A local surjection theorem

Dedicated to Yann Brenier, on his birthday (or whereabouts)

Ivar Ekeland, Eric Séré

CEREMADE, Université Paris-Dauhine

January 11, 2017

A question

Let Ω_{1} and Ω_{2} be metric spaces with their respective Borel σ-algebras. Let $u: \Omega_{1} \rightarrow \Omega_{2}$ be some map. Consider the corresponding map $u^{\#}$ between probability spaces

$$
\begin{aligned}
u \# & : \mathcal{P}\left(\Omega_{1}\right) \rightarrow \mathcal{P}\left(\Omega_{2}\right) \\
\int_{\Omega_{1}} \varphi d(u \# \mu) & =\int_{\Omega_{2}} \varphi \circ u d \mu
\end{aligned}
$$

- Is $u^{\#}$ differentiable, and in what sense ?

A question

Let Ω_{1} and Ω_{2} be metric spaces with their respective Borel σ-algebras. Let $u: \Omega_{1} \rightarrow \Omega_{2}$ be some map. Consider the corresponding map $u^{\#}$ between probability spaces

$$
\begin{aligned}
u \# & : \mathcal{P}\left(\Omega_{1}\right) \rightarrow \mathcal{P}\left(\Omega_{2}\right) \\
\int_{\Omega_{1}} \varphi d(u \# \mu) & =\int_{\Omega_{2}} \varphi \circ u d \mu
\end{aligned}
$$

- Is $u^{\#}$ differentiable, and in what sense ?
- Is $u^{\#}$ a (local) surjection ?

The statistician's view

Consider a D-dimensional random variable X on (Ω, P) and a K-dimensional map $u: R^{D} \rightarrow R^{K}$. The number:

$$
T:=\int_{\Omega} u(X(\omega)) d P(\omega)
$$

is called a statistic. It depends only on the law $\mu:=X^{\#} P$ of X. In fact,

$$
T=\int_{R^{D}} u d \mu=\int_{R^{K}} I d\left(u^{\#} \mu\right)=\operatorname{bar}\left\{u^{\#} \mu\right\}
$$

Examples:
the mean

$$
T=\int_{\Omega} X d P
$$

$$
u(x)=x
$$

the q-th quantile $P(X \geq T)=q \quad u(x)=1_{x \geq T}$
Mann-Whitney $\quad P\left[X_{1} \geq X_{2}\right] \quad u\left(x_{1}, x_{2}\right)=1_{x_{1} \geq x_{2}}$

The central limit theorem

Unfortunately, X cannot be observed in general: all we have are empirical distributions $\left(x_{1}, \ldots, x_{N}\right)$. The relation with the true distribution is given by the CLT:

$$
\begin{aligned}
\mu_{N} & :=\frac{1}{N} \sum_{n=1}^{N} \delta_{x_{n}}\left(\text { a random distribution on } R^{K}\right) \\
\sqrt{N}\left(\mu_{N}-E[\mu]\right) & \rightsquigarrow \mathcal{N}\left(0, \sigma^{2}\right) \text { (convergence in law) }
\end{aligned}
$$

von Mises calculus

- What happens to the law of large numbers when the statistic is nonlinear?

von Mises calculus

- What happens to the law of large numbers when the statistic is nonlinear ?
- (von Mises, 1936) Suppose $u^{\#}$ is differentiable

$$
\begin{aligned}
T\left(\mu_{N}\right) & =T\left(\mu+\frac{1}{\sqrt{N}} \sqrt{N}\left(\mu_{N}-\mu\right)\right) \\
& \simeq T(\mu)+\frac{1}{\sqrt{N}} D T(\mu) \mathcal{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

von Mises calculus

- What happens to the law of large numbers when the statistic is nonlinear ?
- (von Mises, 1936) Suppose $u^{\#}$ is differentiable

$$
\begin{aligned}
T\left(\mu_{N}\right) & =T\left(\mu+\frac{1}{\sqrt{N}} \sqrt{N}\left(\mu_{N}-\mu\right)\right) \\
& \simeq T(\mu)+\frac{1}{\sqrt{N}} D T(\mu) \mathcal{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

- So $\sqrt{N}\left(T\left(\mu_{N}\right)-T(\mu)\right)$ is asymptotically normal.

von Mises calculus

- What happens to the law of large numbers when the statistic is nonlinear ?
- (von Mises, 1936) Suppose $u^{\#}$ is differentiable

$$
\begin{aligned}
T\left(\mu_{N}\right) & =T\left(\mu+\frac{1}{\sqrt{N}} \sqrt{N}\left(\mu_{N}-\mu\right)\right) \\
& \simeq T(\mu)+\frac{1}{\sqrt{N}} D T(\mu) \mathcal{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

- So $\sqrt{N}\left(T\left(\mu_{N}\right)-T(\mu)\right)$ is asymptotically normal.
- For the q-quantile, and a law μ with density f, the correction term is computed to be $\mathcal{N}\left(0, \sigma_{0}^{2}\right)$ with:

$$
\sigma_{0}=\frac{q(1-q)}{f(T)^{2}}
$$

The analyst's point of view

The problem is to validate this computation. Let us try it on a simple statistic:

$$
T(X)=\int_{0}^{1} u(X(t)) d t
$$

where u is C^{∞} and satisfies $\left|u^{\prime}(t)\right| \leq b$. Then $|u(t)| \leq a+b t$, and $T: L^{1}(d t) \rightarrow L^{1}(d t)$, so that $u^{\#} d t$ is absolutely continuous wrt Lebesgue measure. We have

$$
D T(X) Y=\lim _{\varepsilon \rightarrow 0} \int_{0}^{1} \frac{u(X+\varepsilon Y)-u(X)}{\varepsilon} d P
$$

Using the mean value theorem and the estimate, we find:

$$
D T(X) Y=\int_{0}^{1} u^{\prime}(X(t)) Y(t) d t=\left\langle u^{\prime}(X), Y\right\rangle_{\left\langle L^{\infty}, L^{1}\right\rangle}
$$

Types of differentiablity

The nonlinear integral map $T: L^{1} \rightarrow R$ given by:

$$
T(X)=\int_{0}^{1} u(X(t)) d t
$$

- is Gâteaux-differentiable (the restriction to any straight line is differentiable). This is NOT enough to ensure the validity of the von Mises calculus

Types of differentiablity

The nonlinear integral map $T: L^{1} \rightarrow R$ given by:

$$
T(X)=\int_{0}^{1} u(X(t)) d t
$$

- is Gâteaux-differentiable (the restriction to any straight line is differentiable). This is NOT enough to ensure the validity of the von Mises calculus
- is NOT C^{1}, unless u is linear. Indeed, we have $D T(X)=u^{\prime}(X) \in L^{\infty}$, and the map $X \rightarrow u^{\prime}(X)$ from L^{1} to L^{∞} cannot be continuous, unless it is constant (Nemitsky, Krasnoselskii)

Types of differentiablity

The nonlinear integral map $T: L^{1} \rightarrow R$ given by:

$$
T(X)=\int_{0}^{1} u(X(t)) d t
$$

- is Gâteaux-differentiable (the restriction to any straight line is differentiable). This is NOT enough to ensure the validity of the von Mises calculus
- is NOT C^{1}, unless u is linear. Indeed, we have $D T(X)=u^{\prime}(X) \in L^{\infty}$, and the map $X \rightarrow u^{\prime}(X)$ from L^{1} to L^{∞} cannot be continuous, unless it is constant (Nemitsky, Krasnoselskii)
- this is a general phenomenon. For instance, a map $X \rightarrow \int u(X)$ from L^{2} into itself cannot be C^{2}, unless it is exactly quadratic. It follows that one cannot define directly a Morse theory for integral functionals, which causes technical difficulties in variational problems (Smale, IE)

Hadamard differentiability

Definition

Let $T: E \rightarrow F$ be a G-differentiable map between Banach spaces. The following are equivalent:

- $D T(X) Y=\lim _{\varepsilon \rightarrow 0} \varepsilon^{-1}(T(X+\varepsilon Y)-T(X))$ exists uniformly for $Y \in K$, where K is a compact subset of F
- for every $Y(\varepsilon) \rightarrow Y(0)$, we have $\lim _{\varepsilon \rightarrow 0, \varepsilon^{-1}}(T(X+\varepsilon Y(\varepsilon))-T(X))=D T(X) Y$
- for every C^{1} curve $c:[0,1] \rightarrow X$, the curve $T \circ c:[0,1] \rightarrow X$ is differentiable

Definition

If these conditions are satisfied, T is called Hadamard-differentiable

Statistics are H-differentiable

$$
T(X)=\int_{0}^{1} u(X(t)) d t \text { defines } T: L^{1} \rightarrow R
$$

Theorem

If u is C^{1} and $\left|u^{\prime}\right| \leq a$, the map T is H-differentiable

Proof.

Consider a C^{1} curve X_{s} in L^{1}, and differentiate:

$$
s \rightarrow T\left(X_{s}\right)=\int_{0}^{1} u\left(X_{s}(t)\right) d t
$$

Use Lebesgue's dominated convergence theorem to conclude

Validation of von Mises

Theorem

The von Mises calculus is valid for the statistic T

Proof.

$$
\begin{aligned}
\frac{1}{N} \sum u\left(x_{n}\right) & =\int u(X)+\frac{1}{N} \sum\left(u\left(x_{n}\right)-\int u(X)\right) \\
& =\int u(X)+\frac{1}{N} \sum\left(\int\left(u\left(x_{n}\right)-u(X)\right)\right) \\
& \simeq \int u(x)+\frac{1}{\sqrt{N}}\left(\int u^{\prime}(X) \sqrt{N}\left(\frac{\sum x_{n}}{N}-X\right)\right)
\end{aligned}
$$

where we have used Prokhorov's theorem in the last ste

Why local surjection theorems?

Let $T: P(\Omega) \rightarrow R^{K}$ be a statistic, with $T\left(\mu_{0}\right)=T_{0}$.

- does T cover a neighbourhood of T_{0} ? (local surjection)

Why local surjection theorems?

Let $T: P(\Omega) \rightarrow R^{K}$ be a statistic, with $T\left(\mu_{0}\right)=T_{0}$.

- does T cover a neighbourhood of T_{0} ? (local surjection)
- in that case, does there exist a continuous map $S: R^{K} \rightarrow P(\Omega)$ such that $T \circ S=I$ (continuous right-inverse)

Why local surjection theorems?

Let $T: P(\Omega) \rightarrow R^{K}$ be a statistic, with $T\left(\mu_{0}\right)=T_{0}$.

- does T cover a neighbourhood of T_{0} ? (local surjection)
- in that case, does there exist a continuous map $S: R^{K} \rightarrow P(\Omega)$ such that $T \circ S=I$ (continuous right-inverse)
- no answer in the statistical literature

Why local surjection theorems?

Let $T: P(\Omega) \rightarrow R^{K}$ be a statistic, with $T\left(\mu_{0}\right)=T_{0}$.

- does T cover a neighbourhood of T_{0} ? (local surjection)
- in that case, does there exist a continuous map $S: R^{K} \rightarrow P(\Omega)$ such that $T \circ S=I$ (continuous right-inverse)
- no answer in the statistical literature
- in the analysis literature, no local surjection theorem for maps which are not C^{1}

The G-differentiable case

Let E and F be Banach spaces, and $\Phi: E \rightarrow F$ such that $\Phi(0)=0$. Denote by $B_{E}(R) \subset E$ the ball of radius R around 0

Theorem (IE)

Assume Φ is G-differentiable and continuous. Assume that $D \Phi(x)$ has right inverse $L(x)$ for all $x \in B_{E}(R)$. Assume moreover that the operator $L(x): F \rightarrow E$ is uniformly bounded on $B_{E}(R)$:

$$
\exists M>0: \sup \{\|L(x)\| \mid\|x\| \leq R\}<M
$$

Then $\Phi\left(B_{E}(R)\right)$ covers $B_{F}\left(\frac{R}{M}\right)$
IE Annales IHP, Analyse non linéaire, 28 (2011) 91-105

Comparison with the standard local surjection theorem

- Φ is not required to be C^{1}

Comparison with the standard local surjection theorem

- Φ is not required to be C^{1}
- the range R / M is much larger than the standard range (Newton)

Comparison with the standard local surjection theorem

- Φ is not required to be C^{1}
- the range R / M is much larger than the standard range (Newton)
- no uniqueness

Comparison with the standard local surjection theorem

- Φ is not required to be C^{1}
- the range R / M is much larger than the standard range (Newton)
- no uniqueness
- An example:

$$
\begin{array}{r}
\Phi: \mathbb{C} \rightarrow \mathbb{C} \\
\Phi(x)=y=x^{n}
\end{array}
$$

The H-differentiable case

Theorem (IE, Eric Séré)

Assume Φ is H-differentiable, and that $\Phi^{\prime}(x)$ has right inverse $L(x)$ for all $x \in B_{E}(R)$. More precisely, there is a constant a <1 and, for every (x, y) a positive radius $\varepsilon(x, y)$ such that, if $\left\|x-x^{\prime}\right\| \leq \varepsilon$, then:

$$
\left\|D \Phi\left(x^{\prime}\right) L(x) y-y\right\| \leq a\|y\|
$$

Assume moreover that the operator $L(x): F \rightarrow E$ is uniformly bounded on B_{R} :

$$
\exists M>0: \sup \{\|L(x)\| \mid\|x\| \leq R\}<M
$$

Set $r:=(1-a) R M^{-1}$. Then there is a continuous map $\Psi: B_{F}(r) \rightarrow B_{E}(R)$ such that:

$$
(\Phi \circ \Psi)(y)=y
$$

Proof

Let $y \in B_{F}(r)$ be given. Choose some $M_{0}<M$ and some a^{\prime} with $a<a^{\prime}<1$ such that:

$$
\sup \{\|L(x)\| \mid\|x\| \leq R\} \leq \frac{1-a^{\prime}}{1-a} M_{0}<M
$$

Consider the set $\mathcal{C}\left(B_{r}, B_{R}\right)$ of all continuous maps $G: B_{F}(r) \rightarrow B_{E}(R)$ endowed with the uniform metric. It is a complete metric space. Consider the function $f: \mathcal{C}\left(B_{F}(r), B_{E}(R)\right) \rightarrow \mathbb{R}$ defined by:

$$
f(G)=\sup \left\{\|(F \circ G)(y)-y\| \mid y \in B_{F}(r)\right\}
$$

We have:

$$
\begin{aligned}
f(0) & =\|y\| \leq r \\
f & \geq 0
\end{aligned}
$$

So we are in a position to apply Ekeland's variational principle.

There exists some \bar{G} such that:

$$
\begin{aligned}
f(\bar{G}) & \leq r \\
\|\bar{G}\| & \leq R \frac{M_{0}}{M}<R \\
\forall G, f(G) & \geq f(\bar{G})-\frac{r}{R} \frac{M}{M_{0}}\|G-\bar{G}\|
\end{aligned}
$$

We have $\frac{r}{R} M=1-a$. If $(F \circ \bar{G})(y)=y$ the proof is over. If not, we will move $(F \circ \bar{G})(y)$ in the direction of y. Set:

$$
\begin{aligned}
v(y) & =y-(F \circ \bar{G})(y) \\
G_{t}(y) & =\bar{G}(y)+t L(\bar{G}(y)) v(y)
\end{aligned}
$$

Getting first-order information

$$
\begin{aligned}
\forall t, f\left(G_{t}\right) & \geq f(\bar{G})-\frac{1-a}{M_{0}}\left\|G_{t}-\bar{G}\right\| \\
\forall t, \frac{f\left(G_{t}\right)-f(\bar{G})}{t} & \geq-\frac{1-a}{M_{0}}\|L(\bar{G}(y)) v(y)\| \\
|(D f(\bar{G}), L(\bar{G}(y)) v(y))| & \leq \frac{1-a}{M_{0}}\|L(\bar{G}(y)) v(y)\|
\end{aligned}
$$

Computing the derivative

$$
f\left(G_{t}\right)=\sup _{y \in B_{F}(r)}\|(F \circ G)(y)-y\|
$$

By the envelope theorem:

$$
\begin{aligned}
(D f(\bar{G}), g) & =\left(D F(\bar{G}(y)) g(\bar{y}), \frac{F(\bar{G}(\bar{y}))-\bar{y}}{\|F(\bar{G}(\bar{y}))-\bar{y}\|}\right) \\
F(\bar{G}(y))-\bar{y} & =\max _{y \in B_{F}(r)}\{F(\bar{G}(y))-y\}
\end{aligned}
$$

The final contradiction

$$
\begin{aligned}
& |(D f(\bar{G}), L(\bar{G}(y)) v(y))| \leq \frac{1-a}{M_{0}}\|L(\bar{G}(y)) v(y)\| \\
& \left.\left|\left(D F(\bar{G}(y)) L(\bar{G}(y)) v(\bar{y}), \frac{F(\bar{G}(\bar{y}))-\bar{y}}{\|F(\bar{G}(\bar{y}))-\bar{y}\|}\right)\right| \leq \frac{1-a}{M_{0}} \| L(\bar{G}(y))\right) \\
& \left|\left(D F(\bar{G}(y)) L(\bar{G}(y)) v(\bar{y}), \frac{v(\bar{y})}{\|v(\bar{y})\|}\right)\right| \leq \frac{1-a}{M_{0}}\|L(\bar{G}(y)) v(y)\| \\
& \|v(\bar{y})\| \leq \frac{1-a}{M_{0}} M\|v(\bar{y})\|<|v(\bar{y})|
\end{aligned}
$$

Advice from a fellow traveller:

The journey, not the arrival, matters

