Optimal transportation between unequal dimensions

Robert J McCann
University of Toronto
www.math.toronto.edu/mccann
with Pierre-Andre Chiappori (in part) and Brendan Pass

10 January 2017

Outline

(1) Introduction to optimal transport
(2) Applications
(3) Criteria for optimal maps to exist, be unique, and be regular
(4) Unequal dimensions
(5) Kantorovich duality and the stable marriage problem
(6) New local and nonlocal PDE (= partial differential equations)
(7) Multi- to one-dimensional transport: a new class of explicit solutions
(8) Regularity
(9) Conclusions

Introduction to optimal transport
$c(x, y)$

Monge-Kantorovich optimal transport

$c(x, y)=$ 'cost' per unit mass transported from $x \in X$ to $y \in Y$
$X \subset \mathbf{R}^{m}$ and $Y \subset \mathbf{R}^{n}$ bounded open sets of dimension $m \geq n$ densities of supply $f(x) \geq 0$ on X and demand $g(y) \geq 0$ on Y
$\int_{X} f=\int_{Y} g=1$; normalization: probability densities / measures ('pdfs')
Seek $\gamma \in \Gamma:=\Gamma(f, g)$ where such that...
seek $\gamma \in \Gamma=\Gamma(f, g)$ attaining

$$
\inf _{\gamma \in \Gamma} \gamma[c]
$$

where

$$
\gamma[c]:=\int_{X \times Y} c(x, y) d \gamma(x, y)
$$

QUESTIONS:

- is the infimum attained? uniquely?
- can optimizers be characterized? (e.g. using PDE?)
- Monge: must spt $\gamma \subset_{\gamma-\text { a.e. }} \operatorname{Graph}(G)$ for some map $G: X \longrightarrow Y$? (in which case we write $\gamma=(i d \times G)_{\#} f$)
- what are their geometric and analytical properties?
- how do these depend on the choice of cost-benefit $c(x, y)=-b(x, y)$?
- applications?

Applications (a very incomplete sampler)

- Image processing (Delon, Kaijser, Peyre, Rumpf, Tannenbaum ...) (medicine, movies, and data compression)

Monge

Kantorovich

- Weather prediction, mesh generation

from Weller, Browne, Budd and Cullen (2015 preprint)
- Early universe reconstruction

Brenier, Frisch, Hénon, Loeper, Matarrese, Mohayee, Sobolevskii (2003)

- Price equilibration of supply with demand; asymmetric information (Ekeland, Carlier, McCann, ...)
- 'Stable marriage' problem (Shapley, Shubik, ...) (National Medical Residency Matching Program)

REMARKS:

- SETTING: $X \subset \mathbf{R}^{m}$ and $Y \subset \mathbf{R}^{n}$ open and bounded with $m \geq n$
- $b \in C(\overline{X \times Y})$ the Banach space of cts fns, normed by supremum
- CONVEX: 「 convex \& wk-* compact in the dual space of measures
- NON-EMPTY $d \gamma(x, y)=f(x) g(y) d x d y \in \Gamma$ (product measure)
- LINEAR: $\gamma[b]$ is a cts linear functional on Γ, hence maximum attained

REMARKS:

- SETTING: $X \subset \mathbf{R}^{m}$ and $Y \subset \mathbf{R}^{n}$ open and bounded with $m \geq n$
- $b \in C(\overline{X \times Y})$ the Banach space of cts fns, normed by supremum
- CONVEX: 「 convex \& wk-* compact in the dual space of measures
- NON-EMPTY $d \gamma(x, y)=f(x) g(y) d x d y \in \Gamma$ (product measure)
- LINEAR: $\gamma[b]$ is a cts linear functional on Γ, hence maximum attained (at an extreme point)
- EXTREMAL: γ is extremal in Γ unless it is midpoint of a segment in Γ e.g. $(i d \times G)_{\#} f$ is extremal, but not all extreme points take this form

Unidimensional (very classical)

Lorentz '53 Mirrlees '71 Becker '73 Spence '73 $\left(b \in C^{2}\left(\mathbf{R}^{2}\right), m=1=n\right)$

- if $\frac{\partial^{2} b}{\partial x \partial y}>0$ (supermodular) the maximizer γ is uniquely characterized by
- a non-decreasing map $G: \mathbf{R} \longrightarrow \mathbf{R}$ of producer to consumer such that

$$
\gamma\left[\mathbf{R}^{2} \backslash \operatorname{Graph}(G)\right]=0
$$

where

$$
\operatorname{Graph}(G):=\left\{(x, G(x)) \mid x \in \mathbf{R}^{m}\right\}
$$

- from formulas like

$$
\int_{-\infty}^{x} f(\bar{x}) d \bar{x}=\int_{-\infty}^{G(x)} g(y) d y
$$

or

$$
f(x) / g(G(x))=G^{\prime}(x)
$$

we deduce $G \in C^{\infty}$ where $0<f, g \in C^{\infty}$ smooth and positive.

Differential criteria for uniqueness and maps ($m n>1$)

Assume $b \in C^{2}(\overline{X \times Y})$ is twisted and non-degenerate (ND), meaning

- (twist): for all $y \neq y^{\prime} \in \bar{Y}$, the function

$$
x \in X \mapsto b(x, y)-b\left(x, y^{\prime}\right)
$$

has no critical points.
Equivalently, for each $x \in X$, map $y \in \bar{Y} \mapsto D_{x} b(x, y)$ is one-to-one.

- (ND): the matrix $D_{x y}^{2} b:=\left[\frac{\partial^{2} b}{d x^{i} d y^{j}}\right]$ has full rank $\forall(x, y) \in \overline{X \times Y}$

THM: (Gangbo '95, Levin '99) Twist implies the optimal $\gamma \in \Gamma(f, g)$ is unique, and supported on the graph of a map $G: X \longrightarrow \bar{Y}$ which acts as a change of variables between f and g

Differential criteria for uniqueness and maps ($m n>1$)

Assume $b \in C^{2}(\overline{X \times Y})$ is twisted and non-degenerate (ND), meaning

- (twist): for all $y \neq y^{\prime} \in \bar{Y}$, the function

$$
x \in X \mapsto b(x, y)-b\left(x, y^{\prime}\right)
$$

has no critical points.
Equivalently, for each $x \in X$, map $y \in \bar{Y} \mapsto D_{x} b(x, y)$ is one-to-one.

- (ND): the matrix $D_{x y}^{2} b:=\left[\frac{\partial^{2} b}{d x^{i} d y^{j}}\right]$ has full rank $\forall(x, y) \in \overline{X \times Y}$

THM: (Gangbo '95, Levin '99) Twist implies the optimal $\gamma \in \Gamma(f, g)$ is unique, and supported on the graph of a map $G: X \longrightarrow \bar{Y}$ which acts as a change of variables between f and g, a.e. $|\operatorname{det} D G(x)|=f(x) / g(G(x))$ if $m=n$.

Partial differential equations and smoothness $(m=n)$

e.g. (Brenier '87 ($\mathrm{p}=2$), Gangbo \& M. '95, Caffarelli, Rüschendorf '96) $X=Y=\mathbf{R}^{n}$ with $b(x, y)= \pm|x-y|^{p}$ for $0 \neq p \neq 1$

$$
|\operatorname{det} D G(x)|=\frac{f(x)}{g(G(x))} \quad \text { a.e. }
$$

- for $p=2$ characterized $G=D u$ with $u: \mathbf{R}^{n} \longrightarrow \mathbf{R} \cup\{+\infty\}$ convex

Partial differential equations and smoothness $(m=n)$

e.g. (Brenier '87 ($\mathrm{p}=2$), Gangbo \& M. '95, Caffarelli, Rüschendorf '96) $X=Y=\mathbf{R}^{n}$ with $b(x, y)= \pm|x-y|^{p}$ for $0 \neq p \neq 1$

$$
|\operatorname{det} D G(x)|=\frac{f(x)}{g(G(x))} \quad \text { a.e. }
$$

- for $p=2$ characterized $G=D u$ with $u: \mathbf{R}^{n} \longrightarrow \mathbf{R} \cup\{+\infty\}$ convex
- PDE becomes elliptic Monge-Ampère equation: $\operatorname{det} D^{2} u=\frac{f}{g \circ D u}$
- Caffarelli '92: $u \in C^{k, \alpha}(X)$ if Y convex $\& \log f, \log g \in L^{\infty} \cap C^{k-2, \alpha}$
- Ma-Trudinger-Wang '05: G as smooth for other costs, if $\overline{X \times Y}$ has good geometry when metrized ($\operatorname{Kim} \& \mathrm{M} .{ }^{\prime} 10$) by $\left[\begin{array}{cc}0 & D_{x y}^{2} b \\ D_{x y}^{2} b^{\dagger} & 0\end{array}\right]$

What if dimensions unequal: $(\operatorname{dim} X=m>n=\operatorname{dim} Y)$?

Pass '12: regularity cannot hold for all $\log f, \log g \in L^{\infty} \cap C^{\infty}$, except in the (pseudo-) indicial case: $b(x, y)=\tilde{b}(I(x), y)+n(x)$ for some $I: \mathbf{R}^{m} \longrightarrow \mathbf{R}^{n}$, and \tilde{b} satisfying the MTW '05 conditions on $\mathbf{R}^{n} \times \mathbf{R}^{n}$

But if b is not pseudo-indicial, might regularity hold for certain f and g ?

Co-area formula suggests the mass balance condition

$$
g(y)=\int_{G^{-1}(y)} \frac{f(x)}{J G(x)} d \mathcal{H}^{m-n}(x)
$$

where Jacobian $J G(x):=\sqrt{\operatorname{det} D G(x) D G(x)^{\dagger}}$

Co-area formula suggests the mass balance condition

$$
g(y)=\int_{G^{-1}(y)} \frac{f(x)}{J G(x)} d \mathcal{H}^{m-n}(x)
$$

where Jacobian $J G(x):=\sqrt{\operatorname{det} D G(x) D G(x)^{\dagger}}$
e.g. (disk to circle)

$$
\begin{gathered}
X=B_{R}(0) \subset \mathbf{R}^{2}, \quad Y=\partial B_{1}(0) \subset \mathbf{R}^{2} \\
f(x, y)=x \cdot y \quad g=\frac{1}{2 \pi} \\
G(x)=D u(x)=\frac{x}{|x|} \quad \text { where } \quad u(x)=|x| \\
G^{-1}(\hat{y})=\{\lambda \hat{y} \mid \lambda>0\}
\end{gathered}
$$

$$
b|x, y|=\langle y, x\rangle=-\frac{1}{2}\left(|x-y|^{2}-|x|^{2}-|y|^{2}\right)
$$

$$
u|x|=|x|
$$

$$
G x_{x}=\frac{x}{|x|}=D_{x}(x)
$$

Dual linear program and stable marriage problem

$$
L:=\left\{u \in L^{1}(f), v \in L^{1}(g) \mid u(x)+v(y) \geq b(x, y) \text { on } X \times Y\right\} \quad \text { implies }
$$

(Kantorovich, 1942) primal $P:=\inf _{(u, v) \in L} \int_{X} u f+\int_{Y} v g$

$$
\begin{aligned}
& =\max _{\gamma \in\ulcorner } \gamma[b] \\
& =: \text { dual (Monge, 1781) }
\end{aligned}
$$

Dual linear program and stable marriage problem

$$
L:=\left\{u \in L^{1}(f), v \in L^{1}(g) \mid u(x)+v(y) \geq b(x, y) \text { on } X \times Y\right\} \quad \text { implies }
$$

$$
\begin{aligned}
\text { (Kantorovich, 1942) primal } P & :=\inf _{(u, v) \in L} \int_{X} u f+\int_{Y} v g \\
& =\max _{\gamma \in \Gamma[b]} \\
& =: \text { dual (Monge, 1781) }
\end{aligned}
$$

- this primal program is a key tool for analysis,
- duality shows equivalence of the transport and stable matching problems, where $u(x)$ and $v(y)$ are the payoffs to wife x and husband y respectively
- If P attained, any optimizer γ vanishes outside the zeros of $u+v-b \geq 0$ i.e. $\left(D u-D_{x} b, D v-D_{y} b\right)=(0,0)$ holds γ-a.e., (and similarly Hess ≥ 0)
- $b \in C^{1}$ implies primal P attained by $(u, v)=\left(v^{b}, u^{\tilde{b}}\right)$ where

$$
v^{b}(x):=\sup _{y \in \bar{Y}} b(x, y)-v(y), \quad u^{\tilde{b}}(y):=\sup _{x \in \bar{X}} b(x, y)-u(x)
$$

- here $v=\left(v^{b}\right)^{\tilde{b}}=: v^{b \tilde{b}}$ is called b-convex, where $\tilde{b}(y, x)=b(x, y)$
- $b \in C^{1}$ implies primal P attained by $(u, v)=\left(v^{b}, u^{\tilde{b}}\right)$ where

$$
v^{b}(x):=\sup _{y \in \bar{Y}} b(x, y)-v(y), \quad u^{\tilde{b}}(y):=\sup _{x \in \bar{X}} b(x, y)-u(x)
$$

- here $v=\left(v^{b}\right)^{\tilde{b}}=: v^{b \tilde{b}}$ is called b-convex, where $\tilde{b}(y, x)=b(x, y)$
- inherits upper bounds on $|D v|$ and $-D^{2} v$ from $-b \in C^{2}$ hence is twice differentiable Lebesgue a.e.
- optimal map G is defined by

$$
D u(x)=D_{x} b(x, G(x))
$$

using twist (i.e. invertibility of $\left.y \in \bar{Y} \mapsto D_{x} b(x, y)\right)$ and similarly...
ASIDE: twist can now be interpreted as meaning husband's identity determined from wife's by his marginal willingness to pay for variations in her qualities

Towards a partial differential equation

satisfies $D v(G(x))=D_{y} b(x, G(x))$ and $D^{2} v(G(x)) \geq D_{y y}^{2} b(x, G(x))$

- thus

$$
\left(D^{2} v-D_{y y}^{2} b\right) D G=D_{x y}^{2} b(x, G(x))=\text { full rank by assumption }
$$

giving the Jacobian

$$
J G(x):=\sqrt{\operatorname{det}(D G)(D G)^{\dagger}}
$$

Towards a partial differential equation

satisfies $D v(G(x))=D_{y} b(x, G(x))$ and $D^{2} v(G(x)) \geq D_{y y}^{2} b(x, G(x))$

- thus

$$
\left(D^{2} v-D_{y y}^{2} b\right) D G=D_{x y}^{2} b(x, G(x))=\text { full rank by assumption }
$$

giving the Jacobian

$$
J G(x):=\sqrt{\operatorname{det}(D G)(D G)^{\dagger}}=\frac{\sqrt{\operatorname{det}\left(D_{x y}^{2} b\right)\left(D_{x y}^{2} b\right)^{\dagger}}}{\operatorname{det}\left[D^{2} v-D_{y y}^{2} b\right]}
$$

- the mass balance (co-area) formula becomes

$$
g(y)=\int_{G^{-1}(y)} \frac{\operatorname{det}\left[D^{2} v(y)-D_{y y}^{2} b(x, y)\right]}{\sqrt{\operatorname{det} D_{x y}^{2} b(x, y) D_{x y}^{2} b(x, y)^{\dagger}}} f(x) d \mathcal{H}^{m-n}(x)
$$

- were it not for the domain of the integral, this would be a PDE for v !

Neglecting the set of zero volume where differentiability of $v(y)$ fails:

$$
\begin{aligned}
G^{-1}(y) & \subset\left\{x \in X \mid v^{b}(x)+v(y)-b(x, y)=0\right\} \\
& =: X_{3}(v ; y) \quad \text { (badly nonlocal) }
\end{aligned}
$$

Neglecting the set of zero volume where differentiability of $v(y)$ fails:

$$
\begin{array}{rlr}
G^{-1}(y) & \subset\left\{x \in X \mid v^{b}(x)+v(y)-b(x, y)=0\right\} & \\
& =X_{3}(v ; y) & \text { (badly nonlocal) } \\
& \subset X_{2}(v ; y):=X_{2}\left(y, D v(y), D^{2} v(y)\right) & \text { (both } \\
& \subset X_{1}(v ; y):=X_{1}(y, D v(y)) & \text { local!) }
\end{array}
$$

where

$$
\left.\begin{array}{rrr}
X_{1}(y, q) & := & \left\{x \in X \mid D_{y} b(x, y)=q\right\}
\end{array} \begin{array}{c}
\text { codimension } n \\
\leftarrow \text { submanifold }
\end{array}\right\}
$$

$$
b|x, y|=\langle y, x\rangle=-\frac{1}{2}\left(|x-y|^{2}-|x|^{2}-|y|^{2}\right)
$$

$$
u|x|=|x|
$$

$$
G x_{x}=\frac{x}{|x|}=D_{x}(x)
$$

$$
\begin{aligned}
F_{i}(v ; y):= & \int_{X_{i}(v ; y)} \frac{\operatorname{det}\left[D^{2} v(y)-D_{y y}^{2} b(x, y)\right]}{\sqrt{\operatorname{det} D_{x y}^{2} b(x, y) D_{x y}^{2} b(x, y)^{\dagger}}} f(x) d \mathcal{H}^{m-n}(x) \\
& g(y) \leq F_{3}(v, y) \leq F_{2}\left(y, D v(y), D^{2} v(y)\right)
\end{aligned}
$$

THM: (Nonlocal characterization of optimizers) Fix pdfs f and g on bounded open subsets $X \subset \mathbf{R}^{m}$ and $Y \subset \mathbf{R}^{n}$ with $m \geq n, b \in C^{2}(\overline{X \times Y})$ twisted non-degenerate, and $v=v^{b \tilde{b}}$. Then $\left(v^{b}, v\right)$ minimizes the Kantorovich primal problem if and only if $F_{3}(v ; y)=g(y)$ holds a.e.

THM: (Local characterization of smooth optimizers) Fix pdfs f on $X \subset \mathbf{R}^{m}$ and g on $Y \subset \mathbf{R}^{n}$ bounded and open sets with $m \geq n$, $b \in C^{2}(\overline{X \times Y})$ twisted non-degenerate, and $v=v^{b \tilde{b}} \in C^{2}(Y)$.

- If $F_{2}(v ; y)=g(y)$ on Y and $v \in C^{2}(\bar{Y})$ then $\left(v^{b}, v\right)$ minimizes primal
- Conversely,

THM: (Local characterization of smooth optimizers) Fix pdfs f on $X \subset \mathbf{R}^{m}$ and g on $Y \subset \mathbf{R}^{n}$ bounded and open sets with $m \geq n$, $b \in C^{2}(\overline{X \times Y})$ twisted non-degenerate, and $v=v^{b \tilde{b}} \in C^{2}(Y)$.

- If $F_{2}(v ; y)=g(y)$ on Y and $v \in C^{2}(\bar{Y})$ then $\left(v^{b}, v\right)$ minimizes primal
- Conversely, if $\left(v^{b}, v\right)$ minimizes primal, $v^{b} \in C^{2}(X)$ and $X_{2}(v, y)$ is connected for a.e. y, then $F_{2}(v ; y)=g(y)$ on Y.

RMK:

$$
F_{2}(v ; y)=\int_{X_{2}\left(y, D v(y), D^{2} v(y)\right)} \frac{\operatorname{det}\left[D^{2} v(y)-D_{y y}^{2} b(x, y)\right]}{\sqrt{\operatorname{det} D_{x y}^{2} b(x, y) D_{x y}^{2} b(x, y)^{\dagger}}} f(x) d \mathcal{H}^{m-n}(x)
$$

is degenerate elliptic: $P=P^{T} \geq 0$ implies $F_{2}(y, q, Q) \leq F_{2}(y, q, Q+P)$

- thus $v \in C^{2, \alpha}$ inherits the regularity of $F_{2}(y, q, Q)$ and g

Multi- to one-dimension: $m>n=1$? (with Chiappori)

- Since (ND) implies $\left|D_{x} b_{y}\right| \neq 0$, g-a.s. spt $\gamma \cap(X \times\{y\})$ lies in a C^{1} hypersurface $X_{1}(y, D v(y))$ splitting spt f in two parts.
- For each fixed $y \in Y \subset \mathbf{R}^{1}$, motivated by $v^{\prime}(y)=b_{y}(x, y)$, define

$$
X_{\leq}(y, q):=\left\{\begin{array}{cc}
X & \text { if } q=+\infty \\
\left\{x \in X \subset \mathbf{R}^{m} \mid b_{y}(x, y):=\frac{\partial b}{\partial y}(x, y) \leq q\right\} & \text { else } \\
\emptyset & \text { if } q=-\infty
\end{array}\right.
$$

it depends monotonically on $q \in \mathbf{R} \cup\{ \pm \infty\}$

Multi- to one-dimension: $m>n=1$? (with Chiappori)

- Since (ND) implies $\left|D_{x} b_{y}\right| \neq 0$, g-a.s. spt $\gamma \cap(X \times\{y\})$ lies in a C^{1} hypersurface $X_{1}(y, D v(y))$ splitting spt f in two parts.
- For each fixed $y \in Y \subset \mathbf{R}^{1}$, motivated by $v^{\prime}(y)=b_{y}(x, y)$, define

$$
X_{\leq}(y, q):=\left\{\begin{array}{cc}
X & \text { if } q=+\infty \\
\left\{x \in X \subset \mathbf{R}^{m} \mid b_{y}(x, y):=\frac{\partial b}{\partial y}(x, y) \leq q\right\} & \begin{array}{c}
\text { else } \\
\emptyset
\end{array} \\
\text { if } q=-\infty
\end{array}\right.
$$

it depends monotonically on $q \in \mathbf{R} \cup\{ \pm \infty\}$
IDEA: Choose $q=q(y)$ to "split the masses proportionately", i.e. so that

$$
0=\int_{X_{\leq}(y, q)} f(x) d x-\int_{-\infty}^{y} g(\bar{y}) d \bar{y}=: F(y, q)
$$

Multi- to one-dimension: $m>n=1$? (with Chiappori)

- Since (ND) implies $\left|D_{x} b_{y}\right| \neq 0$, g-a.s. spt $\gamma \cap(X \times\{y\})$ lies in a C^{1} hypersurface $X_{1}(y, D v(y))$ splitting spt f in two parts.
- For each fixed $y \in Y \subset \mathbf{R}^{1}$, motivated by $v^{\prime}(y)=b_{y}(x, y)$, define

$$
X_{\leq}(y, q):=\left\{\begin{array}{cc}
X & \text { if } q=+\infty \\
\left\{x \in X \subset \mathbf{R}^{m} \mid b_{y}(x, y):=\frac{\partial b}{\partial y}(x, y) \leq q\right\} & \begin{array}{c}
\text { else } \\
\emptyset
\end{array} \\
\text { if } q=-\infty
\end{array}\right.
$$

it depends monotonically on $q \in \mathbf{R} \cup\{ \pm \infty\}$
IDEA: Choose $q=q(y)$ to "split the masses proportionately", i.e. so that

$$
0=\int_{X_{\leq}(y, q)} f(x) d x-\int_{-\infty}^{y} g(\bar{y}) d \bar{y}=: F(y, q)
$$

- this choice is unique for g-a.e. y
- inherits smoothness from F by implicit function theorem if $F_{q}:=\frac{\partial F}{\partial q} \neq 0$
- try to define $G: X \longrightarrow \bar{Y}$ so $G(x)=y \Longleftrightarrow x \in \partial X_{\leq}(y, q(y))$

Problem: if $x \in \partial X_{\leq}(y, q(y)) \cap \partial X_{\leq}\left(y^{\prime}, q\left(y^{\prime}\right)\right)$, then $G(x)$ not well-defined

Problem: if $x \in \partial X_{\leq}(y, q(y)) \cap \partial X_{\leq}\left(y^{\prime}, q\left(y^{\prime}\right)\right)$, then $G(x)$ not well-defined
DEFN: (b, f, g) is nested if $\int_{y}^{y^{\prime}} g>0 \Rightarrow X_{\leq}(y, q(y)) \subset X_{<}\left(y^{\prime}, q\left(y^{\prime}\right)\right)$

Problem: if $x \in \partial X_{\leq}(y, q(y)) \cap \partial X_{\leq}\left(y^{\prime}, q\left(y^{\prime}\right)\right)$, then $G(x)$ not well-defined DEFN: (b, f, g) is nested if $\int_{y}^{y^{\prime}} g>0 \Rightarrow X_{\leq}(y, q(y)) \subset X_{<}\left(y^{\prime}, q\left(y^{\prime}\right)\right)$ (for any $q: M^{-} \longrightarrow \mathbf{R}$ chosen to split the masses proportionately).

THM 1: $X \subset \mathbf{R}^{n}, Y \subset \mathbf{R}$ open connected, with probability densities $f \& g$. $b \in C^{1,1}(X \times Y)$ non-degenerate. If (b, f, g) nested then $G: X \longrightarrow \bar{Y}$ is well-defined f-a.e., and $\gamma[b]$ uniquely maximized on $\Gamma(f, g)$.

Problem: if $x \in \partial X_{\leq}(y, q(y)) \cap \partial X_{\leq}\left(y^{\prime}, q\left(y^{\prime}\right)\right)$, then $G(x)$ not well-defined DEFN: (b, f, g) is nested if $\int_{y}^{y^{\prime}} g>0 \Rightarrow X_{\leq}(y, q(y)) \subset X_{<}\left(y^{\prime}, q\left(y^{\prime}\right)\right)$ (for any $q: M^{-} \longrightarrow \mathbf{R}$ chosen to split the masses proportionately).

THM 1: $X \subset \mathbf{R}^{n}, Y \subset \mathbf{R}$ open connected, with probability densities $f \& g$. $b \in C^{1,1}(X \times Y)$ non-degenerate. If (b, f, g) nested then $G: X \longrightarrow \bar{Y}$ is well-defined f-a.e., and $\gamma[b]$ uniquely maximized on $\Gamma(f, g)$. The maximizer γ is determined by G and supported on $\operatorname{Graph}(G)$ (namely $\left.\gamma=(i d \times G)_{\#} f\right)$.

If in addition $\overline{\{g>0\}}$ is connected, G agrees f-a.e. with some continuous $\operatorname{map} \bar{G}: X \longrightarrow \bar{Y}$.

Problem: if $x \in \partial X_{\leq}(y, q(y)) \cap \partial X_{\leq}\left(y^{\prime}, q\left(y^{\prime}\right)\right)$, then $G(x)$ not well-defined DEFN: (b, f, g) is nested if $\int_{y}^{y^{\prime}} g>0 \Rightarrow X_{\leq}(y, q(y)) \subset X_{<}\left(y^{\prime}, q\left(y^{\prime}\right)\right)$ (for any $q: M^{-} \longrightarrow \mathbf{R}$ chosen to split the masses proportionately).

THM 1: $X \subset \mathbf{R}^{n}, Y \subset \mathbf{R}$ open connected, with probability densities $f \& g$. $b \in C^{1,1}(X \times Y)$ non-degenerate. If (b, f, g) nested then $G: X \longrightarrow \bar{Y}$ is well-defined f-a.e., and $\gamma[b]$ uniquely maximized on $\Gamma(f, g)$. The maximizer γ is determined by G and supported on $\operatorname{Graph}(G)$ (namely $\left.\gamma=(i d \times G)_{\#} f\right)$.

If in addition $\overline{\{g>0\}}$ is connected, G agrees f-a.e. with some continuous $\operatorname{map} \bar{G}: X \longrightarrow \bar{Y}$.

Proof strategy: Motivated by $\operatorname{Dv}(y)=D_{y} b(x, y)$, use $q(y)$ to define $v(y):=\int^{y} q(\overline{\mathbf{y}}) d \bar{y}$ and

$$
u(x):=\sup _{y \in Y} b(x, y)-v(y)
$$

Then $(u, v) \in L$. Moreover, the measure $\gamma:=(i d \times G)_{\#} f \in \Gamma(f, g)$ then vanishes outside the zero set of $u(x)+v(y)-b(x, y) \geq 0$, showing (u, v) and γ optimize the primal and dual problems respectively. Indeed the zero set of $u+v-b$ is essentially a graph, hence the dual optimizer γ is unique.

Proof strategy: Motivated by $\operatorname{Dv}(y)=D_{y} b(x, y)$, use $q(y)$ to define $v(y):=\int^{y} q(\overline{\mathbf{y}}) d \bar{y}$ and

$$
u(x):=\sup _{y \in Y} b(x, y)-v(y)
$$

Then $(u, v) \in L$. Moreover, the measure $\gamma:=(i d \times G)_{\#} f \in \Gamma(f, g)$ then vanishes outside the zero set of $u(x)+v(y)-b(x, y) \geq 0$, showing (u, v) and γ optimize the primal and dual problems respectively. Indeed the zero set of $u+v-b$ is essentially a graph, hence the dual optimizer γ is unique.

Continuity of T follows from the fact that $\overline{\{g>0\}}=Y$ and nestedness force strict monotonicity of sequence $y \in Y \subset \mathbf{R} \longrightarrow X_{\leq}(y, q(y))$.

By contrast, $\overline{\{f>0\}}=X$ would preclude jumps in this sequence, and is related instead to the continuity of $q=d v / d y$ on Y

Nestedness can be interpreted to mean there is a matching $\gamma \in \Gamma(f, g)$ in which the women's preferences are compatible, in the sense that for each pair of matched couples $(\bar{x}, \bar{y}),(\underline{x}, \underline{y}) \in s p t \gamma$, the wife \bar{x} of the higher type husband $\bar{y}>\underline{y}$ has a greater marginal willingness to pay for variations in the quality of either husband than the second woman \underline{x} does.

Criteria for nestedness

Outward normal velocity at $x \in \partial X_{\leq}(y, q)$ of

$$
X_{\leq}(y, q)=\left\{x \in X \subset \mathbf{R}^{n} \mid b_{y}(x, y) \leq q\right\}
$$

with respect to changes in $y(\operatorname{or} q)$ is given by $\frac{b_{y y}(x, y)}{\left|D_{x} b_{y}\right|}$ (or $\frac{1}{\left|D_{x} b_{y}\right|}$)
Thus outward normal velocity of $X_{\leq}(y, q(y))$ wrt y should be

$$
\frac{q^{\prime}(y)-b_{y y}}{\left|D_{x} b_{y}\right|}
$$

- this expectation can be made rigorous under suitable hypotheses
- nestedness implies non-negativity of this normal velocity;
- global positivity of this normal velocity implies nestedness

Suitable hypotheses:

- $X \subset \mathbf{R}^{m}$ and $Y \subset \mathbf{R}$ open, connected, finite perimeter
- $b \in C^{2,1}$ non-deg., $\log f \in\left(C \cap W^{1,1}\right)(X)$ and $\log g \in C_{\text {loc }}^{0}(Y)$
- a mild form of transversality: $Z=\emptyset$, where

$$
Z:=\left\{y \in M^{-} \mid \operatorname{Area}\left[\bar{X}_{1}(y, q(y)) \cap \partial^{*} X\right]>0\right\}
$$

Suitable hypotheses:

- $X \subset \mathbf{R}^{m}$ and $Y \subset \mathbf{R}$ open, connected, finite perimeter
- $b \in C^{2,1}$ non-deg., $\log f \in\left(C \cap W^{1,1}\right)(X)$ and $\log g \in C_{\text {loc }}^{0}(Y)$
- a mild form of transversality: $Z=\emptyset$, where

$$
Z:=\left\{y \in M^{-} \mid \operatorname{Area}\left[\bar{X}_{1}(y, q(y)) \cap \partial^{*} X\right]>0\right\}
$$

THM 2: Even without this transversality, Z is relatively closed; $q=d v / d y$ is locally Lipschitz on Y and continuously differentiable outside Z RMK (endpts): If $\log g \in L^{\infty}$ then $q^{\prime}(y) \rightarrow \infty$ if $\operatorname{Area}\left[X_{1}(y, q(y))\right] \rightarrow 0$.

Suitable hypotheses:

- $X \subset \mathbf{R}^{m}$ and $Y \subset \mathbf{R}$ open, connected, finite perimeter
- $b \in C^{2,1}$ non-deg., $\log f \in\left(C \cap W^{1,1}\right)(X)$ and $\log g \in C_{\text {loc }}^{0}(Y)$
- a mild form of transversality: $Z=\emptyset$, where

$$
Z:=\left\{y \in M^{-} \mid \operatorname{Area}\left[\bar{X}_{1}(y, q(y)) \cap \partial^{*} X\right]>0\right\}
$$

THM 2: Even without this transversality, Z is relatively closed; $q=d v / d y$ is locally Lipschitz on Y and continuously differentiable outside Z RMK (endpts): If $\log g \in L^{\infty}$ then $q^{\prime}(y) \rightarrow \infty$ if $\operatorname{Area}\left[X_{1}(y, q(y))\right] \rightarrow 0$. COROLLARY (Unique splitting criterion for nestedness) (b, f, g) satisfying the hypotheses above with $Z=\emptyset$ is nested if and only if each $x \in X$ corresponds to a unique $y \in Y$ such that

$$
0=F\left(y, b_{y}(x, y)\right):=\int_{X_{\leq}\left(y, b_{y}(x, y)\right)} f(\bar{x}) d \bar{x}-\int_{-\infty}^{y} g(\bar{y}) d \bar{y}
$$

In this case, $G(x)=y$.

Lipschitz (and Hölder) classes

For each integer $k \geq 0$, and exponent $0<\alpha \leq 1$ we denote by $C^{k, \alpha}(X)$ the class of functions which are k times continuously differentiable, and whose k-th derivatives are all Lipschitz continuous functions with respect to the distance function $\left|x-x^{\prime}\right|^{\alpha}$ on X (in which case both properties extend to the closure \bar{X} of X.) We norm this space by

$$
\|f\|_{C^{k, \alpha}(X)}:=\sum_{i=0}^{k} \sum_{|\beta|=i}\left\|D^{\beta} f\right\|_{\infty}+\sup _{x \neq x^{\prime} \in X} \sum_{|\beta|=k} \frac{\left|D^{\beta} f\left(x^{\prime}\right)-D^{\beta} f(x)\right|}{\left|x^{\prime}-x\right|^{\alpha}}
$$

where $D^{\beta} f=\frac{\partial^{|i|} f}{\partial x_{1} \cdots \partial x_{i}}$ and the sums are over multi-indices β of degree $|\beta|$.

Higher regularity of husband's payoff

THM 3: Fix $k \geq 1$. Under the hypotheses of THM 2, suppose $Y^{\prime}:=\left(y_{0}, y_{1}\right) \subset Y$ is an interval on which $\partial X \in C^{1}\left(X^{\prime}\right)$ and intersects $\overline{\partial X_{\leq}(y, q(y))}$ transversally. If $X^{\prime}:=\cup_{y \in Y^{\prime}} \overline{\partial X_{\leq}(y, q(y))}$ then $\|q\|_{C^{k, 1}\left(Y^{\prime}\right)}$ is locally controlled by the following quantities, assumed positive and finite:

- $\|\log f / \log g\|_{C^{k-1,1}}, \quad\|b\|_{C^{k+1,1}}, \quad$ Area $(\partial X), \quad\left\|\hat{n}_{X}\right\|_{C^{k-2,1} \cap W^{1,1}}$,
- $\inf _{y \in Y^{\prime}} \operatorname{Area}\left[X_{1}(y, q(y))\right] \quad$ (proximity to ends of Y)
$\begin{array}{lr}\inf _{(x, y) \in X^{\prime} \times Y^{\prime}}\left|D_{x} b_{y}(x, y)\right| & \text { (non-degeneracy) } \\ \text { - } \quad \inf _{(x, y) \in\left(X^{\prime} \cap \partial X\right) \times Y^{\prime}} 1-\left[\hat{n}_{X} \cdot \hat{n}_{X_{\leq}(x, y)}\right]^{2} & \text { (transversality) }\end{array}$
- and

$$
\mathcal{H}^{m-2}\left[\overline{\partial X_{\leq}\left(y_{0}, q\left(y_{0}\right)\right)} \cap \partial X\right]
$$

Proof: Use Riemannian level set techniques to establish smoothness of

$$
F(y, q):=\int_{X_{\leq}(y, q)} f(\bar{x}) d \bar{x}-\int_{-\infty}^{y} g(\bar{y}) d \bar{y}
$$

Then conclude smoothness of $q(y)$ using implicit function theorem.

Proof: Use Riemannian level set techniques to establish smoothness of

$$
F(y, q):=\int_{X_{\leq}(y, q)} f(\bar{x}) d \bar{x}-\int_{-\infty}^{y} g(\bar{y}) d \bar{y}
$$

Then conclude smoothness of $q(y)$ using implicit function theorem.
e.g.
where

$$
\begin{gathered}
F_{q}=\int_{X_{1}(y, q)} f V \cdot \hat{n}_{1} d \mathcal{H}^{m-1}(x)>0 \\
V(x, y)=\frac{\hat{n}_{1}}{\left|D_{x} b_{y}\right|} \text { and } \hat{n}_{1}(x, y)=\frac{D_{x} b_{y}}{\left|D_{x} b_{y}\right|}
\end{gathered}
$$

Proof: Use Riemannian level set techniques to establish smoothness of

$$
F(y, q):=\int_{X_{\leq}(y, q)} f(\bar{x}) d \bar{x}-\int_{-\infty}^{y} g(\bar{y}) d \bar{y}
$$

Then conclude smoothness of $q(y)$ using implicit function theorem.
e.g.
where

$$
\begin{aligned}
& F_{q}=\int_{X_{1}(y, q)} f V \cdot \hat{n}_{1} d \mathcal{H}^{m-1}(x)>0 \\
& V(x, y)=\frac{\hat{n}_{1}}{\left|D_{x} b_{y}\right|} \text { and } \hat{n}_{1}(x, y)=\frac{D_{x} b_{y}}{\left|D_{x} b_{y}\right|}
\end{aligned}
$$

thus

$$
F_{q}=\int_{X_{\leq}(y, q)} \nabla \cdot(f V) d x-\int_{X_{\leq}(y, q) \cap \partial X} f V \cdot \hat{n}_{X} d \mathcal{H}^{m-1}
$$

and
$F_{q q}=\int_{X_{1}(y, q)} \nabla \cdot(f V) V \cdot \hat{n}_{1} d \mathcal{H}^{m-1}-\int_{X_{1}(y, q) \cap \partial X} f V \cdot \hat{n}_{X} V_{\partial} \cdot \hat{n}_{\partial} d \mathcal{H}^{m-2}$
where

$$
V_{\partial}=\frac{V \cdot \hat{n}_{1}}{\sqrt{1-\left(\hat{n}_{1} \cdot \hat{n}_{X}\right)^{2}}} \hat{n}_{\partial} \text { and } \hat{n}_{\partial}=\frac{\hat{n}_{1}-\left(\hat{n}_{1} \cdot \hat{n}_{X}\right) \hat{n}_{X}}{\sqrt{1-\left(\hat{n}_{1} \cdot \hat{n}_{X}\right)^{2}}}
$$

$$
b|x, y|=\langle y, x\rangle=-\frac{1}{2}\left(|x-y|^{2}-|x|^{2}-|y|^{2}\right)
$$

$$
u|x|=|x|
$$

$$
G x_{x}=\frac{x}{|x|}=D_{x}(x)
$$

What about the map? (and the wives' payoffs u?)

PROP: If (b, f, g) is nested and satisfies the preceding hypotheses then

- $u \in C^{1}(X)$,
- G and $D_{x} b_{y}(\cdot, G(\cdot)) \in B V_{l o c} \cap C(X)$,
- $G \in \operatorname{dom} D q$ holds $|D G|$-a.s.
- differentiating $q(G(x))=v^{\prime}(G(x))=b_{y}(x, G(x))$ at such points yields

$$
\left[q^{\prime}(G(\cdot))-b_{y y}(\cdot, G(\cdot))\right] D G(\cdot)=D_{x} b_{y}(\cdot, G(\cdot))
$$

- on any open $X^{\prime} \subset X$ obeying a speed limit

$$
\ell:=\inf _{x \in X^{\prime}} \frac{q^{\prime}(G(x))-b_{y y}(x, G(x))}{\mid D_{x} b_{y}(x, G(x) \mid}>0
$$

G is Lipschitz: $\|D G\|_{L^{\infty}\left(X^{\prime}\right)} \leq \ell^{-1}$

- higher regularity of u and G then follows from that of v

CONCLUSIONS

with Pass

- optimal transport equivalent to solving a new, nonlocal 'PDE'
- however a local equation satisfied iff the optimal potentials are smooth
- depends subtly on the interaction of b with (X, f) and (Y, g)
with Chiappori and Pass
- nestedness is a key criterion singling out tractable matching problems, generalizing the Lorentz-Spence-Mirrlees-Becker (supermodularity) condition to the case where only one side of the market is unidimensional
- guarantees existence, uniqueness and regularity of husband's payoff
- smoothness of wife's payoff and map follows provided speed limit $\ell>0$

CONCLUSIONS

with Pass

- optimal transport equivalent to solving a new, nonlocal 'PDE'
- however a local equation satisfied iff the optimal potentials are smooth
- depends subtly on the interaction of b with (X, f) and (Y, g)
with Chiappori and Pass
- nestedness is a key criterion singling out tractable matching problems, generalizing the Lorentz-Spence-Mirrlees-Becker (supermodularity) condition to the case where only one side of the market is unidimensional
- guarantees existence, uniqueness and regularity of husband's payoff
- smoothness of wife's payoff and map follows provided speed limit $\ell>0$

THANK YOU!

