

(Gill 11, Mlodinow 08) on Monty Hall

• Both sides agree that switching is smart and 

increases your chances of winning from 1/3 to 

2/3!

• The “war” is about how to prove this: 

• “strictly Bayesian”: via conditioning (in the right 

space, with additional assumption that Monty 

chooses by tossing a fair coin ) (“MaxEnt-style 

assumption”)

• Without additional assumptions, via decision-

theoretic argument



Safe Probability applied to

Monty Hall

• Under a symmetric loss function as in the original 

formulation of the problem, assuming that Monty flips 

a fair coin if he has a choice and then conditioning is 

safe and minimax optimal

• ‘asymmetric’ means e.g. that if the car is behind 

door B, it is a Ferrari; if it is behind door C, it is a 

Fiat Panda

• Still holds if same candidate plays each week and 

can reinvest his prize, hedging over several doors 

(horse race losses), even if prizes asymmetric

• But not if loss functions are asymmetric and

reinvestment impossible



Thank you!
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