A local surjection theorem Dedicated to Yann Brenier, on his birthday (or whereabouts)

Ivar Ekeland, Eric Séré

CEREMADE, Université Paris-Dauhine

January 11, 2017

Ivar Ekeland, Eric Séré (Institute)

A local surjection theorem

January 11, 2017 1 / 20

Let Ω_1 and Ω_2 be metric spaces with their respective Borel σ -algebras. Let $u: \Omega_1 \to \Omega_2$ be some map. Consider the corresponding map $u^{\#}$ between probability spaces

$$u\# : \mathcal{P}(\Omega_1) \to \mathcal{P}(\Omega_2)$$
$$\int_{\Omega_1} \varphi \ d(u\#\mu) = \int_{\Omega_2} \varphi \circ u \ d\mu$$

• Is $u^{\#}$ differentiable, and in what sense ?

Let Ω_1 and Ω_2 be metric spaces with their respective Borel σ -algebras. Let $u: \Omega_1 \to \Omega_2$ be some map. Consider the corresponding map $u^{\#}$ between probability spaces

$$\begin{array}{rcl} u\# & : & \mathcal{P}\left(\Omega_{1}\right) \to \mathcal{P}\left(\Omega_{2}\right) \\ \int_{\Omega_{1}} \varphi \ d\left(u\#\mu\right) & = & \int_{\Omega_{2}} \varphi \circ u \ d\mu \end{array}$$

- Is $u^{\#}$ differentiable, and in what sense ?
- Is $u^{\#}$ a (local) surjection ?

The statistician's view

Consider a *D*-dimensional random variable *X* on (Ω, P) and a *K*-dimensional map $u : R^D \to R^K$. The number:

$$T := \int_{\Omega} u(X(\omega)) \, dP(\omega)$$

is called a statistic . It depends only on the law $\mu := X^{\#}P$ of X. In fact,

$$T = \int_{R^{D}} u d\mu = \int_{R^{K}} I d\left(u^{\#}\mu\right) = \operatorname{bar}\left\{u^{\#}\mu\right\}$$

Examples:

$$\begin{array}{ll} \text{the mean} & T = \int_{\Omega} X dP & u\left(x\right) = x \\ \text{the } q\text{-th quantile} & P\left(X \geq T\right) = q & u\left(x\right) = 1_{x \geq T} \\ \text{Mann-Whitney} & P\left[X_1 \geq X_2\right] & u\left(x_1, x_2\right) = 1_{x_1 \geq x_2} \end{array}$$

Unfortunately, X cannot be observed in general: all we have are empirical distributions $(x_1, ..., x_N)$. The relation with the true distribution is given by the CLT:

$$\begin{array}{ll} \mu_{N} & : & = \frac{1}{N}\sum_{n=1}^{N}\delta_{x_{n}} \text{ (a random distribution on } R^{K}) \\ \sqrt{N}\left(\mu_{N}-E\left[\mu\right]\right) & \rightsquigarrow & \mathcal{N}\left(0,\sigma^{2}\right) \text{ (convergence in law)} \end{array}$$

• What happens to the law of large numbers when the statistic is nonlinear ?

- What happens to the law of large numbers when the statistic is nonlinear ?
- (von Mises, 1936) Suppose $u^{\#}$ is differentiable

$$T(\mu_N) = T\left(\mu + \frac{1}{\sqrt{N}}\sqrt{N}(\mu_N - \mu)\right)$$

$$\simeq T(\mu) + \frac{1}{\sqrt{N}}DT(\mu)\mathcal{N}(0,\sigma^2)$$

- What happens to the law of large numbers when the statistic is nonlinear ?
- (von Mises, 1936) Suppose $u^{\#}$ is differentiable

$$T(\mu_N) = T\left(\mu + \frac{1}{\sqrt{N}}\sqrt{N}(\mu_N - \mu)\right)$$

$$\simeq T(\mu) + \frac{1}{\sqrt{N}}DT(\mu)\mathcal{N}(0,\sigma^2)$$

• So $\sqrt{N} \left(T \left(\mu_N \right) - T \left(\mu \right) \right)$ is asymptotically normal.

- What happens to the law of large numbers when the statistic is nonlinear ?
- (von Mises, 1936) Suppose $u^{\#}$ is differentiable

$$T(\mu_N) = T\left(\mu + \frac{1}{\sqrt{N}}\sqrt{N}(\mu_N - \mu)\right)$$

$$\simeq T(\mu) + \frac{1}{\sqrt{N}}DT(\mu)\mathcal{N}(0,\sigma^2)$$

- So $\sqrt{N}\left(T\left(\mu_{N}\right)-T\left(\mu\right)\right)$ is asymptotically normal.
- For the q-quantile, and a law μ with density f, the correction term is computed to be $\mathcal{N}(0, \sigma_0^2)$ with:

$$\sigma_0 = \frac{q\left(1-q\right)}{f\left(T\right)^2}$$

The analyst's point of view

The problem is to validate this computation. Let us try it on a simple statistic:

$$T(X) = \int_0^1 u(X(t)) dt$$

where *u* is C^{∞} and satisfies $|u'(t)| \leq b$. Then $|u(t)| \leq a + bt$, and $T: L^1(dt) \to L^1(dt)$, so that $u^{\#}dt$ is absolutely continuous wrt Lebesgue measure. We have

$$DT(X) Y = \lim_{\varepsilon \to 0} \int_{0}^{1} \frac{u(X + \varepsilon Y) - u(X)}{\varepsilon} dP$$

Using the mean value theorem and the estimate, we find:

$$DT\left(X
ight)Y=\int_{0}^{1}u'\left(X\left(t
ight)
ight)Y\left(t
ight)dt=\left\langle u'\left(X
ight),Y
ight
angle _{\left\langle L^{\infty},\ L^{1}
ight
angle }$$

Types of differentiablity

The nonlinear integral map $T: L^1 \rightarrow R$ given by:

$$T\left(X
ight)=\int_{0}^{1}u\left(X\left(t
ight)
ight)dt$$

• is Gâteaux-differentiable (the restriction to any straight line is differentiable). This is NOT enough to ensure the validity of the von Mises calculus

Types of differentiablity

The nonlinear integral map $T: L^1 \rightarrow R$ given by:

$$T\left(X\right) = \int_{0}^{1} u\left(X\left(t\right)\right) dt$$

- is Gâteaux-differentiable (the restriction to any straight line is differentiable). This is NOT enough to ensure the validity of the von Mises calculus
- is NOT C^1 , unless u is linear. Indeed, we have $DT(X) = u'(X) \in L^{\infty}$, and the map $X \to u'(X)$ from L^1 to L^{∞} cannot be continuous, unless it is constant (Nemitsky, Krasnoselskii)

Types of differentiablity

The nonlinear integral map $T: L^1 \rightarrow R$ given by:

$$T\left(X\right) = \int_{0}^{1} u\left(X\left(t\right)\right) dt$$

- is Gâteaux-differentiable (the restriction to any straight line is differentiable). This is NOT enough to ensure the validity of the von Mises calculus
- is NOT C^1 , unless u is linear. Indeed, we have $DT(X) = u'(X) \in L^{\infty}$, and the map $X \to u'(X)$ from L^1 to L^{∞} cannot be continuous, unless it is constant (Nemitsky, Krasnoselskii)
- this is a general phenomenon . For instance, a map $X \to \int u(X)$ from L^2 into itself cannot be C^2 , unless it is exactly quadratic. It follows that one cannot define directly a Morse theory for integral functionals, which causes technical difficulties in variational problems (Smale, IE)

Definition

Let $T : E \to F$ be a G-differentiable map between Banach spaces. The following are equivalent:

- $DT(X) Y = \lim_{\epsilon \to 0} \epsilon^{-1} (T(X + \epsilon Y) T(X))$ exists uniformly for $Y \in K$, where K is a compact subset of F
- for every $Y(\varepsilon) \to Y(0)$, we have $\lim_{\varepsilon \to 0,} \varepsilon^{-1} \left(T\left(X + \varepsilon Y(\varepsilon) \right) T(X) \right) = DT(X) Y$
- for every C^1 curve $c : [0, 1] \to X$, the curve $T \circ c : [0, 1] \to X$ is differentiable

Definition

If these conditions are satisfied, T is called Hadamard-differentiable

Ivar Ekeland, Eric Séré (Institute)

$$T\left(X
ight)=\int_{0}^{1}u\left(X\left(t
ight)
ight)dt$$
 defines $T:L^{1}
ightarrow R$

Theorem

If u is C^1 and $|u'| \leq a$, the map T is H-differentiable

Proof.

Consider a C^1 curve X_s in L^1 , and differentiate:

$$s \rightarrow T(X_s) = \int_0^1 u(X_s(t)) dt$$

Use Lebesgue's dominated convergence theorem to conclude

Theorem

The von Mises calculus is valid for the statistic T

Proof.

$$\frac{1}{N}\sum u(x_n) = \int u(X) + \frac{1}{N}\sum \left(u(x_n) - \int u(X)\right)$$
$$= \int u(X) + \frac{1}{N}\sum \left(\int \left(u(x_n) - u(X)\right)\right)$$
$$\simeq \int u(x) + \frac{1}{\sqrt{N}}\left(\int u'(X)\sqrt{N}\left(\frac{\sum x_n}{N} - X\right)\right)$$

where we have used Prokhorov's theorem in the last ste

- Let $T: P(\Omega) \to R^{K}$ be a statistic, with $T(\mu_{0}) = T_{0}$.
 - does T cover a neighbourhood of T_0 ? (local surjection)

- Let $T: P(\Omega) \rightarrow R^{K}$ be a statistic, with $T(\mu_{0}) = T_{0}$.
 - does T cover a neighbourhood of T_0 ? (local surjection)
 - in that case, does there exist a continuous map $S : R^{K} \to P(\Omega)$ such that $T \circ S = I$ (continuous right-inverse)

- Let $T: P(\Omega) \rightarrow R^{K}$ be a statistic, with $T(\mu_{0}) = T_{0}$.
 - does T cover a neighbourhood of T_0 ? (local surjection)
 - in that case, does there exist a continuous map $S : \mathbb{R}^{K} \to \mathbb{P}(\Omega)$ such that $T \circ S = I$ (continuous right-inverse)
 - no answer in the statistical literature

Let $T: P(\Omega) \rightarrow R^{K}$ be a statistic, with $T(\mu_{0}) = T_{0}$.

- does T cover a neighbourhood of T_0 ? (local surjection)
- in that case, does there exist a continuous map $S : \mathbb{R}^{K} \to \mathbb{P}(\Omega)$ such that $T \circ S = I$ (continuous right-inverse)
- no answer in the statistical literature
- \bullet in the analysis literature, no local surjection theorem for maps which are not C^1

Let *E* and *F* be Banach spaces, and $\Phi : E \to F$ such that $\Phi(0) = 0$. Denote by $B_E(R) \subset E$ the ball of radius *R* around 0

Theorem (IE)

Assume Φ is G-differentiable and continuous. Assume that $D\Phi(x)$ has right inverse L(x) for all $x \in B_E(R)$. Assume moreover that the operator $L(x) : F \to E$ is uniformly bounded on $B_E(R)$:

 $\exists M > 0: \sup \{ \|L(x)\| \mid \|x\| \le R \} < M$

Then $\Phi(B_E(R))$ covers $B_F(\frac{R}{M})$

IE Annales IHP, Analyse non linéaire, 28 (2011) 91-105

• Φ is not required to be C^1

- Φ is not required to be C^1
- the range R/M is much larger than the standard range (Newton)

- Φ is not required to be C^1
- the range R/M is much larger than the standard range (Newton)
- no uniqueness

- Φ is not required to be C^1
- the range R/M is much larger than the standard range (Newton)
- no uniqueness
- An example:

 $\Phi : \mathbb{C} \to \mathbb{C}$ $\Phi(x) = y = x^n$

Theorem (IE, Eric Séré)

Assume Φ is H-differentiable, and that $\Phi'(x)$ has right inverse L(x) for all $x \in B_E(R)$. More precisely, there is a constant a < 1 and, for every (x, y) a positive radius $\varepsilon(x, y)$ such that, if $||x - x'|| \le \varepsilon$, then:

$$\left\| D\Phi\left(x'\right)L\left(x
ight)y-y
ight\| \leq a\left\|y
ight\|$$

Assume moreover that the operator $L(x) : F \to E$ is uniformly bounded on B_R :

$$\exists M > 0 : \sup \{ \|L(x)\| \mid \|x\| \le R \} < M$$

Set $r := (1 - a) RM^{-1}$. Then there is a continuous map $\Psi : B_F(r) \rightarrow B_E(R)$ such that:

$$\left(\Phi\circ\Psi\right)\left(y\right)=y$$

< ロト < 同ト < ヨト < ヨト

Proof

Let $y \in B_F(r)$ be given. Choose some $M_0 < M$ and some a' with a < a' < 1 such that:

$$\sup \{ \|L(x)\| \mid \|x\| \le R \} \le \frac{1-a'}{1-a} M_0 < M$$

Consider the set $C(B_r, B_R)$ of all continuous maps $G: B_F(r) \to B_E(R)$ endowed with the uniform metric. It is a complete metric space. Consider the function $f: C(B_F(r), B_E(R)) \to \mathbb{R}$ defined by:

$$f(G) = \sup \left\{ \left\| \left(F \circ G \right) (y) - y \right\| \ | \ y \in B_F(r) \right\}$$

We have:

$$f(0) = ||y|| \le r$$
$$f \ge 0$$

So we are in a position to apply Ekeland's variational principle.

There exists some \overline{G} such that:

$$f(\bar{G}) \leq r$$

$$\|\bar{G}\| \leq R\frac{M_0}{M} < R$$

$$\forall G, f(G) \geq f(\bar{G}) - \frac{r}{R}\frac{M}{M_0} \|G - \bar{G}\|$$

We have $\frac{r}{R}M = 1 - a$. If $(F \circ \overline{G})(y) = y$ the proof is over. If not, we will move $(F \circ \overline{G})(y)$ in the direction of y. Set:

$$\begin{array}{ll} v\left(y\right) &=& y-\left(F\circ\bar{G}\right)\left(y\right) \\ G_t\left(y\right) &=& \bar{G}\left(y\right)+tL\left(\bar{G}\left(y\right)\right)v\left(y\right) \end{array}$$

Ivar Ekeland, Eric Séré (Institute)

$$\begin{aligned} \forall t, \ f\left(G_{t}\right) &\geq f\left(\bar{G}\right) - \frac{1-a}{M_{0}} \left\|G_{t} - \bar{G}\right\| \\ \forall t, \ \frac{f\left(G_{t}\right) - f\left(\bar{G}\right)}{t} &\geq -\frac{1-a}{M_{0}} \left\|L\left(\bar{G}\left(y\right)\right)v\left(y\right)\right\| \\ \left|\left(Df\left(\bar{G}\right), L\left(\bar{G}\left(y\right)\right)v\left(y\right)\right)\right| &\leq \frac{1-a}{M_{0}} \left\|L\left(\bar{G}\left(y\right)\right)v\left(y\right)\right\| \end{aligned}$$

Ivar Ekeland, Eric Séré (Institute)

January 11, 2017 17 / 20

< m

3

$$f(G_t) = \sup_{y \in B_F(r)} \left\| \left(F \circ G \right)(y) - y \right\|$$

By the envelope theorem:

$$(Df(\bar{G}),g) = \left(DF(\bar{G}(y))g(\bar{y}), \frac{F(\bar{G}(\bar{y})) - \bar{y}}{\|F(\bar{G}(\bar{y})) - \bar{y}\|}\right)$$
$$F(\bar{G}(y)) - \bar{y} = \max_{y \in B_F(r)} \{F(\bar{G}(y)) - y\}$$

Ivar Ekeland, Eric Séré (Institute)

January 11, 2017 18 / 20

$$\begin{split} |(Df(\bar{G}), L(\bar{G}(y))v(y))| &\leq \frac{1-a}{M_0} \|L(\bar{G}(y))v(y)\| \\ \left| \left(DF(\bar{G}(y))L(\bar{G}(y))v(\bar{y}), \frac{F(\bar{G}(\bar{y})) - \bar{y}}{\|F(\bar{G}(\bar{y})) - \bar{y}\|} \right) \right| &\leq \frac{1-a}{M_0} \|L(\bar{G}(y))v(\bar{y})\| \\ \left| \left(DF(\bar{G}(y))L(\bar{G}(y))v(\bar{y}), \frac{v(\bar{y})}{\|v(\bar{y})\|} \right) \right| &\leq \frac{1-a}{M_0} \|L(\bar{G}(y))v(y)\| \\ \|v(\bar{y})\| &\leq \frac{1-a}{M_0} M \|v(\bar{y})\| < |v(\bar{y})| \end{split}$$

3

The journey, not the arrival, matters

Ivar Ekeland, Eric Séré (Institute)

A local surjection theorem

January 11, 2017 20 / 20