Optimal transportation between unequal dimensions

Robert J McCann

University of Toronto

www.math.toronto.edu/mccann

with Pierre-Andre Chiappori (in part) and Brendan Pass

10 January 2017

Outline

- 1 Introduction to optimal transport
- 2 Applications
- Oriteria for optimal maps to exist, be unique, and be regular
- 4 Unequal dimensions
- 5 Kantorovich duality and the stable marriage problem
- 6 New local and nonlocal PDE (= partial differential equations)
 - 7 Multi- to one-dimensional transport: a new class of explicit solutions
- 8 Regularity
- Onclusions

Introduction to optimal transport

Monge-Kantorovich optimal transport

 $c(x, y) = \text{`cost' per unit mass transported from } x \in X \text{ to } y \in Y$ $X \subset \mathbb{R}^m \text{ and } Y \subset \mathbb{R}^n \text{ bounded open sets of dimension } m \ge n$ densities of supply $f(x) \ge 0$ on X and demand $g(y) \ge 0$ on Y $\int_X f = \int_Y g = 1$; normalization: probability densities / measures ('pdfs')

Seek $\gamma \in \Gamma := \Gamma(f,g)$ where

$$\Gamma = \left\{ \begin{array}{ccc} 0 \leq \gamma \text{ on } \\ X \times Y \end{array} \middle| \begin{array}{ccc} \int_{U} f(x) dx & = & \gamma(U \times Y) & \forall U \subset X \\ & & \gamma(X \times V) = \int_{V} g(y) dy & \forall V \subset Y \end{array} \right\}$$

such that...

seek $\gamma \in \Gamma = \Gamma(f,g)$ attaining

$$\inf_{\gamma \in \Gamma} \gamma[c]$$

where

$$\gamma[c] := \int_{X \times Y} c(x, y) d\gamma(x, y)$$

QUESTIONS:

- is the infimum attained? uniquely?
- can optimizers be characterized? (e.g. using PDE?)
- Monge: must spt $\gamma \subset_{\gamma-a.e.} Graph(G)$ for some map $G : X \longrightarrow Y$? (in which case we write $\gamma = (id \times G)_{\#}f$)
- what are their geometric and analytical properties?
- how do these depend on the choice of cost-benefit c(x, y) = -b(x, y)?
- applications?

Applications (a very incomplete sampler)

• Image processing (Delon, Kaijser, Peyre, Rumpf, Tannenbaum ...) (medicine, movies, and data compression)

Monge

Kantorovich

• Weather prediction, mesh generation

from Weller, Browne, Budd and Cullen (2015 preprint)

• Early universe reconstruction

Brenier, Frisch, Hénon, Loeper, Matarrese, Mohayee, Sobolevskii (2003)

Robert J McCann (Toronto)

Optimal transport for unequal dimensions

- \bullet Price equilibration of supply with demand; asymmetric information (Ekeland, Carlier, McCann, \ldots)
- 'Stable marriage' problem (Shapley, Shubik, ...) (National Medical Residency Matching Program)

. . .

REMARKS:

- SETTING: $X \subset \mathbf{R}^m$ and $Y \subset \mathbf{R}^n$ open and bounded with $m \ge n$
- $b \in C(\overline{X \times Y})$ the Banach space of cts fns, normed by supremum
- \bullet CONVEX: Γ convex & wk-* compact in the dual space of measures
- NON-EMPTY $d\gamma(x, y) = f(x)g(y)dxdy \in \Gamma$ (product measure)
- LINEAR: $\gamma[b]$ is a cts linear functional on Γ , hence maximum attained

REMARKS:

- SETTING: $X \subset \mathbf{R}^m$ and $Y \subset \mathbf{R}^n$ open and bounded with $m \ge n$
- $b \in C(\overline{X \times Y})$ the Banach space of cts fns, normed by supremum
- \bullet CONVEX: Γ convex & wk-* compact in the dual space of measures
- NON-EMPTY $d\gamma(x, y) = f(x)g(y)dxdy \in \Gamma$ (product measure)
- LINEAR: $\gamma[b]$ is a cts linear functional on Γ , hence maximum attained (at an extreme point)
- EXTREMAL: γ is *extremal* in Γ unless it is midpoint of a segment in Γ

e.g. $(id \times G)_{\#}f$ is extremal, but not all extreme points take this form

Unidimensional (very classical)

Lorentz '53 Mirrlees '71 Becker '73 Spence '73 ($b \in C^2(\mathbb{R}^2)$, m = 1 = n)

- if $\frac{\partial^2 b}{\partial x \partial y} > 0$ (supermodular) the maximizer γ is uniquely characterized by
- a non-decreasing map $G: \mathbf{R} \longrightarrow \mathbf{R}$ of producer to consumer such that

$$\gamma[\mathbf{R}^2 \setminus Graph(\mathbf{G})] = \mathbf{0}$$

where

$$Graph(G) := \{(x, G(x)) \mid x \in \mathbf{R}^m\}$$

from formulas like

$$\int_{-\infty}^{x} f(\bar{x}) d\bar{x} = \int_{-\infty}^{G(x)} g(y) dy$$

or

$$f(x)/g(G(x)) = G'(x)$$

we deduce $G \in C^{\infty}$ where $0 < f, g \in C^{\infty}$ smooth and positive.

Differential criteria for uniqueness and maps (mn > 1)

Assume $b \in C^2(\overline{X \times Y})$ is *twisted* and *non-degenerate* (ND), meaning

• (twist): for all $y \neq y' \in \overline{Y}$, the function

 $x \in X \mapsto b(x,y) - b(x,y')$

has no critical points.

Equivalently, for each $x \in X$, map $y \in \overline{Y} \mapsto D_x b(x, y)$ is one-to-one.

• (ND): the matrix $D_{xy}^2 b := [\frac{\partial^2 b}{dx^i dy^i}]$ has full rank $\forall (x, y) \in \overline{X \times Y}$

THM: (Gangbo '95, Levin '99) Twist implies the optimal $\gamma \in \Gamma(f,g)$ is unique, and supported on the graph of a map $G : X \longrightarrow \overline{Y}$ which acts as a change of variables between f and g

Differential criteria for uniqueness and maps (mn > 1)

Assume $b \in C^2(\overline{X \times Y})$ is *twisted* and *non-degenerate* (ND), meaning

• (twist): for all $y \neq y' \in \overline{Y}$, the function

 $x \in X \mapsto b(x,y) - b(x,y')$

has no critical points.

Equivalently, for each $x \in X$, map $y \in \overline{Y} \mapsto D_x b(x, y)$ is one-to-one.

• (ND): the matrix $D_{xy}^2 b := [\frac{\partial^2 b}{dx^i dy^i}]$ has full rank $\forall (x, y) \in \overline{X \times Y}$

THM: (Gangbo '95, Levin '99) Twist implies the optimal $\gamma \in \Gamma(f,g)$ is unique, and supported on the graph of a map $G : X \longrightarrow \overline{Y}$ which acts as a change of variables between f and g, a.e. $|\det DG(x)| = f(x)/g(G(x))$ if m = n.

Partial differential equations and smoothness (m = n)

e.g. (Brenier '87 (p=2), Gangbo & M. '95, Caffarelli, Rüschendorf '96) $X = Y = \mathbf{R}^n$ with $b(x, y) = \pm |x - y|^p$ for $0 \neq p \neq 1$

$$|\det DG(x)| = \frac{f(x)}{g(G(x))}$$
 a.e.

• for p = 2 characterized G = Du with $u : \mathbb{R}^n \longrightarrow \mathbb{R} \cup \{+\infty\}$ convex

e.g. (Brenier '87 (p=2), Gangbo & M. '95, Caffarelli, Rüschendorf '96) $X = Y = \mathbf{R}^n$ with $b(x, y) = \pm |x - y|^p$ for $0 \neq p \neq 1$

$$|\det DG(x)| = \frac{f(x)}{g(G(x))}$$
 a.e.

• for p = 2 characterized G = Du with $u : \mathbb{R}^n \longrightarrow \mathbb{R} \cup \{+\infty\}$ convex

- PDE becomes elliptic Monge-Ampère equation: det $D^2 u = \frac{f}{g \circ Du}$
- Caffarelli '92: $u \in C^{k,\alpha}(X)$ if Y convex & log f, log $g \in L^{\infty} \cap C^{k-2,\alpha}$
- Ma-Trudinger-Wang '05: G as smooth for other costs, if $\overline{X \times Y}$ has good geometry when metrized (Kim & M.'10) by $\begin{bmatrix} 0 & D_{xy}^2 b \\ D_{xy}^2 b^{\dagger} & 0 \end{bmatrix}$

Pass '12: regularity cannot hold for all log f, log $g \in L^{\infty} \cap C^{\infty}$, except in the (pseudo-)indicial case: $b(x, y) = \tilde{b}(I(x), y) + n(x)$ for some $I : \mathbb{R}^m \longrightarrow \mathbb{R}^n$, and \tilde{b} satisfying the MTW '05 conditions on $\mathbb{R}^n \times \mathbb{R}^n$

But if b is not pseudo-indicial, might regularity hold for certain f and g?

Co-area formula suggests the mass balance condition

$$g(y) = \int_{G^{-1}(y)} \frac{f(x)}{JG(x)} d\mathcal{H}^{m-n}(x)$$

where Jacobian $JG(x) := \sqrt{\det DG(x)DG(x)^{\dagger}}$

Co-area formula suggests the mass balance condition

$$g(y) = \int_{G^{-1}(y)} \frac{f(x)}{JG(x)} d\mathcal{H}^{m-n}(x)$$

where Jacobian $JG(x) := \sqrt{\det DG(x)DG(x)^{\dagger}}$

e.g. (disk to circle) $X = B_R(0) \subset \mathbb{R}^2, \quad Y = \partial B_1(0) \subset \mathbb{R}^2$ $b(x, y) = x \cdot y \qquad f = \frac{1}{\pi R^2} \qquad g = \frac{1}{2\pi}$ $G(x) = Du(x) = \frac{x}{|x|} \quad \text{where} \quad u(x) = |x|$ $G^{-1}(\hat{y}) = \{\lambda \hat{y} \mid \lambda > 0\}$

 $L := \{ u \in L^1(f), v \in L^1(g) \mid u(x) + v(y) \ge b(x, y) \text{ on } X \times Y \} \text{ implies}$

(Kantorovich, 1942) primal P := $\inf_{\substack{(u,v) \in L}} \int_X uf + \int_Y vg$ = $\max_{\gamma \in \Gamma} \gamma[b]$ =: dual (Monge, 1781) $L := \{ u \in L^1(f), v \in L^1(g) \mid u(x) + v(y) \ge b(x, y) \text{ on } X \times Y \} \text{ implies}$

(Kantorovich, 1942) primal P :=
$$\inf_{(u,v)\in L} \int_X uf + \int_Y vg$$

= $\max_{\gamma\in\Gamma} \gamma[b]$
=: dual (Monge, 1781)

- this primal program is a key tool for analysis,
- duality shows equivalence of the transport and stable matching problems, where u(x) and v(y) are the payoffs to wife x and husband y respectively
- If P attained, any optimizer γ vanishes outside the zeros of $u + v b \ge 0$ i.e. $(Du - D_x b, Dv - D_y b) = (0, 0)$ holds γ -a.e., (and similarly $Hess \ge 0$)

• $b \in C^1$ implies primal P attained by $(u, v) = (v^b, u^{\tilde{b}})$ where

$$v^b(x) := \sup_{y \in \overline{Y}} b(x, y) - v(y), \qquad u^{\tilde{b}}(y) := \sup_{x \in \overline{X}} b(x, y) - u(x)$$

• here $v = (v^b)^{\tilde{b}} =: v^{b\tilde{b}}$ is called *b*-convex, where $\tilde{b}(y, x) = b(x, y)$

• $b \in C^1$ implies primal P attained by $(u, v) = (v^b, u^{\tilde{b}})$ where

$$v^b(x) := \sup_{y \in \overline{Y}} b(x, y) - v(y), \qquad u^{\tilde{b}}(y) := \sup_{x \in \overline{X}} b(x, y) - u(x)$$

- here $v = (v^b)^{\tilde{b}} =: v^{b\tilde{b}}$ is called *b*-convex, where $\tilde{b}(y, x) = b(x, y)$
- inherits upper bounds on |Dv| and $-D^2v$ from $-b \in C^2$ hence is twice differentiable Lebesgue a.e.
- optimal map G is defined by

$$Du(x) = D_{\mathsf{x}}b(x, \mathbf{G}(x))$$

using twist (i.e. invertibility of $y \in \overline{Y} \mapsto D_x b(x, y)$) and similarly...

ASIDE: twist can now be interpreted as meaning husband's identity determined from wife's by his marginal willingness to pay for variations in her qualities

Towards a partial differential equation

satisfies $Dv(G(x)) = D_y b(x, G(x))$ and $D^2v(G(x)) \ge D_{yy}^2 b(x, G(x))$

thus

 $(D^2v - D_{yy}^2b)DG = D_{xy}^2b(x, G(x)) =$ full rank by assumption

giving the Jacobian

$$JG(x) := \sqrt{\det(DG)(DG)^{\dagger}}$$

Towards a partial differential equation

satisfies $Dv(G(x)) = D_y b(x, G(x))$ and $D^2v(G(x)) \ge D_{yy}^2 b(x, G(x))$

thus

$$(D^2v - D_{yy}^2b)DG = D_{xy}^2b(x, G(x)) =$$
full rank by assumption

giving the Jacobian

$$JG(x) := \sqrt{\det(DG)(DG)^{\dagger}} = \frac{\sqrt{\det(D_{xy}^2 b)(D_{xy}^2 b)^{\dagger}}}{\det[D^2 v - D_{yy}^2 b]}$$

• the mass balance (co-area) formula becomes

$$g(y) = \int_{G^{-1}(y)} \frac{\det[D^2 v(y) - D^2_{yy} b(x, y)]}{\sqrt{\det D^2_{xy} b(x, y) D^2_{xy} b(x, y)^{\dagger}}} f(x) d\mathcal{H}^{m-n}(x)$$

• were it not for the domain of the integral, this would be a PDE for v!

Neglecting the set of zero volume where differentiability of v(y) fails:

$$G^{-1}(y) \subset \{x \in X \mid v^b(x) + v(y) - b(x, y) = 0\}$$

 $=: X_3(v; y)$ (badly nonlocal)

Neglecting the set of zero volume where differentiability of v(y) fails:

$$G^{-1}(y) \subset \{x \in X \mid v^b(x) + v(y) - b(x, y) = 0\}$$

=: $X_3(v; y)$ (badly nonlocal)
 $\subset X_2(v; y) := X_2(y, Dv(y), D^2v(y))$ (both
 $\subset X_1(v; y) := X_1(y, Dv(y))$ local!)

where

codimension *n*

 $X_1(y,q)$:= { $x \in X \mid D_y b(x,y) = q$ } \leftarrow submanifold

 $\begin{array}{ll} X_2(y,q,Q) &:= & \{x \in X_1(y,q) \mid D^2_{yy}b(x,y) \leq Q\} \\ & \uparrow \\ & \text{with boundary and corners} \end{array}$

$$F_{i}(v; y) := \int_{X_{i}(v; y)} \frac{\det[D^{2}v(y) - D^{2}_{yy}b(x, y)]}{\sqrt{\det D^{2}_{xy}b(x, y)D^{2}_{xy}b(x, y)^{\dagger}}} f(x)d\mathcal{H}^{m-n}(x)$$
$$g(y) \le F_{3}(v, y) \le F_{2}(y, Dv(y), D^{2}v(y))$$

THM: (Nonlocal characterization of optimizers) Fix pdfs f and g on bounded open subsets $X \subset \mathbf{R}^m$ and $Y \subset \mathbf{R}^n$ with $m \ge n$, $b \in C^2(\overline{X \times Y})$ twisted non-degenerate, and $v = v^{b\tilde{b}}$. Then (v^b, v) minimizes the Kantorovich primal problem if and only if $F_3(v; y) = g(y)$ holds a.e.

THM: (Local characterization of smooth optimizers) Fix pdfs f on $X \subset \mathbf{R}^m$ and g on $Y \subset \mathbf{R}^n$ bounded and open sets with $m \ge n$, $b \in C^2(\overline{X \times Y})$ twisted non-degenerate, and $v = v^{b\tilde{b}} \in C^2(Y)$.

- If $F_2(v; y) = g(y)$ on Y and $v \in C^2(\overline{Y})$ then (v^b, v) minimizes primal
- Conversely,

THM: (Local characterization of smooth optimizers) Fix pdfs f on $X \subset \mathbf{R}^m$ and g on $Y \subset \mathbf{R}^n$ bounded and open sets with $m \ge n$, $b \in C^2(\overline{X \times Y})$ twisted non-degenerate, and $v = v^{b\tilde{b}} \in C^2(Y)$.

- If $F_2(v; y) = g(y)$ on Y and $v \in C^2(\overline{Y})$ then (v^b, v) minimizes primal
- Conversely, if (v^b, v) minimizes primal, $v^b \in C^2(X)$ and $X_2(v, y)$ is connected for a.e. y, then $F_2(v; y) = g(y)$ on Y.

RMK:

$$F_{2}(v; y) = \int_{X_{2}(y, Dv(y), D^{2}v(y))} \frac{\det[D^{2}v(y) - D_{yy}^{2}b(x, y)]}{\sqrt{\det D_{xy}^{2}b(x, y)D_{xy}^{2}b(x, y)^{\dagger}}} f(x)d\mathcal{H}^{m-n}(x)$$

is degenerate elliptic: $P = P^T \ge 0$ implies $F_2(y, q, Q) \le F_2(y, q, Q + P)$

• thus $v \in C^{2,\alpha}$ inherits the regularity of $F_2(y,q,Q)$ and g

Multi- to one-dimension: m > n = 1? (with Chiappori)

• Since (ND) implies $|D_x b_y| \neq 0$, g-a.s. $spt\gamma \cap (X \times \{y\})$ lies in a C^1 hypersurface $X_1(y, Dv(y))$ splitting spt f in two parts.

• For each fixed $y \in Y \subset \mathbf{R}^1$, motivated by $v'(y) = b_y(x,y)$, define

$$\mathsf{X}_{\leq}(y,q) := \begin{cases} \mathsf{X} & \text{if } q = +\infty \\ \{ \mathsf{x} \in \mathsf{X} \subset \mathsf{R}^m \mid b_y(x,y) := \frac{\partial b}{\partial y}(x,y) \leq q \} & \text{else} \\ \emptyset & \text{if } q = -\infty; \end{cases}$$

it depends monotonically on $q \in \mathbf{R} \cup \{\pm \infty\}$

Multi- to one-dimension: m > n = 1? (with Chiappori)

• Since (ND) implies $|D_x b_y| \neq 0$, g-a.s. $spt\gamma \cap (X \times \{y\})$ lies in a C^1 hypersurface $X_1(y, Dv(y))$ splitting spt f in two parts.

• For each fixed $y \in Y \subset \mathbf{R}^1$, motivated by $v'(y) = b_y(x,y)$, define

$$\mathsf{X}_{\leq}(y,q) := \begin{cases} \mathsf{X} \in \mathsf{X} \subset \mathsf{R}^m \mid b_y(x,y) := \frac{\partial b}{\partial y}(x,y) \leq q \} & \text{else} \\ \emptyset & \text{if } q = -\infty; \end{cases}$$

it depends monotonically on $q \in \mathbf{R} \cup \{\pm \infty\}$

IDEA: Choose q = q(y) to "split the masses proportionately", i.e. so that

$$0 = \int_{X_{\leq}(y,q)} f(x) dx - \int_{-\infty}^{y} g(\bar{y}) d\bar{y} =: F(y,q)$$

Multi- to one-dimension: m > n = 1? (with Chiappori)

- Since (ND) implies $|D_x b_y| \neq 0$, g-a.s. $spt\gamma \cap (X \times \{y\})$ lies in a C^1 hypersurface $X_1(y, Dv(y))$ splitting spt f in two parts.
- For each fixed $y \in Y \subset \mathbf{R}^1$, motivated by $v'(y) = b_y(x,y)$, define

$$\mathbf{X}_{\leq}(y, q) := \begin{cases} X & \text{if } q = +\infty \\ \{\mathbf{x} \in \mathbf{X} \subset \mathbf{R}^m \mid b_y(x, y) := \frac{\partial b}{\partial y}(x, y) \leq q\} & \text{else} \\ \emptyset & \text{if } q = -\infty; \end{cases}$$

it depends monotonically on $q \in \mathbf{R} \cup \{\pm \infty\}$

IDEA: Choose q = q(y) to "split the masses proportionately", i.e. so that

$$0 = \int_{X_{\leq}(y,q)} f(x) dx - \int_{-\infty}^{y} g(\bar{y}) d\bar{y} =: F(y,q)$$

- this choice is unique for g-a.e. y
- inherits smoothness from F by implicit function theorem if $F_q := \frac{\partial F}{\partial q} \neq 0$
- try to define $G: X \longrightarrow \overline{Y}$ so $G(x) = y \Longleftrightarrow x \in \frac{\partial X_{\leq}(y, q(y))}{\partial X_{\leq}(y, q(y))}$

DEFN:
$$(b, f, g)$$
 is nested if $\int_{y}^{y'} g > 0 \Rightarrow X_{\leq}(y, q(y)) \subset X_{\leq}(y', q(y'))$

DEFN: (b, f, g) is nested if $\int_{y}^{y'} g > 0 \Rightarrow X_{\leq}(y, q(y)) \subset X_{<}(y', q(y'))$ (for any $q: M^{-} \longrightarrow \mathbf{R}$ chosen to split the masses proportionately).

THM 1: $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}$ open connected, with probability densities f & g. $b \in C^{1,1}(X \times Y)$ non-degenerate. If (b, f, g) nested then $G : X \longrightarrow \overline{Y}$ is well-defined f-a.e., and $\gamma[b]$ uniquely maximized on $\Gamma(f, g)$.

DEFN: (b, f, g) is nested if $\int_{y}^{y'} g > 0 \Rightarrow X_{\leq}(y, q(y)) \subset X_{<}(y', q(y'))$ (for any $q: M^{-} \longrightarrow \mathbf{R}$ chosen to split the masses proportionately).

THM 1: $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}$ open connected, with probability densities f & g. $b \in C^{1,1}(X \times Y)$ non-degenerate. If (b, f, g) nested then $G : X \longrightarrow \overline{Y}$ is well-defined f-a.e., and $\gamma[b]$ uniquely maximized on $\Gamma(f, g)$. The maximizer γ is determined by G and supported on Graph(G)(namely $\gamma = (id \times G)_{\#}f$).

If in addition $\overline{\{g > 0\}}$ is connected, *G* agrees *f*-a.e. with some continuous map $\overline{G} : X \longrightarrow \overline{Y}$.

DEFN: (b, f, g) is nested if $\int_{y}^{y'} g > 0 \Rightarrow X_{\leq}(y, q(y)) \subset X_{<}(y', q(y'))$ (for any $q: M^{-} \longrightarrow \mathbf{R}$ chosen to split the masses proportionately).

THM 1: $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}$ open connected, with probability densities f & g. $b \in C^{1,1}(X \times Y)$ non-degenerate. If (b, f, g) nested then $G : X \longrightarrow \overline{Y}$ is well-defined f-a.e., and $\gamma[b]$ uniquely maximized on $\Gamma(f, g)$. The maximizer γ is determined by G and supported on Graph(G)(namely $\gamma = (id \times G)_{\#}f$).

If in addition $\overline{\{g > 0\}}$ is connected, *G* agrees *f*-a.e. with some continuous map $\overline{G} : X \longrightarrow \overline{Y}$.

Proof strategy: Motivated by $Dv(y) = D_y b(x, y)$, use q(y) to define $v(y) := \int^y q(\bar{y}) d\bar{y}$ and $u(x) := \sup_{y \in Y} b(x, y) - v(y)$

Then $(u, v) \in L$. Moreover, the measure $\gamma := (id \times G)_{\#}f \in \Gamma(f, g)$ then vanishes outside the zero set of $u(x) + v(y) - b(x, y) \ge 0$, showing (u, v) and γ optimize the primal and dual problems respectively. Indeed the zero set of u + v - b is essentially a graph, hence the dual optimizer γ is unique.

Proof strategy: Motivated by $Dv(y) = D_y b(x, y)$, use q(y) to define $v(y) := \int^y q(\bar{y}) d\bar{y}$ and $u(x) := \sup_{y \in Y} b(x, y) - v(y)$

Then $(u, v) \in L$. Moreover, the measure $\gamma := (id \times G)_{\#}f \in \Gamma(f, g)$ then vanishes outside the zero set of $u(x) + v(y) - b(x, y) \ge 0$, showing (u, v) and γ optimize the primal and dual problems respectively. Indeed the zero set of u + v - b is essentially a graph, hence the dual optimizer γ is unique.

Continuity of T follows from the fact that $\overline{\{g > 0\}} = Y$ and nestedness force strict monotonicity of sequence $y \in Y \subset \mathbf{R} \longrightarrow X_{\leq}(y, q(y))$.

By contrast, $\overline{\{f > 0\}} = X$ would preclude jumps in this sequence, and is related instead to the continuity of q = dv/dy on Y

Nestedness can be interpreted to mean there is a matching $\gamma \in \Gamma(f, g)$ in which the women's preferences are compatible, in the sense that for each pair of matched couples $(\bar{x}, \bar{y}), (\underline{x}, \underline{y}) \in spt\gamma$, the wife \bar{x} of the higher type husband $\bar{y} > \underline{y}$ has a greater marginal willingness to pay for variations in the quality of either husband than the second woman \underline{x} does.

Criteria for nestedness

Outward normal velocity at $x \in \partial X_{\leq}(y,q)$ of

$$X_{\leq}(y,q) = \{ \mathbf{x} \in \mathbf{X} \subset \mathbf{R}^n \mid b_y(x,y) \leq q \}$$

with respect to changes in y (or q) is given by $\frac{b_{yy}(x,y)}{|D_x b_y|}$ (or $\frac{1}{|D_x b_y|}$)

Thus outward normal velocity of $X_{\leq}(y, q(y))$ wrt y should be

$$rac{q'(y)-b_{yy}}{|D_xb_y|}$$

- this expectation can be made rigorous under suitable hypotheses
- nestedness implies non-negativity of this normal velocity;
- global positivity of this normal velocity implies nestedness

Suitable hypotheses:

- $X \subset \mathbf{R}^m$ and $Y \subset \mathbf{R}$ open, connected, finite perimeter
- $b \in C^{2,1}$ non-deg., log $f \in (C \cap W^{1,1})(X)$ and log $g \in C^0_{\mathit{loc}}(Y)$
- a mild form of transversality: $Z = \emptyset$, where

$$Z := \{y \in M^- \mid Area[\overline{X}_1(y, q(y)) \cap \partial^* X] > 0\}$$

Suitable hypotheses:

- $X \subset \mathbf{R}^m$ and $Y \subset \mathbf{R}$ open, connected, finite perimeter
- $b \in C^{2,1}$ non-deg., log $f \in (C \cap W^{1,1})(X)$ and log $g \in C^0_{\mathit{loc}}(Y)$
- a mild form of transversality: $Z = \emptyset$, where

$$Z := \{y \in M^- \mid Area[\overline{X}_1(y, q(y)) \cap \partial^* X] > 0\}$$

THM 2: Even without this transversality, Z is relatively closed; q = dv/dy is locally Lipschitz on Y and continuously differentiable outside Z RMK (endpts): If log $g \in L^{\infty}$ then $q'(y) \to \infty$ if $Area[X_1(y, q(y))] \to 0$. Suitable hypotheses:

- $X \subset \mathbf{R}^m$ and $Y \subset \mathbf{R}$ open, connected, finite perimeter
- $b \in C^{2,1}$ non-deg., log $f \in (C \cap W^{1,1})(X)$ and log $g \in C^0_{\mathit{loc}}(Y)$
- a mild form of transversality: $Z = \emptyset$, where

$$Z := \{y \in M^- \mid Area[\overline{X}_1(y, q(y)) \cap \partial^* X] > 0\}$$

THM 2: Even without this transversality, Z is relatively closed; q = dv/dy is locally Lipschitz on Y and continuously differentiable outside Z

 $\mathsf{RMK} \text{ (endpts): } \mathsf{If} \log g \in L^\infty \text{ then } q'(y) \to \infty \text{ if } Area[X_1(y,q(y))] \to 0.$

COROLLARY (Unique splitting criterion for nestedness) (b, f, g) satisfying the hypotheses above with $Z = \emptyset$ is nested if and only if each $x \in X$ corresponds to a unique $y \in Y$ such that

$$0 = F(y, b_y(x, y)) := \int_{X_{\leq}(y, b_y(x, y))} f(\bar{x}) d\bar{x} - \int_{-\infty}^{y} g(\bar{y}) d\bar{y}$$

In this case, G(x) = y.

For each integer $k \ge 0$, and exponent $0 < \alpha \le 1$ we denote by $C^{k,\alpha}(X)$ the class of functions which are k times continuously differentiable, and whose k-th derivatives are all Lipschitz continuous functions with respect to the distance function $|x - x'|^{\alpha}$ on X (in which case both properties extend to the closure \overline{X} of X.) We norm this space by

$$\|f\|_{C^{k,\alpha}(X)} := \sum_{i=0}^{k} \sum_{|\beta|=i} \|D^{\beta}f\|_{\infty} + \sup_{x \neq x' \in X} \sum_{|\beta|=k} \frac{|D^{\beta}f(x') - D^{\beta}f(x)|}{|x' - x|^{\alpha}}$$

where $D^{\beta}f = \frac{\partial^{|i|}f}{\partial x_1 \cdots \partial x_i}$ and the sums are over multi-indices β of degree $|\beta|$.

THM 3: Fix $k \ge 1$. Under the hypotheses of THM 2, suppose $Y' := (y_0, y_1) \subset Y$ is an interval on which $\partial X \in C^1(X')$ and intersects $\partial X_{\leq}(y,q(y))$ transversally. If $X' := \bigcup_{y \in Y'} \partial X_{\leq}(y,q(y))$ then $\|q\|_{C^{k,1}(Y')}$ is locally controlled by the following quantities, assumed positive and finite: • $\|\log f / \log g\|_{C^{k-1,1}}$, $\|b\|_{C^{k+1,1}}$, Area (∂X) , $\|\hat{n}_X\|_{C^{k-2,1} \cap W^{1,1}}$, $\inf_{y \in Y'} Area[X_1(y, q(y))]$ (proximity to ends of Y) $\inf_{(x,y)\in X'\times Y'} |D_x b_y(x,y)|$ (non-degeneracy) $\inf_{(x,y)\in(X'\cap\partial X)\times Y'}1-[\hat{n}_X\cdot\hat{n}_{X\leq(x,y)}]^2$ (transversality) $\left[\mathcal{H}^{m-2}\left[\overline{\partial X_{\leq}(y_0,q(y_0))}\cap\partial X\right]
ight]$ and

Robert J McCann (Toronto)

Proof: Use Riemannian level set techniques to establish smoothness of

$$F(y,q) := \int_{X_{\leq}(y,q)} f(\bar{x}) d\bar{x} - \int_{-\infty}^{y} g(\bar{y}) d\bar{y}.$$

Then conclude smoothness of q(y) using implicit function theorem.

Proof: Use Riemannian level set techniques to establish smoothness of

$$F(y,q) := \int_{X_{\leq}(y,q)} f(\bar{x}) d\bar{x} - \int_{-\infty}^{y} g(\bar{y}) d\bar{y}.$$

Then conclude smoothness of q(y) using implicit function theorem.

e.g.
$$F_q = \int_{X_1(y,q)} f V \cdot \hat{n}_1 d\mathcal{H}^{m-1}(x) > 0$$

where
$$V(x,y) = \frac{\hat{n}_1}{|D_x b_y|} \text{ and } \hat{n}_1(x,y) = \frac{D_x b_y}{|D_x b_y|}$$

,

Proof: Use Riemannian level set techniques to establish smoothness of

$$F(y,q) := \int_{X_{\leq}(y,q)} f(\bar{x}) d\bar{x} - \int_{-\infty}^{y} g(\bar{y}) d\bar{y}.$$

Then conclude smoothness of q(y) using implicit function theorem.

e.g.
$$F_q = \int_{X_1(y,q)} f V \cdot \hat{n}_1 d\mathcal{H}^{m-1}(x) > 0$$

where
$$V(x,y) = \frac{\hat{n}_1}{|D_x b_y|} \text{ and } \hat{n}_1(x,y) = \frac{D_x b_y}{|D_x b_y|}$$

thus
$$F_q = \int_{X_{\leq}(y,q)} \nabla \cdot (fV) dx - \int_{X_{\leq}(y,q) \cap \partial X} fV \cdot \hat{n}_X d\mathcal{H}^{m-1}$$

and

$$\begin{split} F_{qq} &= \int_{X_1(y,q)} \nabla \cdot (fV) V \cdot \hat{n}_1 d\mathcal{H}^{m-1} - \int_{X_1(y,q) \cap \partial X} fV \cdot \hat{n}_X V_\partial \cdot \hat{n}_\partial d\mathcal{H}^{m-2} \quad , \\ \text{where} \qquad V_\partial &= \frac{V \cdot \hat{n}_1}{\sqrt{1 - (\hat{n}_1 \cdot \hat{n}_X)^2}} \hat{n}_\partial \text{ and } \hat{n}_\partial = \frac{\hat{n}_1 - (\hat{n}_1 \cdot \hat{n}_X) \hat{n}_X}{\sqrt{1 - (\hat{n}_1 \cdot \hat{n}_X)^2}} \quad . \end{split}$$

,

,

What about the map? (and the wives' payoffs u?)

PROP: If (b, f, g) is nested and satisfies the preceding hypotheses then

- $u \in C^1(X)$,
- G and $D_x b_y(\cdot, G(\cdot)) \in BV_{loc} \cap C(X)$,
- $G \in dom Dq$ holds |DG|-a.s.
- differentiating $q(G(x)) = v'(G(x)) = b_y(x, G(x))$ at such points yields

$$[q'(G(\cdot)) - b_{yy}(\cdot, G(\cdot))]DG(\cdot) = D_x b_y(\cdot, G(\cdot))$$

• on any open $X' \subset X$ obeying a speed limit

$$\ell := \inf_{x \in X'} \frac{q'(G(x)) - b_{yy}(x, G(x))}{|D_x b_y(x, G(x)|} > 0$$

G is Lipschitz: $\|DG\|_{L^{\infty}(X')} \leq \ell^{-1}$

 \bullet higher regularity of u and G then follows from that of v

CONCLUSIONS

with Pass

- optimal transport equivalent to solving a new, nonlocal 'PDE'
- however a local equation satisfied iff the optimal potentials are smooth
- depends subtly on the interaction of b with (X, f) and (Y, g)

with Chiappori and Pass

- nestedness is a key criterion singling out tractable matching problems, generalizing the Lorentz-Spence-Mirrlees-Becker (supermodularity) condition to the case where only one side of the market is unidimensional
- guarantees existence, uniqueness and regularity of husband's payoff
- \bullet smoothness of wife's payoff and map follows provided speed limit $\ell>0$

CONCLUSIONS

with Pass

- optimal transport equivalent to solving a new, nonlocal 'PDE'
- however a local equation satisfied iff the optimal potentials are smooth
- depends subtly on the interaction of b with (X, f) and (Y, g)

with Chiappori and Pass

- nestedness is a key criterion singling out tractable matching problems, generalizing the Lorentz-Spence-Mirrlees-Becker (supermodularity) condition to the case where only one side of the market is unidimensional
- guarantees existence, uniqueness and regularity of husband's payoff
- \bullet smoothness of wife's payoff and map follows provided speed limit $\ell>0$

THANK YOU!