
Optimal transportation between unequal dimensions

Robert J McCann

University of Toronto

www.math.toronto.edu/mccann

with Pierre-Andre Chiappori (in part) and Brendan Pass

10 January 2017

Robert J McCann (Toronto) Optimal transport for unequal dimensions 10 January 2017 1 / 38



Outline

1 Introduction to optimal transport

2 Applications

3 Criteria for optimal maps to exist, be unique, and be regular

4 Unequal dimensions

5 Kantorovich duality and the stable marriage problem

6 New local and nonlocal PDE (= partial differential equations)

7 Multi- to one-dimensional transport: a new class of explicit solutions

8 Regularity

9 Conclusions

Robert J McCann (Toronto) Optimal transport for unequal dimensions 10 January 2017 2 / 38



Introduction to optimal transport
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Monge-Kantorovich optimal transport

c(x , y) = ‘cost’ per unit mass transported from x ∈ X to y ∈ Y

X ⊂ Rm and Y ⊂ Rn bounded open sets of dimension m ≥ n

densities of supply f (x) ≥ 0 on X and demand g(y) ≥ 0 on Y∫
X
f =

∫
Y
g = 1; normalization: probability densities / measures (‘pdfs’ )

Seek γ ∈ Γ := Γ(f , g) where

Γ =

 0 ≤ γ on
X × Y

∣∣∣∣
∫
U
f (x)dx = γ(U × Y ) ∀U ⊂ X

γ(X × V ) =

∫
V
g(y)dy ∀V ⊂ Y


such that...
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seek γ ∈ Γ = Γ(f , g) attaining

inf
γ∈Γ

γ[c]

where

γ[c] :=

∫
X×Y

c(x , y)dγ(x , y)

QUESTIONS:

• is the infimum attained? uniquely?

• can optimizers be characterized? (e.g. using PDE?)

• Monge: must spt γ⊂γ−a.e.Graph(G ) for some map G : X −→ Y ?
(in which case we write γ = (id × G )#f )

• what are their geometric and analytical properties?

• how do these depend on the choice of cost-benefit c(x , y) = −b(x , y)?

• applications?
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Applications (a very incomplete sampler)

• Image processing (Delon, Kaijser, Peyre, Rumpf, Tannenbaum . . . )
(medicine, movies, and data compression)

Monge Kantorovich
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• Weather prediction, mesh generation

from Weller, Browne, Budd and Cullen (2015 preprint)
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• Early universe reconstruction

Brenier, Frisch, Hénon, Loeper, Matarrese, Mohayee, Sobolevskii (2003)
Robert J McCann (Toronto) Optimal transport for unequal dimensions 10 January 2017 8 / 38



• Price equilibration of supply with demand; asymmetric information
(Ekeland, Carlier, McCann, . . . )

• ‘Stable marriage’ problem (Shapley, Shubik, . . . )
(National Medical Residency Matching Program)

. . .
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REMARKS:

• SETTING: X ⊂ Rm and Y ⊂ Rn open and bounded with m ≥ n

• b ∈ C (X × Y ) the Banach space of cts fns, normed by supremum

• CONVEX: Γ convex & wk-∗ compact in the dual space of measures

• NON-EMPTY dγ(x , y) = f (x)g(y)dxdy ∈ Γ (product measure)

• LINEAR: γ[b] is a cts linear functional on Γ, hence maximum attained

(at an extreme point)

• EXTREMAL: γ is extremal in Γ unless it is midpoint of a segment in Γ

e.g. (id × G )#f is extremal, but not all extreme points take this form
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Unidimensional (very classical)

Lorentz ’53 Mirrlees ’71 Becker ’73 Spence ’73 (b ∈ C 2(R2), m = 1 = n)

• if ∂2b
∂x∂y > 0 (supermodular) the maximizer γ is uniquely characterized by

• a non-decreasing map G : R −→ R of producer to consumer such that

γ[R2 \ Graph(G )] = 0

where
Graph(G ) := {(x ,G (x)) | x ∈ Rm}

• from formulas like ∫ x

−∞
f (x̄)dx̄ =

∫ G(x)

−∞
g(y)dy

or
f (x)/g(G (x)) = G ′(x)

we deduce G ∈ C∞ where 0 < f , g ∈ C∞ smooth and positive.
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Differential criteria for uniqueness and maps (mn > 1)

Assume b ∈ C 2(X × Y ) is twisted and non-degenerate (ND), meaning

• (twist): for all y 6= y ′ ∈ Y , the function

x ∈ X 7→ b(x , y)− b(x , y ′)

has no critical points.

Equivalently, for each x ∈ X , map y ∈ Y 7→ Dxb(x , y) is one-to-one.

• (ND): the matrix D2
xyb := [ ∂2b

dx idy j ] has full rank ∀(x , y) ∈ X × Y

THM: (Gangbo ’95, Levin ’99) Twist implies the optimal γ ∈ Γ(f , g) is
unique, and supported on the graph of a map G : X −→ Y which acts as
a change of variables between f and g

, a.e. |detDG (x)| = f (x)/g(G (x))
if m = n.
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Partial differential equations and smoothness (m = n)

e.g. (Brenier ’87 (p=2), Gangbo & M. ’95, Caffarelli, Rüschendorf ’96 )
X = Y = Rn with b(x , y) = ±|x − y |p for 0 6= p 6= 1

| detDG (x)| =
f (x)

g(G (x))
a.e.

• for p = 2 characterized G = Du with u : Rn −→ R ∪ {+∞} convex

• PDE becomes elliptic Monge-Ampère equation: detD2u = f
g◦Du

• Caffarelli ’92: u ∈ C k,α(X ) if Y convex & log f , log g ∈ L∞ ∩ C k−2,α

• Ma-Trudinger-Wang ’05: G as smooth for other costs, if X × Y

has good geometry when metrized (Kim & M.’10) by

[
0 D2

xyb
D2
xyb
† 0

]
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What if dimensions unequal: (dimX = m > n = dimY )?

Pass ’12: regularity cannot hold for all log f , log g ∈ L∞ ∩ C∞, except in
the (pseudo-)indicial case: b(x , y) = b̃(I (x), y) + n(x) for some
I : Rm −→ Rn, and b̃ satisfying the MTW ’05 conditions on Rn × Rn

But if b is not pseudo-indicial, might regularity hold for certain f and g?
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Co-area formula suggests the mass balance condition

g(y) =

∫
G−1(y)

f (x)

JG (x)
dHm−n(x)

where Jacobian JG (x) :=
√

detDG (x)DG (x)†

e.g. (disk to circle)

X = BR(0) ⊂ R2, Y = ∂B1(0) ⊂ R2

b(x , y) = x · y f = 1
πR2 g = 1

2π

G (x) = Du(x) =
x

|x |
where u(x) = |x |

G−1(ŷ) = {λŷ | λ > 0}

Robert J McCann (Toronto) Optimal transport for unequal dimensions 10 January 2017 16 / 38



Co-area formula suggests the mass balance condition

g(y) =

∫
G−1(y)

f (x)

JG (x)
dHm−n(x)

where Jacobian JG (x) :=
√

detDG (x)DG (x)†

e.g. (disk to circle)

X = BR(0) ⊂ R2, Y = ∂B1(0) ⊂ R2

b(x , y) = x · y f = 1
πR2 g = 1

2π

G (x) = Du(x) =
x

|x |
where u(x) = |x |
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Dual linear program and stable marriage problem

L := {u ∈ L1(f ), v ∈ L1(g) | u(x) + v(y) ≥ b(x , y) on X × Y } implies

(Kantorovich, 1942) primal P := inf
(u,v)∈L

∫
X
uf +

∫
Y
vg

= max
γ∈Γ

γ[b]

=: dual (Monge, 1781)

• this primal program is a key tool for analysis,

• duality shows equivalence of the transport and stable matching problems,
where u(x) and v(y) are the payoffs to wife x and husband y respectively

• If P attained, any optimizer γ vanishes outside the zeros of u + v −b ≥ 0
i.e. (Du − Dxb,Dv − Dyb) = (0, 0) holds γ-a.e., (and similarly Hess ≥ 0)
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• b ∈ C 1 implies primal P attained by (u, v) = (vb, ub̃) where

vb(x) := sup
y∈Y

b(x , y)− v(y), ub̃(y) := sup
x∈X

b(x , y)− u(x)

• here v = (vb)b̃ =: vbb̃ is called b-convex, where b̃(y , x) = b(x , y)

• inherits upper bounds on |Dv | and −D2v from −b ∈ C 2

hence is twice differentiable Lebesgue a.e.

• optimal map G is defined by

Du(x) = Dxb(x ,G (x))

using twist (i.e. invertibility of y ∈ Y 7→ Dxb(x , y)) and similarly...

ASIDE: twist can now be interpreted as meaning husband’s identity
determined from wife’s by his marginal willingness to pay for variations in
her qualities
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Towards a partial differential equation

satisfies Dv(G (x)) = Dyb(x ,G (x)) and D2v(G (x)) ≥ D2
yyb(x ,G (x))

• thus

(D2v − D2
yyb)DG = D2

xyb(x ,G (x)) = full rank by assumption

giving the Jacobian

JG (x) :=
√

det(DG )(DG )†

=

√
det(D2

xyb)(D2
xyb)†

det[D2v − D2
yyb]

• the mass balance (co-area) formula becomes

g(y) =

∫
G−1(y)

det[D2v(y)− D2
yyb(x , y)]√

detD2
xyb(x , y)D2

xyb(x , y)†
f (x)dHm−n(x)

• were it not for the domain of the integral, this would be a PDE for v !
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Neglecting the set of zero volume where differentiability of v(y) fails:

G−1(y) ⊂ {x ∈ X | vb(x) + v(y)− b(x , y) = 0}

=: X3(v ; y) (badly nonlocal)

⊂ X2(v ; y) := X2(y ,Dv(y),D2v(y)) (both

⊂ X1(v ; y) := X1(y ,Dv(y)) local!)

where
codimension n

X1(y , q) := {x ∈ X | Dyb(x , y) = q} ← submanifold

X2(y , q,Q) := {x ∈ X1(y , q) | D2
yyb(x , y) ≤ Q}

↑
with boundary and corners
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Fi (v ; y) :=

∫
Xi (v ;y)

det[D2v(y)− D2
yyb(x , y)]√

detD2
xyb(x , y)D2

xyb(x , y)†
f (x)dHm−n(x)

g(y) ≤ F3(v , y) ≤ F2(y ,Dv(y),D2v(y))

THM: (Nonlocal characterization of optimizers) Fix pdfs f and g on
bounded open subsets X ⊂ Rm and Y ⊂ Rn with m ≥ n, b ∈ C 2(X × Y )

twisted non-degenerate, and v = vbb̃. Then (vb, v) minimizes the
Kantorovich primal problem if and only if F3(v ; y) = g(y) holds a.e.
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THM: (Local characterization of smooth optimizers) Fix pdfs f on
X ⊂ Rm and g on Y ⊂ Rn bounded and open sets with m ≥ n,
b ∈ C 2(X × Y ) twisted non-degenerate, and v = vbb̃ ∈ C 2(Y ).

• If F2(v ; y) = g(y) on Y and v ∈ C 2
(
Y
)

then (vb, v) minimizes primal

• Conversely,

if (vb, v) minimizes primal, vb ∈ C 2(X ) and X2(v , y) is
connected for a.e. y , then F2(v ; y) = g(y) on Y .

RMK:

F2(v ; y) =

∫
X2(y ,Dv(y),D2v(y))

det[D2v(y)− D2
yyb(x , y)]√

detD2
xyb(x , y)D2

xyb(x , y)†
f (x)dHm−n(x)

is degenerate elliptic: P = PT ≥ 0 implies F2(y , q,Q) ≤ F2(y , q,Q + P)

• thus v ∈ C 2,α inherits the regularity of F2(y , q,Q) and g
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Multi- to one-dimension: m > n = 1? (with Chiappori)

• Since (ND) implies |Dxby | 6= 0, g -a.s. sptγ ∩ (X × {y}) lies in a C 1

hypersurface X1(y ,Dv(y)) splitting spt f in two parts.

• For each fixed y ∈ Y ⊂ R1, motivated by v ′(y) = by (x , y), define

X≤(y , q) :=


X if q = +∞

{x ∈ X ⊂ Rm | by (x , y) := ∂b
∂y (x , y) ≤ q} else

∅ if q = −∞;

it depends monotonically on q ∈ R ∪ {±∞}

IDEA: Choose q = q(y) to “split the masses proportionately”, i.e. so that

0 =

∫
X≤(y ,q)

f (x)dx −
∫ y

−∞
g(ȳ)dȳ=: F (y , q)

• this choice is unique for g -a.e. y

• inherits smoothness from F by implicit function theorem if F q := ∂F
∂q 6= 0

• try to define G : X −→ Y so G (x) = y ⇐⇒ x ∈ ∂X≤(y , q(y))
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Problem: if x ∈ ∂X≤(y , q(y))∩∂X≤(y ′, q(y ′)), then G (x) not well-defined

DEFN: (b, f , g) is nested if

∫ y ′

y
g>0⇒ X≤(y , q(y)) ⊂ X<(y ′, q(y ′))

(for any q : M− −→ R chosen to split the masses proportionately).

THM 1: X ⊂ Rn, Y ⊂ R open connected, with probability densities f & g .
b ∈ C 1,1(X × Y ) non-degenerate. If (b, f , g) nested then G : X −→ Y
is well-defined f -a.e., and γ[b] uniquely maximized on Γ(f , g).
The maximizer γ is determined by G and supported on Graph(G )
(namely γ = (id × G )#f ).

If in addition {g > 0} is connected, G agrees f -a.e. with some continuous
map G : X −→ Y .
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Proof strategy: Motivated by Dv(y) = Dyb(x , y), use q(y) to define

v(y) :=

∫ y

q(ȳ)dȳ and

u(x) := sup
y∈Y

b(x , y)− v(y)

Then (u, v) ∈ L. Moreover, the measure γ := (id × G )#f ∈ Γ(f , g) then
vanishes outside the zero set of u(x) + v(y)− b(x , y) ≥ 0, showing (u, v)
and γ optimize the primal and dual problems respectively. Indeed the zero
set of u + v − b is essentially a graph, hence the dual optimizer γ is unique.

Continuity of T follows from the fact that {g > 0} = Y and nestedness
force strict monotonicity of sequence y ∈ Y ⊂ R −→ X≤(y , q(y)).

By contrast, {f > 0} = X would preclude jumps in this sequence, and is
related instead to the continuity of q = dv/dy on Y
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Nestedness can be interpreted to mean there is a matching γ ∈ Γ(f , g) in
which the women’s preferences are compatible, in the sense that for each
pair of matched couples (x̄ , ȳ), (x , y) ∈ sptγ, the wife x̄ of the higher type
husband ȳ > y has a greater marginal willingness to pay for variations in
the quality of either husband than the second woman x does.
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Criteria for nestedness

Outward normal velocity at x ∈ ∂X≤(y , q) of

X≤(y , q) = {x ∈ X ⊂ Rn | by (x , y) ≤ q}

with respect to changes in y (or q) is given by
byy (x ,y)
|Dxby | (or 1

|Dxby |)

Thus outward normal velocity of X≤(y , q(y)) wrt y should be

q′(y)− byy
|Dxby |

• this expectation can be made rigorous under suitable hypotheses

• nestedness implies non-negativity of this normal velocity;

• global positivity of this normal velocity implies nestedness
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Suitable hypotheses:

• X ⊂ Rm and Y ⊂ R open, connected, finite perimeter

• b ∈ C 2,1 non-deg., log f ∈ (C ∩W 1,1)(X ) and log g ∈ C 0
loc(Y )

• a mild form of transversality: Z = ∅, where

Z := {y ∈ M− | Area[X 1(y , q(y)) ∩ ∂∗X ] > 0}

THM 2: Even without this transversality, Z is relatively closed; q = dv/dy
is locally Lipschitz on Y and continuously differentiable outside Z

RMK (endpts): If log g ∈ L∞ then q′(y)→∞ if Area[X 1(y , q(y))]→ 0.

COROLLARY (Unique splitting criterion for nestedness) (b, f , g) satisfying
the hypotheses above with Z = ∅ is nested if and only if each x∈ X
corresponds to a unique y∈ Y such that

0 = F (y , by (x , y)) :=

∫
X≤(y ,by (x ,y))

f (x̄)dx̄ −
∫ y

−∞
g(ȳ)dȳ

In this case, G (x)=y .
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g(ȳ)dȳ
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Lipschitz (and Hölder) classes

For each integer k ≥ 0, and exponent 0 < α ≤ 1 we denote by C k,α(X )
the class of functions which are k times continuously differentiable, and
whose k-th derivatives are all Lipschitz continuous functions with respect
to the distance function |x − x ′|α on X (in which case both properties
extend to the closure X of X .) We norm this space by

‖f ‖C k,α(X ) :=
k∑

i=0

∑
|β|=i

‖Dβf ‖∞ + sup
x 6=x ′∈X

∑
|β|=k

|Dβf (x ′)− Dβf (x)|
|x ′ − x |α

where Dβf = ∂|i|f
∂x1···∂xi and the sums are over multi-indices β of degree |β|.
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Higher regularity of husband’s payoff

THM 3: Fix k ≥ 1. Under the hypotheses of THM 2, suppose
Y ′ := (y0, y1) ⊂ Y is an interval on which ∂X ∈ C 1(X ′) and intersects
∂X≤(y , q(y)) transversally. If X ′ := ∪y∈Y ′∂X≤(y , q(y)) then ‖q‖C k,1(Y ′)

is locally controlled by the following quantities, assumed positive and finite:
• ‖ log f / log g‖C k−1,1 , ‖b‖C k+1,1 , Area(∂X ), ‖n̂X‖C k−2,1∩W 1,1 ,

• inf
y∈Y ′

Area[X1(y , q(y))] (proximity to ends of Y )

• inf
(x ,y)∈X ′×Y ′

|Dxby (x , y)| (non-degeneracy)

• inf
(x ,y)∈(X ′∩∂X )×Y ′

1− [n̂X · n̂X≤(x ,y)]2 (transversality)

• and Hm−2
[
∂X≤(y0, q(y0)) ∩ ∂X

]

Robert J McCann (Toronto) Optimal transport for unequal dimensions 10 January 2017 34 / 38



Proof: Use Riemannian level set techniques to establish smoothness of

F (y , q) :=

∫
X≤(y ,q)

f (x̄)dx̄ −
∫ y

−∞
g(ȳ)dȳ .

Then conclude smoothness of q(y) using implicit function theorem.

e.g. Fq =
∫
X1(y ,q) f V · n̂1dHm−1(x)> 0 ,

where V (x , y) = n̂1
|Dxby | and n̂1(x , y) =

Dxby
|Dxby | .

thus Fq =
∫
X≤(y ,q)∇·(fV )dx −

∫
X≤(y ,q)∩∂X fV · n̂XdHm−1 ,

and
Fqq =

∫
X1(y ,q)∇ · (fV )V · n̂1dHm−1 −

∫
X1(y ,q)∩∂X fV · n̂XV∂ · n̂∂dHm−2 ,

where V∂ = V ·n̂1√
1−(n̂1·n̂X )2

n̂∂ and n̂∂ = n̂1−(n̂1·n̂X )n̂X√
1−(n̂1·n̂X )2

.
.
.
.
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What about the map? (and the wives’ payoffs u?)

PROP: If (b, f , g) is nested and satisfies the preceding hypotheses then

• u ∈ C 1(X ),

• G and Dxby (·,G (·)) ∈ BVloc ∩ C (X ),

• G ∈ domDq holds |DG |-a.s.

• differentiating q(G (x)) = v ′(G (x)) = by (x ,G (x)) at such points yields

[q′(G (·))− byy (·,G (·))]DG (·) = Dxby (·,G (·))

• on any open X ′ ⊂ X obeying a speed limit

` := inf
x∈X ′

q′(G (x))− byy (x ,G (x))

|Dxby (x ,G (x)|
> 0

G is Lipschitz: ‖DG‖L∞(X ′) ≤ `−1

• higher regularity of u and G then follows from that of v
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CONCLUSIONS

with Pass
• optimal transport equivalent to solving a new, nonlocal ‘PDE’

• however a local equation satisfied iff the optimal potentials are smooth

• depends subtly on the interaction of b with (X , f ) and (Y , g)

with Chiappori and Pass
• nestedness is a key criterion singling out tractable matching problems,
generalizing the Lorentz-Spence-Mirrlees-Becker (supermodularity)
condition to the case where only one side of the market is unidimensional

• guarantees existence, uniqueness and regularity of husband’s payoff

• smoothness of wife’s payoff and map follows provided speed limit ` > 0

THANK YOU!
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