Discretization of Euler's equations for incompressible fluids through semi-discrete optimal transport.

Quentin Mérigot
Joint works with Jean-Marie Mirebeau et Thomas Gallouët

Brenier60: Calculus of Variations \& Optimal Transport / January 2017 / IHP

Discretization of Euler's equations for incompressible fluids through semi-discrete optimal transport.

Quentin Mérigot
Joint works with Jean-Marie Mirebeau et Thomas Gallouët (... and borrowing many ideas from Yann...)

Brenier60: Calculus of Variations \& Optimal Transport / January 2017 / IHP

Solutions to Euler's equations as geodesics in SDiff

$\mathbb{S D i f f}=$ measure-preserving diffeomorphisms from X to itself $\subseteq \mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)$

\longrightarrow Formally, a path $s:[0,1] \rightarrow$ SDiff is a geodesic iff $\ddot{s}_{t} \perp \mathrm{~T}_{s_{t}}$ SDiff

Solutions to Euler's equations as geodesics in SDiff

$\mathbb{S D i f f}=$ measure-preserving diffeomorphisms from X to itself $\subseteq \mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)$

\longrightarrow Formally, a path $s:[0,1] \rightarrow \mathbb{S D i f f}$ is a geodesic iff $\ddot{s}_{t} \perp \mathrm{~T}_{s_{t}}$ SDiff $\Longleftrightarrow \ddot{s}_{t} \circ s_{t}^{-1} \perp \mathrm{~T}_{\mathrm{id}}$ SDiff

Solutions to Euler's equations as geodesics in SDiff

$\mathbb{S D i f f}=$ measure-preserving diffeomorphisms from X to itself $\subseteq \mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)$
[Arnold 1966]

\longrightarrow Formally, a path $s:[0,1] \rightarrow \mathbb{S D i f f}$ is a geodesic iff $\ddot{s}_{t} \perp \mathrm{~T}_{s_{t}} \mathbb{S D i f f} \Longleftrightarrow \ddot{s}_{t} \circ s_{t}^{-1} \perp \mathrm{~T}_{\mathrm{id}} \mathbb{S D i f f}$
$\left(\mathrm{T}_{\mathrm{id}} \mathbb{S D i f f}=\right.$ divergence-free vector fields $\left.=\{\nabla p \mid p: X \rightarrow \mathbb{R}\}^{\perp}\right)$

Solutions to Euler's equations as geodesics in SDiff

$\mathbb{S D i f f}=$ measure-preserving diffeomorphisms from X to itself $\subseteq \mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)$
[Arnold 1966]

\longrightarrow Formally, a path $s:[0,1] \rightarrow \mathbb{S D i f f}$ is a geodesic iff

$$
\begin{aligned}
\ddot{s}_{t} \perp \mathrm{~T}_{s_{t}} \text { SDiff } & \Longleftrightarrow \ddot{s}_{t} \circ s_{t}^{-1} \perp \mathrm{~T}_{\mathrm{id}} \text { SDiff } \\
& \Longleftrightarrow \exists p:[0,1] \times X \rightarrow \mathbb{R}, \ddot{s}_{t}=-\nabla p_{t} \circ s_{t}
\end{aligned}
$$

$\left(\mathrm{T}_{\mathrm{id}} \mathbb{S D i f f}=\right.$ divergence-free vector fields $\left.=\{\nabla p \mid p: X \rightarrow \mathbb{R}\}^{\perp}\right)$

Solutions to Euler's equations as geodesics in SDiff

$\mathbb{S D i f f}=$ measure-preserving diffeomorphisms from X to itself $\subseteq \mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)$
[Arnold 1966]

\longrightarrow Formally, a path $s:[0,1] \rightarrow \mathbb{S D i f f}$ is a geodesic iff $\ddot{s}_{t} \perp \mathrm{~T}_{s_{t}} \mathbb{S D i f f} \Longleftrightarrow \ddot{s}_{t} \circ s_{t}^{-1} \perp \mathrm{~T}_{\mathrm{id}} \mathbb{S D i f f}$

$$
\Longleftrightarrow \exists p:[0,1] \times X \rightarrow \mathbb{R}, \ddot{s}_{t}=-\nabla p_{t} \circ s_{t}
$$

$\left(\mathrm{T}_{\mathrm{id}} \mathbb{S}\right.$ Diff $=$ divergence-free vector fields $\left.=\{\nabla p \mid p: X \rightarrow \mathbb{R}\}^{\perp}\right)$
\longrightarrow With $u_{t}:=\dot{s}_{t} \circ s_{t}^{-1}$ (= velocity in Eulerian coordinates), one recovers Euler's equations for incompressible fluids:

$$
\begin{cases}\partial_{t} u+(u \cdot \nabla) u=-\nabla p & \text { in } X \\ \operatorname{div} u=0 & \text { in } X \\ u \cdot n=0 & \text { on } \partial X\end{cases}
$$

Solutions to Euler's equations as geodesics in SDiff

$\mathbb{S D i f f}=$ measure-preserving diffeomorphisms from X to itself $\subseteq \mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)$
[Arnold 1966]

\longrightarrow Formally, a path $s:[0,1] \rightarrow \mathbb{S D i f f}$ is a geodesic iff $\ddot{s}_{t} \perp \mathrm{~T}_{s_{t}}$ SDiff $\Longleftrightarrow \ddot{s}_{t} \circ s_{t}^{-1} \perp \mathrm{~T}_{\mathrm{id}}$ SDiff

$$
\Longleftrightarrow \exists p:[0,1] \times X \rightarrow \mathbb{R}, \ddot{s}_{t}=-\nabla p_{t} \circ s_{t}
$$

$\left(\mathrm{T}_{\mathrm{id}} \mathbb{S D i f f}=\right.$ divergence-free vector fields $\left.=\{\nabla p \mid p: X \rightarrow \mathbb{R}\}^{\perp}\right)$
\longrightarrow With $u_{t}:=\dot{s}_{t} \circ s_{t}^{-1}$ (= velocity in Eulerian coordinates), one recovers Euler's equations for incompressible fluids:

$$
\begin{cases}\partial_{t} u+(u \cdot \nabla) u=-\nabla p & \text { in } X \\ \operatorname{div} u=0 & \text { in } X \\ u \cdot n=0 & \text { on } \partial X\end{cases}
$$

This talk: Using this formulation for numerical computations (following Brenier):
\longrightarrow Minimizing geodesics (with Jean-Marie Mirebeau, 2015)
\longrightarrow Cauchy problem (with Thomas Gallouet, 2016).

1. Discretization of the Cauchy problem

 Joint work with Thomas Gallouët
Brenier's approximation of geodesics I

$$
\left\{\begin{array}{l}
\ddot{s}(t) \perp \mathrm{T}_{s(t)} S \\
s(t) \in S \\
(s(0), \dot{s}(0))=\left(s_{0}, v_{0}\right)
\end{array}\right.
$$

where $S \subseteq \mathbb{R}^{d}$ submanifold

Brenier's approximation of geodesics I

$\left\{\begin{array}{l}\ddot{s}(t) \perp \mathrm{T}_{s(t)} S \\ s(t) \in S \\ (s(0), \dot{s}(0))=\left(s_{0}, v_{0}\right)\end{array} \longrightarrow\left\{\begin{array}{l}\ddot{m}(t)+\frac{1}{2 \varepsilon^{2}} \nabla \mathrm{~d}_{S}^{2}(m(t))=0 \\ m(t) \in \mathbb{R}^{d} \\ (m(0), \dot{m}(0))=\left(\tilde{s}_{0}, \tilde{v}_{0}\right)\end{array}\right.\right.$
where $S \subseteq \mathbb{R}^{d}$ submanifold where $\mathrm{d}_{S}^{2}(m)=\min _{s \in S}\|m-s\|^{2}$.

Brenier's approximation of geodesics I

$\left\{\begin{array}{l}\ddot{s}(t) \perp \mathrm{T}_{s(t)} S \\ s(t) \in S \\ (s(0), \dot{s}(0))=\left(s_{0}, v_{0}\right)\end{array} \longrightarrow\left\{\begin{array}{l}\ddot{m}(t)+\frac{1}{2 \varepsilon^{2}} \nabla \mathrm{~d}_{S}^{2}(m(t))=0 \\ m(t) \in \mathbb{R}^{d} \\ (m(0), \dot{m}(0))=\left(\tilde{s}_{0}, \tilde{v}_{0}\right)\end{array}\right.\right.$
where $S \subseteq \mathbb{R}^{d}$ submanifold where $\mathrm{d}_{S}^{2}(m)=\min _{s \in S}\|m-s\|^{2}$.
\longrightarrow Recall: $\frac{1}{2} \nabla \mathrm{~d}_{S}^{2}(m)=m-\Pi_{S}(m)$ a.e. where $\Pi_{S}(\cdot)=$ closest point map

Brenier's approximation of geodesics I

$$
\left\{\begin{array} { l }
{ \ddot { s } (t) \perp \mathrm { T } _ { s (t) } S } \\
{ s (t) \in S } \\
{ (s (0) , \dot { s } (0)) = (s _ { 0 } , v _ { 0 }) }
\end{array} \longrightarrow \left\{\begin{array}{l}
\ddot{m}(t)+\frac{1}{2 \varepsilon^{2}} \nabla \mathrm{~d}_{S}^{2}(m(t))=0 \\
m(t) \in \mathbb{R}^{d} \\
(m(0), \dot{m}(0))=\left(\tilde{s}_{0}, \tilde{v}_{0}\right)
\end{array}\right.\right.
$$

where $S \subseteq \mathbb{R}^{d}$ submanifold where $\mathrm{d}_{S}^{2}(m)=\min _{s \in S}\|m-s\|^{2}$.
\longrightarrow Recall: $\frac{1}{2} \nabla \mathrm{~d}_{S}^{2}(m)=m-\Pi_{S}(m)$ a.e. where $\Pi_{S}(\cdot)=$ closest point map
\longrightarrow Hamiltonian system for $H(m, v)=\frac{1}{2}\|v\|^{2}+\frac{1}{2 \varepsilon^{2}} \mathrm{~d}_{S}^{2}(m)$.

Brenier's approximation of geodesics I

$$
\left\{\begin{array} { l }
{ \ddot { s } (t) \perp \mathrm { T } _ { s (t) } S } \\
{ s (t) \in S } \\
{ (s (0) , \dot { s } (0)) = (s _ { 0 } , v _ { 0 }) }
\end{array} \longrightarrow \left\{\begin{array}{l}
\ddot{m}(t)+\frac{1}{2 \varepsilon^{2}} \nabla \mathrm{~d}_{S}^{2}(m(t))=0 \\
m(t) \in \mathbb{R}^{d} \\
(m(0), \dot{m}(0))=\left(\tilde{s}_{0}, \tilde{v}_{0}\right)
\end{array}\right.\right.
$$

where $S \subseteq \mathbb{R}^{d}$ submanifold where $\mathrm{d}_{S}^{2}(m)=\min _{s \in S}\|m-s\|^{2}$.
\longrightarrow Recall: $\frac{1}{2} \nabla \mathrm{~d}_{S}^{2}(m)=m-\Pi_{S}(m)$ a.e. where $\Pi_{S}(\cdot)=$ closest point map
\longrightarrow Hamiltonian system for $H(m, v)=\frac{1}{2}\|v\|^{2}+\frac{1}{2 \varepsilon^{2}} \mathrm{~d}_{S}^{2}(m)$.
Simple example: Take $S=\mathbb{R} \times\{0\} \subseteq \mathbb{R}^{2}, s_{0}=(0,0), v_{0}=(1,0)$

$$
\tilde{s}_{0}=(0, h), \tilde{v}_{0}=(1, \nu)
$$

with $m=(x, y)$ we have $\left\{\begin{array}{l}\ddot{x}=0 \\ \ddot{y}+\frac{1}{\varepsilon^{2}} y=0\end{array}\right.$

Brenier's approximation of geodesics I

$$
\left\{\begin{array} { l }
{ \ddot { s } (t) \perp \mathrm { T } _ { s (t) } S } \\
{ s (t) \in S } \\
{ (s (0) , \dot { s } (0)) = (s _ { 0 } , v _ { 0 }) }
\end{array} \longrightarrow \left\{\begin{array}{l}
\ddot{m}(t)+\frac{1}{2 \varepsilon^{2}} \nabla \mathrm{~d}_{S}^{2}(m(t))=0 \\
m(t) \in \mathbb{R}^{d} \\
(m(0), \dot{m}(0))=\left(\tilde{s}_{0}, \tilde{v}_{0}\right)
\end{array}\right.\right.
$$

where $S \subseteq \mathbb{R}^{d}$ submanifold where $\mathrm{d}_{S}^{2}(m)=\min _{s \in S}\|m-s\|^{2}$.
\longrightarrow Recall: $\frac{1}{2} \nabla \mathrm{~d}_{S}^{2}(m)=m-\Pi_{S}(m)$ a.e. where $\Pi_{S}(\cdot)=$ closest point map
\longrightarrow Hamiltonian system for $H(m, v)=\frac{1}{2}\|v\|^{2}+\frac{1}{2 \varepsilon^{2}} \mathrm{~d}_{S}^{2}(m)$.

Simple example: Take $S=\mathbb{R} \times\{0\} \subseteq \mathbb{R}^{2}, s_{0}=(0,0)$, $v_{0}=(1,0)$

$$
\tilde{s}_{0}=(0, h), \tilde{v}_{0}=(1, \nu)
$$

with $m=(x, y)$ we have $\left\{\begin{array}{l}\ddot{x}=0 \\ \ddot{y}+\frac{1}{\varepsilon^{2}} y=0\end{array}\right.$ i.e. $\left\{\begin{array}{l}x(t)=t \\ y(t)=h \cos (t / \varepsilon)+\nu \varepsilon \sin (t / \varepsilon)\end{array}\right.$

Brenier's approximation of geodesics I

$$
\left\{\begin{array} { l }
{ \ddot { s } (t) \perp \mathrm { T } _ { s (t) } S } \\
{ s (t) \in S } \\
{ (s (0) , \dot { s } (0)) = (s _ { 0 } , v _ { 0 }) }
\end{array} \longrightarrow \left\{\begin{array}{l}
\ddot{m}(t)+\frac{1}{2 \varepsilon^{2}} \nabla \mathrm{~d}_{S}^{2}(m(t))=0 \\
m(t) \in \mathbb{R}^{d} \\
(m(0), \dot{m}(0))=\left(\tilde{s}_{0}, \tilde{v}_{0}\right)
\end{array}\right.\right.
$$

where $S \subseteq \mathbb{R}^{d}$ submanifold where $\mathrm{d}_{S}^{2}(m)=\min _{s \in S}\|m-s\|^{2}$.
\longrightarrow Recall: $\frac{1}{2} \nabla \mathrm{~d}_{S}^{2}(m)=m-\Pi_{S}(m)$ a.e. where $\Pi_{S}(\cdot)=$ closest point map
\longrightarrow Hamiltonian system for $H(m, v)=\frac{1}{2}\|v\|^{2}+\frac{1}{2 \varepsilon^{2}} \mathrm{~d}_{S}^{2}(m)$.

Simple example: Take $S=\mathbb{R} \times\{0\} \subseteq \mathbb{R}^{2}, s_{0}=(0,0)$, $v_{0}=(1,0)$

$$
\tilde{s}_{0}=(0, h), \tilde{v}_{0}=(1, \nu)
$$

with $m=(x, y)$ we have $\left\{\begin{array}{l}\ddot{x}=0 \\ \ddot{y}+\frac{1}{\varepsilon^{2}} y=0\end{array}\right.$ i.e. $\left\{\begin{array}{l}x(t)=t \\ y(t)=h \cos (t / \varepsilon)+\nu \varepsilon \sin (t / \varepsilon)\end{array}\right.$
$\longrightarrow \mathcal{C}^{1}$ convergence towards the geodesic requires $\frac{h}{\varepsilon} \longrightarrow 0$.

Brenier's approximation of geodesics II

Leb $=$ restriction of Lebesgue measure to a compact domain X

$$
\begin{aligned}
& \mathbb{S}=\left\{s: X \rightarrow X \mid s_{\#} \text { Leb }=\text { Leb }\right\} \longrightarrow \text { "measure-preserving maps" } \\
& \mathbb{M}=\mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\ddot{m}(t)+\frac{1}{2 \varepsilon^{2}} \nabla \mathrm{~d}_{\mathbb{S}}^{2}(m(t))=0 \\
m(t) \in \mathbb{M} \\
(m(0), \dot{m}(0))=\left(\tilde{s}_{0}, \tilde{v}_{0}\right)
\end{array}\right.
$$

Brenier's approximation of geodesics II

Leb $=$ restriction of Lebesgue measure to a compact domain X
$\mathbb{S}=\left\{s: X \rightarrow X \mid s_{\#}\right.$ Leb $=$ Leb $\} \longrightarrow$ "measure-preserving maps"
$\mathbb{M}=\mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)$
$\left\{\begin{array}{l}\ddot{m}(t)+\frac{1}{2 \varepsilon^{2}} \nabla \mathrm{~d}_{\mathbb{S}}^{2}(m(t))=0 \\ m(t) \in \mathbb{M} \\ (m(0), \dot{m}(0))=\left(\tilde{s}_{0}, \tilde{v}_{0}\right)\end{array}\right.$

- discretizing this formulation for numerical resolution of Euler's equations ?
\longrightarrow main difficulty: computation of the square distance $d_{\mathbb{S}}^{2}$ and its gradient

Brenier's approximation of geodesics II

Leb $=$ restriction of Lebesgue measure to a compact domain X
$\mathbb{S}=\left\{s: X \rightarrow X \mid s_{\#}\right.$ Leb $=$ Leb $\} \longrightarrow$ "measure-preserving maps"
$\mathbb{M}=\mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)$
$\left\{\begin{array}{l}\ddot{m}(t)+\frac{1}{2 \varepsilon^{2}} \nabla \mathrm{~d}_{\mathbb{S}}^{2}(m(t))=0 \\ m(t) \in \mathbb{M} \\ (m(0), \dot{m}(0))=\left(\tilde{s}_{0}, \tilde{v}_{0}\right)\end{array}\right.$

- discretizing this formulation for numerical resolution of Euler's equations ?
\longrightarrow main difficulty: computation of the square distance $\mathrm{d}_{\mathbb{S}}^{2}$ and its gradient
\longrightarrow early numerical work by Brenier (80 's), where \mathbb{S} is approximated by the set of permutations \mathbb{S}_{N} of a fixed partition $X=\bigsqcup_{1 \leq i \leq N} \omega_{i}$.

Brenier's approximation of geodesics II

Leb $=$ restriction of Lebesgue measure to a compact domain X
$\mathbb{S}=\left\{s: X \rightarrow X \mid s_{\#}\right.$ Leb $=$ Leb $\} \longrightarrow$ "measure-preserving maps"
$\mathbb{M}=\mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)$
$\left\{\begin{array}{l}\ddot{m}(t)+\frac{1}{2 \varepsilon^{2}} \nabla \mathrm{~d}_{\mathbb{S}}^{2}(m(t))=0 \\ m(t) \in \mathbb{M} \\ (m(0), \dot{m}(0))=\left(\tilde{s}_{0}, \tilde{v}_{0}\right)\end{array}\right.$

- discretizing this formulation for numerical resolution of Euler's equations ?
\longrightarrow main difficulty: computation of the square distance $\mathrm{d}_{\mathbb{S}}^{2}$ and its gradient
\longrightarrow early numerical work by Brenier (80 's), where \mathbb{S} is approximated by the set of permutations \mathbb{S}_{N} of a fixed partition $X=\bigsqcup_{1 \leq i \leq N} \omega_{i}$.
(NB: in $\mathbb{R}^{d}(d \geq 2)$, each iterations costs $N^{3} \ldots \longrightarrow$ different approach needed)

Distance to \mathbb{S} and polar factorization of maps

Leb $=$ restriction of Lebesgue measure to a compact domain X
$\mathbb{S}=\left\{s: X \rightarrow X \mid s_{\#}\right.$ Leb $\left.=\mathrm{Leb}\right\} \longrightarrow$ "measure-preserving maps"

Distance to \mathbb{S} and polar factorization of maps

Leb $=$ restriction of Lebesgue measure to a compact domain X
$\mathbb{S}=\left\{s: X \rightarrow X \mid s_{\#}\right.$ Leb $=$ Leb $\} \longrightarrow$ "measure-preserving maps"
Notation: Let $\mathrm{d}_{\mathbb{S}}^{2}(\cdot)=\min _{s \in \mathbb{S}}\|\cdot-s\|_{2}^{2}$ and $\Pi_{\mathbb{S}}(\cdot)$ the set of projections.

Distance to \mathbb{S} and polar factorization of maps

Leb $=$ restriction of Lebesgue measure to a compact domain X
$\mathbb{S}=\left\{s: X \rightarrow X \mid s_{\#}\right.$ Leb $=$ Leb $\} \longrightarrow$ "measure-preserving maps"
Notation: Let $d_{\mathbb{S}}^{2}(\cdot)=\min _{s \in \mathbb{S}}\|\cdot-s\|_{2}^{2}$ and $\Pi_{\mathbb{S}}(\cdot)$ the set of projections.

Polar Factorization Theorem (Brenier): For every map m in $\mathbb{M}=L^{2}\left(X, \mathbb{R}^{d}\right)$,

$$
\mathrm{d}_{\mathbb{S}}^{2}(m)=\mathrm{W}_{2}^{2}\left(\text { Leb }, m_{\#} \mathrm{Leb}\right)
$$

Distance to \mathbb{S} and polar factorization of maps

Leb $=$ restriction of Lebesgue measure to a compact domain X
$\mathbb{S}=\left\{s: X \rightarrow X \mid s_{\#}\right.$ Leb $=$ Leb $\} \longrightarrow$ "measure-preserving maps"
Notation: Let $d_{\mathbb{S}}^{2}(\cdot)=\min _{s \in \mathbb{S}}\|\cdot-s\|_{2}^{2}$ and $\Pi_{\mathbb{S}}(\cdot)$ the set of projections.

Polar Factorization Theorem (Brenier): For every map m in $\mathbb{M}=L^{2}\left(X, \mathbb{R}^{d}\right)$,

$$
\mathrm{d}_{\mathbb{S}}^{2}(m)=\mathrm{W}_{2}^{2}\left(\mathrm{Leb}, m_{\#} \mathrm{Leb}\right)
$$

[Brenier '92]

Distance to \mathbb{S} and polar factorization of maps

Leb $=$ restriction of Lebesgue measure to a compact domain X
$\mathbb{S}=\left\{s: X \rightarrow X \mid s_{\#}\right.$ Leb $=$ Leb $\} \longrightarrow$ "measure-preserving maps"
Notation: Let $d_{\mathbb{S}}^{2}(\cdot)=\min _{s \in \mathbb{S}}\|\cdot-s\|_{2}^{2}$ and $\Pi_{\mathbb{S}}(\cdot)$ the set of projections.
Polar Factorization Theorem (Brenier): For every map m in $\mathbb{M}=L^{2}\left(X, \mathbb{R}^{d}\right)$,

$$
\mathrm{d}_{\mathbb{S}}^{2}(m)=\mathrm{W}_{2}^{2}\left(\mathrm{Leb}, m_{\#} \mathrm{Leb}\right)
$$

Let \bar{T} be the quadratic optimal transport map between Leb and $m_{\#}$ Leb. Then,

$$
\Pi_{\mathbb{S}}(m)=\{\bar{s} \in \mathbb{S} \mid \bar{T} \circ \bar{s}=m\}
$$

[Brenier '92]

Space-discretization

Objective: Constructing a finite-dimensional subspace of \mathbb{M} and computing $\Pi_{\mathbb{S}}$ $\longrightarrow X$ is partitioned into $\left(V_{k}\right)_{1 \leq k \leq N}$ with $\operatorname{Leb}\left(V_{k}\right)=\frac{1}{N}$ and $\operatorname{diam}\left(V_{k}\right) \simeq N^{-\frac{1}{d}}$

Space-discretization

Objective: Constructing a finite-dimensional subspace of \mathbb{M} and computing $\Pi_{\mathbb{S}}$ $\longrightarrow X$ is partitioned into $\left(V_{k}\right)_{1 \leq k \leq N}$ with $\operatorname{Leb}\left(V_{k}\right)=\frac{1}{N}$ and $\operatorname{diam}\left(V_{k}\right) \simeq N^{-\frac{1}{d}}$
$\longrightarrow \mathbb{M}_{N}:=\left\{\right.$ piecewise constant functions on $\left.\left(V_{k}\right)\right\} \subseteq \mathbb{M}$

Space-discretization

Objective: Constructing a finite-dimensional subspace of \mathbb{M} and computing $\Pi_{\mathbb{S}}$ $\longrightarrow X$ is partitioned into $\left(V_{k}\right)_{1 \leq k \leq N}$ with $\operatorname{Leb}\left(V_{k}\right)=\frac{1}{N}$ and $\operatorname{diam}\left(V_{k}\right) \simeq N^{-\frac{1}{d}}$
$\longrightarrow \mathbb{M}_{N}:=\left\{\right.$ piecewise constant functions on $\left.\left(V_{k}\right)\right\} \subseteq \mathbb{M}$
\longrightarrow Given $m=\sum_{i} M_{i} \mathbf{1}_{V_{i}} \in \mathbb{M}_{N}$ one has $m_{\#}$ Leb $=\frac{1}{N} \sum_{i} \delta_{M_{i}}$

Space-discretization

Objective: Constructing a finite-dimensional subspace of \mathbb{M} and computing $\Pi_{\mathbb{S}}$
$\longrightarrow X$ is partitioned into $\left(V_{k}\right)_{1 \leq k \leq N}$ with $\operatorname{Leb}\left(V_{k}\right)=\frac{1}{N}$ and $\operatorname{diam}\left(V_{k}\right) \simeq N^{-\frac{1}{d}}$
$\longrightarrow \mathbb{M}_{N}:=\left\{\right.$ piecewise constant functions on $\left.\left(V_{k}\right)\right\} \subseteq \mathbb{M}$
\longrightarrow Given $m=\sum_{i} M_{i} \mathbf{1}_{V_{i}} \in \mathbb{M}_{N}$ one has $m_{\#}$ Leb $=\frac{1}{N} \sum_{i} \delta_{M_{i}}$

Fast computations of $\mathrm{d}_{\mathbb{S}}^{2}$ and $\nabla \mathrm{d}_{\mathbb{S}}^{2}$ are possible in 2D [M. '11] and 3D [Lévy '15]

Space-discretization

Objective: Constructing a finite-dimensional subspace of \mathbb{M} and computing $\Pi_{\mathbb{S}}$
$\longrightarrow X$ is partitioned into $\left(V_{k}\right)_{1 \leq k \leq N}$ with $\operatorname{Leb}\left(V_{k}\right)=\frac{1}{N}$ and $\operatorname{diam}\left(V_{k}\right) \simeq N^{-\frac{1}{d}}$
$\longrightarrow \mathbb{M}_{N}:=\left\{\right.$ piecewise constant functions on $\left.\left(V_{k}\right)\right\} \subseteq \mathbb{M}$
\longrightarrow Given $m=\sum_{i} M_{i} \mathbf{1}_{V_{i}} \in \mathbb{M}_{N}$ one has $m_{\#}$ Leb $=\frac{1}{N} \sum_{i} \delta_{M_{i}}$

Fast computations of $\mathrm{d}_{\mathbb{S}}^{2}$ and $\nabla \mathrm{d}_{\mathbb{S}}^{2}$ are possible in 2D [M. '11] and 3D [Lévy '15]

Convergence of the space-discretization

space-discretization:

$$
(1)\left\{\begin{array}{l}
\ddot{m}(t)+\frac{1}{2 \varepsilon^{2}}\left(m-\Pi_{\mathbb{M}_{N}} \circ \Pi_{\mathbb{S}}(m(t))\right)=0 \\
m(t) \in \mathbb{M}_{N} \\
(m(0), \dot{m}(0))=\left(\Pi_{\mathbb{M}_{N}}(\mathrm{id}), \Pi_{\mathbb{M}_{N}}\left(u_{0}\right)\right)
\end{array}\right.
$$

Convergence of the space-discretization

space-discretization:
(1) $\left\{\begin{array}{l}\ddot{m}(t)+\frac{1}{2 \varepsilon^{2}}\left(m-\Pi_{\mathbb{M}_{N}} \circ \Pi_{\mathbb{S}}(m(t))\right)=0 \\ m(t) \in \mathbb{M}_{N} \\ (m(0), \dot{m}(0))=\left(\Pi_{\mathbb{M}_{N}}(\mathrm{id}), \Pi_{\mathbb{M}_{N}}\left(u_{0}\right)\right)\end{array}\right.$
writing $m(t)=\sum_{i} M_{i}(t) \mathbf{1}_{V_{i}}$:
(2) $\left\{\begin{array}{l}\ddot{M}_{i}(t)+\frac{1}{2 \varepsilon^{2}}\left(M_{i}(t)-\operatorname{bary}\left(\operatorname{Lag}_{i}(m(t))\right)\right) \\ (m(0), \dot{m}(0))=\left(\Pi_{\mathbb{M}_{N}}(\mathrm{id}), \Pi_{\mathbb{M}_{N}}\left(u_{0}\right)\right)\end{array}\right.$

Convergence of the space-discretization

space-discretization:
(1) $\left\{\begin{array}{l}\ddot{m}(t)+\frac{1}{2 \varepsilon^{2}}\left(m-\Pi_{\mathbb{M}_{N}} \circ \Pi_{\mathbb{S}}(m(t))\right)=0 \\ m(t) \in \mathbb{M}_{N} \\ (m(0), \dot{m}(0))=\left(\Pi_{\mathbb{M}_{N}}(\mathrm{id}), \Pi_{\mathbb{M}_{N}}\left(u_{0}\right)\right)\end{array}\right.$
writing $m(t)=\sum_{i} M_{i}(t) \mathbf{1}_{V_{i}}: \quad(2) \quad\left\{\begin{array}{l}\ddot{M}_{i}(t)+\frac{1}{2 \varepsilon^{2}}\left(M_{i}(t)-\operatorname{bary}\left(\operatorname{Lag}_{i}(m(t))\right)\right) \\ (m(0), \dot{m}(0))=\left(\Pi_{\mathbb{M}_{N}}(\mathrm{id}), \Pi_{\mathbb{M}_{N}}\left(u_{0}\right)\right)\end{array}\right.$
[$\simeq M_{i}$ is attached by a spring to the barycenter of its (time-dependent) Laguerre cell.]

Convergence of the space-discretization

space-discretization:
(1) $\left\{\begin{array}{l}\ddot{m}(t)+\frac{1}{2 \varepsilon^{2}}\left(m-\Pi_{\mathbb{M}_{N}} \circ \Pi_{\mathbb{S}}(m(t))\right)=0 \\ m(t) \in \mathbb{M}_{N} \\ (m(0), \dot{m}(0))=\left(\Pi_{\mathbb{M}_{N}}(\mathrm{id}), \Pi_{\mathbb{M}_{N}}\left(u_{0}\right)\right)\end{array}\right.$
writing $m(t)=\sum_{i} M_{i}(t) \mathbf{1}_{V_{i}}$:
(2) $\left\{\begin{array}{l}\ddot{M}_{i}(t)+\frac{1}{2 \varepsilon^{2}}\left(M_{i}(t)-\operatorname{bary}\left(\operatorname{Lag}_{i}(m(t))\right)\right) \\ (m(0), \dot{m}(0))=\left(\Pi_{\mathbb{M}_{N}}(\mathrm{id}), \Pi_{\mathbb{M}_{N}}\left(u_{0}\right)\right)\end{array}\right.$
[$\simeq M_{i}$ is attached by a spring to the barycenter of its (time-dependent) Laguerre cell.]

Theorem: Let (u, p) be a regular (e.g. $\mathcal{C}^{1,1}$) solution to Euler's equations. Then,

$$
\forall t \in[0, T], \quad\left\|\dot{m}_{t}-u_{t} \circ m_{t}\right\|_{\mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)}^{2} \leq C\left(\frac{h_{N}^{2}}{\varepsilon^{2}}+\varepsilon^{2}+h_{N}\right) \text { w. } h_{N}=N^{-1 / d}
$$

Convergence of the space-discretization

space-discretization:
(1) $\left\{\begin{array}{l}\ddot{m}(t)+\frac{1}{2 \varepsilon^{2}}\left(m-\Pi_{\mathbb{M}_{N}} \circ \Pi_{\mathbb{S}}(m(t))\right)=0 \\ m(t) \in \mathbb{M}_{N} \\ (m(0), \dot{m}(0))=\left(\Pi_{\mathbb{M}_{N}}(\mathrm{id}), \Pi_{\mathbb{M}_{N}}\left(u_{0}\right)\right)\end{array}\right.$
writing $m(t)=\sum_{i} M_{i}(t) \mathbf{1}_{V_{i}}$:
(2) $\left\{\begin{array}{l}\ddot{M}_{i}(t)+\frac{1}{2 \varepsilon^{2}}\left(M_{i}(t)-\operatorname{bary}\left(\operatorname{Lag}_{i}(m(t))\right)\right) \\ (m(0), \dot{m}(0))=\left(\Pi_{\mathbb{M}_{N}}(\mathrm{id}), \Pi_{\mathbb{M}_{N}}\left(u_{0}\right)\right)\end{array}\right.$
[$\simeq M_{i}$ is attached by a spring to the barycenter of its (time-dependent) Laguerre cell.]

Theorem: Let (u, p) be a regular (e.g. $\mathcal{C}^{1,1}$) solution to Euler's equations. Then,

$$
\forall t \in[0, T], \quad\left\|\dot{m}_{t}-u_{t} \circ m_{t}\right\|_{\mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)}^{2} \leq C\left(\frac{h_{N}^{2}}{\varepsilon^{2}}+\varepsilon^{2}+h_{N}\right) \text { w. } h_{N}=N^{-1 / d}
$$

[Gallouët-M., 2016]
\longrightarrow Proof: Gronwall on modulated energy $E_{u}(t)=\frac{1}{2}\left\|\dot{m}_{t}-u_{t} \circ m_{t}\right\|^{2}+\frac{1}{2 \varepsilon^{2}} \mathrm{~d}_{\mathbb{S}}^{2}\left(m_{t}\right)$
(Very similar to [Brenier, CMP 2000])

Convergence of the space-discretization

space-discretization:
(1) $\left\{\begin{array}{l}\ddot{m}(t)+\frac{1}{2 \varepsilon^{2}}\left(m-\Pi_{\mathbb{M}_{N}} \circ \Pi_{\mathbb{S}}(m(t))\right)=0 \\ m(t) \in \mathbb{M}_{N} \\ (m(0), \dot{m}(0))=\left(\Pi_{\mathbb{M}_{N}}(\mathrm{id}), \Pi_{\mathbb{M}_{N}}\left(u_{0}\right)\right)\end{array}\right.$
writing $m(t)=\sum_{i} M_{i}(t) \mathbf{1}_{V_{i}}$:
(2) $\left\{\begin{array}{l}\ddot{M}_{i}(t)+\frac{1}{2 \varepsilon^{2}}\left(M_{i}(t)-\operatorname{bary}\left(\operatorname{Lag}_{i}(m(t))\right)\right) \\ (m(0), \dot{m}(0))=\left(\Pi_{\mathbb{M}_{N}}(\mathrm{id}), \Pi_{\mathbb{M}_{N}}\left(u_{0}\right)\right)\end{array}\right.$
[$\simeq M_{i}$ is attached by a spring to the barycenter of its (time-dependent) Laguerre cell.]

Theorem: Let (u, p) be a regular (e.g. $\mathcal{C}^{1,1}$) solution to Euler's equations. Then,

$$
\forall t \in[0, T], \quad\left\|\dot{m}_{t}-u_{t} \circ m_{t}\right\|_{\mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)}^{2} \leq C\left(\frac{h_{N}^{2}}{\varepsilon^{2}}+\varepsilon^{2}+h_{N}\right) \text { w. } h_{N}=N^{-1 / d}
$$

[Gallouët-M., 2016]
\longrightarrow Proof: Gronwall on modulated energy $E_{u}(t)=\frac{1}{2}\left\|\dot{m}_{t}-u_{t} \circ m_{t}\right\|^{2}+\frac{1}{2 \varepsilon^{2}} \mathrm{~d}_{\mathbb{S}}^{2}\left(m_{t}\right)$
(Very similar to [Brenier, CMP 2000])
\longrightarrow Convergence of a time-discretization using the symplectic Euler scheme.

Numerical result: Stationary flow on $[0,1]^{2}$

Stationary flow on $[0,1]^{2}$: speed: $u(\mathbf{x})=\left(\cos \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right), \sin \left(\pi x_{1}\right) \cos \left(\pi x_{2}\right)\right)$ pressure: $p(\mathbf{x})=\frac{1}{4}\left(\sin ^{2}\left(\pi x_{1}\right)+\sin ^{2}\left(\pi x_{2}\right)\right)$

Numerical result: Irregular solutions

Objectives: \longrightarrow "Large-scale" computations, with more complex behaviour.
\longrightarrow Preservation of the Hamiltonian by the discrete scheme.

Numerical result: Irregular solutions

Objectives: \longrightarrow "Large-scale" computations, with more complex behaviour. \longrightarrow Preservation of the Hamiltonian by the discrete scheme.
A. Discontinuous initial velocity

$X=[0,2] \times[-.5, .5] /(x=0 \sim x=2)$
200k particles, 2000 timesteps, $t_{\text {max }}=8$

Numerical result: Irregular solutions

Objectives: \longrightarrow "Large-scale" computations, with more complex behaviour. \longrightarrow Preservation of the Hamiltonian by the discrete scheme.
A. Discontinuous initial velocity

$X=[0,2] \times[-.5, .5] /(x=0 \sim x=2)$
200k particles, 2000 timesteps, $t_{\text {max }}=8$

Numerical result: Irregular solutions

Objectives: \longrightarrow "Large-scale" computations, with more complex behaviour. \longrightarrow Preservation of the Hamiltonian by the discrete scheme.
B. Rayleigh-Taylor instability (Inhomogeneous fluid)

gravity
$X=[-1,1] \times[-3,3]$
50 k particles, 2000 timesteps, $t_{\max }=2$

Numerical result: Irregular solutions

Objectives: \longrightarrow "Large-scale" computations, with more complex behaviour. \longrightarrow Preservation of the Hamiltonian by the discrete scheme.
B. Rayleigh-Taylor instability (Inhomogeneous fluid)

$X=[-1,1] \times[-3,3]$
50 k particles, 2000 timesteps, $t_{\max }=2$

2. Semi-discrete optimal transport

An economic metaphor

$\rho: X \rightarrow \mathbb{R}$ density of population $\quad c(x, y):=\|x-y\|^{2}$ cost of walking from x to y
$Y=$ location of bakeries

An economic metaphor

$\rho: X \rightarrow \mathbb{R}$ density of population $\quad c(x, y):=\|x-y\|^{2}$ cost of walking from x to y
$Y=$ location of bakeries

- If the price of bread is uniform, people go the closest bakery:

$$
\operatorname{Vor}(y)=\{x \in X ; \forall z \in Y, c(x, y) \leq c(x, z)\}
$$

An economic metaphor

 $\rho: X \rightarrow \mathbb{R}$ density of population $\quad c(x, y):=\|x-y\|^{2}$ cost of walking from x to y $Y=$ location of bakeries

- If the price of bread is uniform, people go the closest bakery:

$$
\operatorname{Vor}(y)=\{x \in X ; \forall z \in Y, c(x, y) \leq c(x, z)\}
$$

Minimizes total distance walked ... but might exceed the capacity of bakery y_{0} !

An economic metaphor

$\rho: X \rightarrow \mathbb{R}$ density of population $\quad c(x, y):=\|x-y\|^{2}$ cost of walking from x to y
$Y=$ location of bakeries

- If prices are given by $\psi: Y \rightarrow \mathbb{R}$, people make a compromise:

$$
\operatorname{Lag}_{\psi}(y)=\{x \in X ; \forall z \in Y, c(x, y)+\psi(y) \leq c(x, z)+\psi(z)\}
$$

An economic metaphor

 $\rho: X \rightarrow \mathbb{R}$ density of population $\quad c(x, y):=\|x-y\|^{2}$ cost of walking from x to y $Y=$ location of bakeries

- If prices are given by $\psi: Y \rightarrow \mathbb{R}$, people make a compromise:

$$
\operatorname{Lag}_{\psi}(y)=\{x \in X ; \forall z \in Y, c(x, y)+\psi(y) \leq c(x, z)+\psi(z)\}
$$

Lemma: The map T_{ψ} induced by this decomposition is a coptimal transport between ρ and $\nu_{\psi}:=T_{\psi \#} \nu=\sum_{y \in Y} \rho\left(\operatorname{Lag}_{y}(\psi)\right) \delta_{y}$.

SD-OT as Concave Maximization

Theorem: Finding an optimal transport between ρ and $\nu=\sum_{Y} \nu_{y} \delta_{y}$
\Longleftrightarrow finding prices ψ on Y such that $\nu_{\psi}=\nu$
[Gangbo McCann '96]

SD-OT as Concave Maximization

Theorem: Finding an optimal transport between ρ and $\nu=\sum_{Y} \nu_{y} \delta_{y}$
\Longleftrightarrow finding prices ψ on Y such that $\nu_{\psi}=\nu \quad$ [Gangbo McCann '96]
\Longleftrightarrow maximizing the concave function $\Phi \quad$ [Aurenhammer, Hoffman, Aronov '98]

$$
\Phi(\psi):=\sum_{y} \int_{\operatorname{Lag}_{y}(\psi)}[c(x, y)+\psi(y)] \mathrm{d} \rho(x)-\sum_{y} \psi(y) \nu_{y}
$$

- Byproduct of Kantorovich duality.

SD-OT as Concave Maximization

Theorem: Finding an optimal transport between ρ and $\nu=\sum_{Y} \nu_{y} \delta_{y}$
\Longleftrightarrow finding prices ψ on Y such that $\nu_{\psi}=\nu$
[Gangbo McCann '96]
\Longleftrightarrow maximizing the concave function $\Phi \quad$ [Aurenhammer, Hoffman, Aronov '98]

$$
\Phi(\psi):=\sum_{y} \int_{\operatorname{Lag}_{y}(\psi)}[c(x, y)+\psi(y)] \mathrm{d} \rho(x)-\sum_{y} \psi(y) \nu_{y}
$$

- Byproduct of Kantorovich duality.
- $\nabla \Phi=0 \Longleftrightarrow$ "discrete Monge-Ampère equation" :

$$
\forall y \in Y, \rho\left(\operatorname{Lag}_{y}(\psi)\right)=\nu_{y}
$$

SD-OT as Concave Maximization

Theorem: Finding an optimal transport between ρ and $\nu=\sum_{Y} \nu_{y} \delta_{y}$
\Longleftrightarrow finding prices ψ on Y such that $\nu_{\psi}=\nu$
[Gangbo McCann '96]
\Longleftrightarrow maximizing the concave function $\Phi \quad$ [Aurenhammer, Hoffman, Aronov '98]

$$
\Phi(\psi):=\sum_{y} \int_{\operatorname{Lag}_{y}(\psi)}[c(x, y)+\psi(y)] \mathrm{d} \rho(x)-\sum_{y} \psi(y) \nu_{y}
$$

- Byproduct of Kantorovich duality.
- $\nabla \Phi=0 \Longleftrightarrow$ "discrete Monge-Ampère equation": $\forall y \in Y, \rho\left(\operatorname{Lag}_{y}(\psi)\right)=\nu_{y}$.
- Early numerical methods with complexity $\mathrm{O}\left(\frac{N^{3}}{\varepsilon} \log (N)\right)$. [Oliker-Prussner '99]

SD-OT as Concave Maximization

Theorem: Finding an optimal transport between ρ and $\nu=\sum_{Y} \nu_{y} \delta_{y}$
\Longleftrightarrow finding prices ψ on Y such that $\nu_{\psi}=\nu$
[Gangbo McCann '96]
\Longleftrightarrow maximizing the concave function $\Phi \quad$ [Aurenhammer, Hoffman, Aronov '98]

$$
\Phi(\psi):=\sum_{y} \int_{\operatorname{Lag}_{y}(\psi)}[c(x, y)+\psi(y)] \mathrm{d} \rho(x)-\sum_{y} \psi(y) \nu_{y}
$$

- Byproduct of Kantorovich duality.
- $\nabla \Phi=0 \Longleftrightarrow$ "discrete Monge-Ampère equation":

$$
\forall y \in Y, \rho\left(\operatorname{Lag}_{y}(\psi)\right)=\nu_{y}
$$

- Early numerical methods with complexity $\mathrm{O}\left(\frac{N^{3}}{\varepsilon} \log (N)\right)$. [Oliker-Prussner '99]
- Efficient implementation combining a multiscale approach with geometric algorithms to compute Laguerre cells (CGAL): $\quad[\mathrm{M} .11]$ on \mathbb{R}^{2}, [Lévy 15] on \mathbb{R}^{3}

SD-OT as Concave Maximization

Theorem: Finding an optimal transport between ρ and $\nu=\sum_{Y} \nu_{y} \delta_{y}$
\Longleftrightarrow finding prices ψ on Y such that $\nu_{\psi}=\nu$
[Gangbo McCann '96]
\Longleftrightarrow maximizing the concave function $\Phi \quad$ [Aurenhammer, Hoffman, Aronov '98]

$$
\Phi(\psi):=\sum_{y} \int_{\operatorname{Lag}_{y}(\psi)}[c(x, y)+\psi(y)] \mathrm{d} \rho(x)-\sum_{y} \psi(y) \nu_{y}
$$

- Byproduct of Kantorovich duality.
- $\nabla \Phi=0 \Longleftrightarrow$ "discrete Monge-Ampère equation":

$$
\forall y \in Y, \rho\left(\operatorname{Lag}_{y}(\psi)\right)=\nu_{y}
$$

- Early numerical methods with complexity $\mathrm{O}\left(\frac{N^{3}}{\varepsilon} \log (N)\right)$. [Oliker-Prussner '99]
- Efficient implementation combining a multiscale approach with geometric algorithms to compute Laguerre cells (CGAL): $\quad[\mathrm{M} .11]$ on \mathbb{R}^{2}, [Lévy 15] on \mathbb{R}^{3}

In the simulations, we use a (damped) Newton's algorithm, solving a sequence of linearized discrete Monge-Ampère equations.

Numerical example

- Simple damped Newton's algorithm, with global linear convergence, [Mirebeau 15] under (rather) general assumptions on ρ and c. [Kitagawa, M., Thibert 16]

Numerical example

- Simple damped Newton's algorithm, with global linear convergence, [Mirebeau 15] under (rather) general assumptions on ρ and c.

Source: PL density on $X=[0,3]^{2}$
Target: Uniform grid Y in $[0,1]^{2}$.

Numerical example

- Simple damped Newton's algorithm, with global linear convergence, [Mirebeau 15] under (rather) general assumptions on ρ and c.
[Kitagawa, M., Thibert 16]

Source: PL density on $X=[0,3]^{2}$
Target: Uniform grid Y in $[0,1]^{2}$.

Numerical example

- Simple damped Newton's algorithm, with global linear convergence, [Mirebeau 15] under (rather) general assumptions on ρ and c.
[Kitagawa, M., Thibert 16]

Source: PL density on $X=[0,3]^{2}$
Target: Uniform grid Y in $[0,1]^{2}$.

3. Minimizing geodesics in \mathbb{S} Diff Joint work with Jean-Marie Mirebeau

Finite-dimensional example

Let S be a submanifold in \mathbb{R}^{d}, whose minimizing geodesics need to be approximated.

- Minimizing geodesics: $\min _{s:[0,1] \rightarrow \mathbb{R}^{d}} \frac{1}{2} \int_{0}^{1}\left\|\dot{s}_{t}\right\|^{2} \mathrm{~d} t \quad$ where $\left\{\begin{array}{l}\forall t \in[0,1], s_{t} \in S \\ s_{0}=s_{*}, s_{1}=s^{*}\end{array}\right.$

Finite-dimensional example

Let S be a submanifold in \mathbb{R}^{d}, whose minimizing geodesics need to be approximated.

- Minimizing geodesics: $\min _{s:[0,1] \rightarrow \mathbb{R}^{d}} \frac{1}{2} \int_{0}^{1}\left\|\dot{s}_{t}\right\|^{2} \mathrm{~d} t \quad$ where $\left\{\begin{array}{l}\forall t \in[0,1], s_{t} \in S \\ s_{0}=s_{*}, s_{1}=s^{*}\end{array}\right.$
- Relaxation: Given a penalization parameter $\alpha>0$, consider

$$
\min _{m:[0,1] \rightarrow \mathbb{R}^{d}} \frac{1}{2} \int_{0}^{1}\left\|\dot{m}_{t}\right\|^{2} \mathrm{~d} t+\alpha\left(\int_{[0,1]} \mathrm{d}_{S}^{2}\left(m_{t}\right) \mathrm{d} t+\left\|m_{0}-s_{*}\right\|^{2}+\left\|m_{1}-s^{*}\right\|^{2}\right)
$$

Finite-dimensional example

Let S be a submanifold in \mathbb{R}^{d}, whose minimizing geodesics need to be approximated.

- Minimizing geodesics: $\min _{s:[0,1] \rightarrow \mathbb{R}^{d}} \frac{1}{2} \int_{0}^{1}\left\|\dot{s}_{t}\right\|^{2} \mathrm{~d} t \quad$ where $\left\{\begin{array}{l}\forall t \in[0,1], s_{t} \in S \\ s_{0}=s_{*}, s_{1}=s^{*}\end{array}\right.$
- Relaxation: Given a penalization parameter $\alpha>0$, consider

$$
\min _{m:[0,1] \rightarrow \mathbb{R}^{d}} \frac{1}{2} \int_{0}^{1}\left\|\dot{m}_{t}\right\|^{2} \mathrm{~d} t+\alpha\left(\int_{[0,1]} \mathrm{d}_{S}^{2}\left(m_{t}\right) \mathrm{d} t+\left\|m_{0}-s_{*}\right\|^{2}+\left\|m_{1}-s^{*}\right\|^{2}\right)
$$

- Time-discretization: Given a number of timesteps $T \in \mathbb{N}$, consider
$\min _{m_{1}, \ldots, m_{T} \in \mathbb{R}^{d}} \frac{T}{2} \sum_{i=0}^{T-1}\left\|m_{i+1}-m_{i}\right\|^{2}+\lambda\left(\sum_{i=1}^{T-1} \mathrm{~d}_{S}^{2}\left(m_{i}\right)+\left\|m_{0}-s_{*}\right\|^{2}+\left\|m_{T}-s^{*}\right\|^{2}\right)$.

Finite-dimensional example

Let S be a submanifold in \mathbb{R}^{d}, whose minimizing geodesics need to be approximated.

- Minimizing geodesics: $\min _{s:[0,1] \rightarrow \mathbb{R}^{d}} \frac{1}{2} \int_{0}^{1}\left\|\dot{s}_{t}\right\|^{2} \mathrm{~d} t \quad$ where $\left\{\begin{array}{l}\forall t \in[0,1], s_{t} \in S \\ s_{0}=s_{*}, s_{1}=s^{*}\end{array}\right.$
- Relaxation: Given a penalization parameter $\alpha>0$, consider

$$
\min _{m:[0,1] \rightarrow \mathbb{R}^{d}} \frac{1}{2} \int_{0}^{1}\left\|\dot{m}_{t}\right\|^{2} \mathrm{~d} t+\alpha\left(\int_{[0,1]} \mathrm{d}_{S}^{2}\left(m_{t}\right) \mathrm{d} t+\left\|m_{0}-s_{*}\right\|^{2}+\left\|m_{1}-s^{*}\right\|^{2}\right)
$$

- Time-discretization: Given a number of timesteps $T \in \mathbb{N}$, consider
$\min _{m_{1}, \ldots, m_{T} \in \mathbb{R}^{d}} \frac{T}{2} \sum_{i=0}^{T-1}\left\|m_{i+1}-m_{i}\right\|^{2}+\lambda\left(\sum_{i=1}^{T-1} \mathrm{~d}_{S}^{2}\left(m_{i}\right)+\left\|m_{0}-s_{*}\right\|^{2}+\left\|m_{T}-s^{*}\right\|^{2}\right)$.

Imagine now that only a finite sample $S_{K} \subseteq S$ is known, with $\operatorname{Card}\left(S_{K}\right)=K$.
\longrightarrow How should $\lambda=\lambda(T, K)$ be chosen ?

Finite-dimensional example

Let S be a submanifold in \mathbb{R}^{d}, and $S_{K}=\{\bullet\} \subseteq S$.

Finite-dimensional example

Let S be a submanifold in \mathbb{R}^{d}, and $S_{K}=\{\bullet\} \subseteq S$.
$\min _{m_{1}, \ldots, m_{T} \in \mathbb{R}^{d}} \frac{T}{2} \sum_{i=0}^{T-1}\left\|m_{i+1}-m_{i}\right\|^{2}+\lambda\left(\sum_{i=1}^{T-1} \mathrm{~d}_{S_{K}}^{2}\left(m_{i}\right)+\left\|m_{0}-s_{*}\right\|^{2}+\left\|m_{T}-s^{*}\right\|^{2}\right)$.

Finite-dimensional example

Let S be a submanifold in \mathbb{R}^{d}, and $S_{K}=\{\bullet\} \subseteq S . \quad(K=4$ and $T=10)$

$$
\min _{m_{1}, \ldots, m_{T} \in \mathbb{R}^{d}} \frac{T}{2} \sum_{i=0}^{T-1}\left\|m_{i+1}-m_{i}\right\|^{2}+\lambda\left(\sum_{i=1}^{T-1} \mathrm{~d}_{S_{K}}^{2}\left(m_{i}\right)+\left\|m_{0}-s_{*}\right\|^{2}+\left\|m_{T}-s^{*}\right\|^{2}\right) .
$$

λ too small \longrightarrow discrete path takes "shortcuts".

Finite-dimensional example

Let S be a submanifold in \mathbb{R}^{d}, and $S_{K}=\{\bullet\} \subseteq S . \quad(K=4$ and $T=10)$
$\min _{m_{1}, \ldots, m_{T} \in \mathbb{R}^{d}} \frac{T}{2} \sum_{i=0}^{T-1}\left\|m_{i+1}-m_{i}\right\|^{2}+\lambda\left(\sum_{i=1}^{T-1} \mathrm{~d}_{S_{K}}^{2}\left(m_{i}\right)+\left\|m_{0}-s_{*}\right\|^{2}+\left\|m_{T}-s^{*}\right\|^{2}\right)$.

λ too small \longrightarrow discrete path takes "shortcuts".
λ too large \longrightarrow low-order approximation

Finite-dimensional example

Let S be a submanifold in \mathbb{R}^{d}, and $S_{K}=\{\bullet\} \subseteq S . \quad(K=4$ and $T=10)$
$\min _{m_{1}, \ldots, m_{T} \in \mathbb{R}^{d}} \frac{T}{2} \sum_{i=0}^{T-1}\left\|m_{i+1}-m_{i}\right\|^{2}+\lambda\left(\sum_{i=1}^{T-1} \mathrm{~d}_{S_{K}}^{2}\left(m_{i}\right)+\left\|m_{0}-s_{*}\right\|^{2}+\left\|m_{T}-s^{*}\right\|^{2}\right)$.

Minimal geodesics in SDiff and relaxations

Leb $=$ restriction of Lebesgue measure to a compact domain X
$\mathbb{S D i f f}=\left\{s: X \rightarrow X\right.$ diffeomorphism $\left.\mid s_{\#} \mathrm{Leb}=\mathrm{Leb}\right\} \subseteq \mathbb{M}=\mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)$

The endpoints s_{*} and s^{*} of the geodesic are two (fixed) elements in $\mathbb{S D i f f}$.

Minimal geodesics in SDiff and relaxations

Leb $=$ restriction of Lebesgue measure to a compact domain X
$\mathbb{S D i f f}=\left\{s: X \rightarrow X\right.$ diffeomorphism $\left.\mid s_{\#} \mathrm{Leb}=\operatorname{Leb}\right\} \subseteq \mathbb{M}=\mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)$

The endpoints s_{*} and s^{*} of the geodesic are two (fixed) elements in $\mathbb{S D i f f}$.
A. $\inf \left\{\mathcal{E}(s) \mid s \in \mathcal{H}^{1}([0,1], \mathbb{S D i f f}), s_{0}=s_{*}, s_{1}=s^{*}\right\} \quad$ where $\mathcal{E}(s):=\frac{1}{2} \int_{0}^{t}\left\|\dot{s}_{t}\right\|_{\mathbb{M}}^{2} \mathrm{~d} t$
\longrightarrow might have no solution $b / c \mathbb{S D i f f}$ is not closed in \mathbb{M}

Minimal geodesics in SDiff and relaxations

Leb $=$ restriction of Lebesgue measure to a compact domain X
$\mathbb{S D i f f}=\left\{s: X \rightarrow X\right.$ diffeomorphism $\left.\mid s_{\#} \operatorname{Leb}=\operatorname{Leb}\right\} \subseteq \mathbb{M}=\mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)$
The endpoints s_{*} and s^{*} of the geodesic are two (fixed) elements in SDiff.
A. $\inf \left\{\mathcal{E}(s) \mid s \in \mathcal{H}^{1}([0,1]\right.$, SDiff $\left.), s_{0}=s_{*}, s_{1}=s^{*}\right\} \quad$ where $\mathcal{E}(s):=\frac{1}{2} \int_{0}^{t}\left\|\dot{s}_{t}\right\|_{\mathbb{M}}^{2} \mathrm{~d} t$
\longrightarrow might have no solution $\mathrm{b} / \mathrm{c} \mathbb{S}$ Diff is not closed in \mathbb{M}
B. $\inf \left\{\mathcal{E}(s) \mid s \in \mathcal{H}^{1}([0,1], \mathbb{S}), s_{0}=s_{*}, s_{1}=s^{*}\right\}$
where $\mathbb{S}=\left\{s: X \rightarrow X\right.$ measurable $\left.\mid s_{\#} \mathrm{Leb}=\mathrm{Leb}\right\}$,
\longrightarrow might have no solutions either (\simeq non-existence of Monge solutions in OT)

Minimal geodesics in SDiff and relaxations

Leb $=$ restriction of Lebesgue measure to a compact domain X
$\mathbb{S D i f f}=\left\{s: X \rightarrow X\right.$ diffeomorphism $\left.\mid s_{\#} \mathrm{Leb}=\mathrm{Leb}\right\} \subseteq \mathbb{M}=\mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)$
The endpoints s_{*} and s^{*} of the geodesic are two (fixed) elements in SDiff.
A. $\inf \left\{\mathcal{E}(s) \mid s \in \mathcal{H}^{1}([0,1]\right.$, SDiff $\left.), s_{0}=s_{*}, s_{1}=s^{*}\right\} \quad$ where $\mathcal{E}(s):=\frac{1}{2} \int_{0}^{t}\left\|\dot{s}_{t}\right\|_{\mathbb{M}}^{2} \mathrm{~d} t$
\longrightarrow might have no solution $\mathrm{b} / \mathrm{c} \mathbb{S}$ Diff is not closed in \mathbb{M}
B. $\inf \left\{\mathcal{E}(s) \mid s \in \mathcal{H}^{1}([0,1], \mathbb{S}), s_{0}=s_{*}, s_{1}=s^{*}\right\}$

$$
\text { where } \mathbb{S}=\left\{s: X \rightarrow X \text { measurable } \mid s_{\#} \text { Leb }=\text { Leb }\right\}
$$

\longrightarrow might have no solutions either (\simeq non-existence of Monge solutions in OT)
C. relaxation involving measures over the set Γ of \mathcal{C}^{0} paths in X.

Brenier's generalized geodesics

- Measures on paths: $\Gamma:=\mathcal{C}^{0}([0,1], X), \mu \in \operatorname{Prob}(\Gamma)$

Brenier's generalized geodesics

- Measures on paths: $\Gamma:=\mathcal{C}^{0}([0,1], X), \mu \in \operatorname{Prob}(\Gamma)$

$$
\begin{aligned}
\text { (Incompressibility): } & \forall t \in[0,1], \quad e_{t \#} \mu=\mathrm{Leb} \\
& \text { where } e_{t}: \gamma \in \Gamma \mapsto \gamma(t) \in X
\end{aligned}
$$

Brenier's generalized geodesics

- Measures on paths: $\Gamma:=\mathcal{C}^{0}([0,1], X), \mu \in \operatorname{Prob}(\Gamma)$

$$
\begin{aligned}
\text { (Incompressibility): } & \forall t \in[0,1], \quad e_{t \#} \mu=\mathrm{Leb} \\
& \text { where } e_{t}: \gamma \in \Gamma \mapsto \gamma(t) \in X
\end{aligned}
$$

(Boundary conditions) $\left(e_{0}, e_{1}\right)_{\#} \mu=\left(s_{*}, s^{*}\right)_{\#}$ Leb

Brenier's generalized geodesics

- Measures on paths: $\Gamma:=\mathcal{C}^{0}([0,1], X), \mu \in \operatorname{Prob}(\Gamma)$

$\begin{aligned} & \text { (Incompressibility): } \forall t \in[0,1], \quad e_{t \#} \mu=\mathrm{Leb} \\ & \text { where } e_{t}: \gamma \in \Gamma \mapsto \gamma(t) \in X\end{aligned}$
(Boundary conditions) $\left(e_{0}, e_{1}\right)_{\#} \mu=\left(s_{*}, s^{*}\right)_{\#}$ Leb
Action is linear: $\mathcal{E}(\mu):=\frac{1}{2} \int_{\Gamma} \int_{0}^{1}\|\dot{\gamma}(t)\|^{2} \mathrm{~d} t \mathrm{~d} \mu(\gamma)$

Brenier's generalized geodesics

- Measures on paths: $\Gamma:=\mathcal{C}^{0}([0,1], X), \mu \in \operatorname{Prob}(\Gamma)$

$$
\begin{aligned}
\text { (Incompressibility): } & \forall t \in[0,1], \quad e_{t \#} \mu=\mathrm{Leb} \\
& \text { where } e_{t}: \gamma \in \Gamma \mapsto \gamma(t) \in X
\end{aligned}
$$

(Boundary conditions) $\left(e_{0}, e_{1}\right)_{\#} \mu=\left(s_{*}, s^{*}\right)_{\#}$ Leb
Action is linear: $\mathcal{E}(\mu):=\frac{1}{2} \int_{\Gamma} \int_{0}^{1}\|\dot{\gamma}(t)\|^{2} \mathrm{~d} t \mathrm{~d} \mu(\gamma)$
\longrightarrow Similar to Kantorovich's relation of the optimal transport problem.

Brenier's generalized geodesics

- Measures on paths: $\Gamma:=\mathcal{C}^{0}([0,1], X), \mu \in \operatorname{Prob}(\Gamma)$

$$
\begin{aligned}
\text { (Incompressibility): } & \forall t \in[0,1], \quad e_{t \#} \mu=\mathrm{Leb} \\
& \text { where } e_{t}: \gamma \in \Gamma \mapsto \gamma(t) \in X
\end{aligned}
$$

(Boundary conditions) $\left(e_{0}, e_{1}\right)_{\#} \mu=\left(s_{*}, s^{*}\right)_{\# \text { Leb }}$
Action is linear: $\mathcal{E}(\mu):=\frac{1}{2} \int_{\Gamma} \int_{0}^{1}\|\dot{\gamma}(t)\|^{2} \mathrm{~d} t \mathrm{~d} \mu(\gamma)$
\longrightarrow Similar to Kantorovich's relation of the optimal transport problem.

- Comparison between the relaxations: for $s_{*}, s^{*} \in \mathbb{S D}$ Diff,

$$
d^{2}\left(s_{*}, s^{*}\right):=\min _{\substack{\mu \in \operatorname{Prob}(\Gamma) \\ \text { incomp }+ \text { b.c. }}} \mathcal{E}(\mu) \leq \inf _{\substack{s:[0,1] \rightarrow \mathbb{S} \\\left(s_{0}, s_{1}\right)=\left(s_{*}, s^{*}\right)}} \mathcal{E}(s) \leq \inf _{\substack{s:[0,1] \rightarrow \operatorname{SDiff} \\\left(s_{0}, s_{1}\right)=\left(s_{*}, s^{*}\right)}} \mathcal{E}(s)
$$

Brenier's generalized geodesics

- Measures on paths: $\Gamma:=\mathcal{C}^{0}([0,1], X), \mu \in \operatorname{Prob}(\Gamma)$

$$
\begin{aligned}
\text { (Incompressibility): } & \forall t \in[0,1], \quad e_{t \#} \mu=\mathrm{Leb} \\
& \text { where } e_{t}: \gamma \in \Gamma \mapsto \gamma(t) \in X
\end{aligned}
$$

(Boundary conditions) $\left(e_{0}, e_{1}\right)_{\#} \mu=\left(s_{*}, s^{*}\right)_{\# \text { Leb }}$
Action is linear: $\mathcal{E}(\mu):=\frac{1}{2} \int_{\Gamma} \int_{0}^{1}\|\dot{\gamma}(t)\|^{2} \mathrm{~d} t \mathrm{~d} \mu(\gamma)$
\longrightarrow Similar to Kantorovich's relation of the optimal transport problem.

- Comparison between the relaxations: for $s_{*}, s^{*} \in \mathbb{S D}$ iff,

$$
d^{2}\left(s_{*}, s^{*}\right):=\min _{\substack{\mu \in \operatorname{Prob}(\Gamma) \\ \text { incomp }+\mathbf{b} . \mathrm{c} .}} \mathcal{E}(\mu) \leq \inf _{\substack{s:[0,1] \rightarrow \mathbb{S} \\\left(s_{0}, s_{1}\right)=\left(s_{*}, s^{*}\right)}} \mathcal{E}(s) \leq \inf _{\substack{s:[0,1] \rightarrow \mathbb{S D i f f} \\\left(s_{0}, s_{1}\right)=\left(s_{*}, s^{*}\right)}} \mathcal{E}(s)
$$

\longrightarrow equality in dimension $d \geq 3$ but not in dimension $d=2$.

Brenier's generalized geodesics

- Measures on paths: $\Gamma:=\mathcal{C}^{0}([0,1], X), \mu \in \operatorname{Prob}(\Gamma)$

$$
\begin{aligned}
\text { (Incompressibility): } & \forall t \in[0,1], \quad e_{t \#} \mu=\mathrm{Leb} \\
& \text { where } e_{t}: \gamma \in \Gamma \mapsto \gamma(t) \in X
\end{aligned}
$$

(Boundary conditions) $\left(e_{0}, e_{1}\right)_{\#} \mu=\left(s_{*}, s^{*}\right)_{\# \text { Leb }}$
Action is linear: $\mathcal{E}(\mu):=\frac{1}{2} \int_{\Gamma} \int_{0}^{1}\|\dot{\gamma}(t)\|^{2} \mathrm{~d} t \mathrm{~d} \mu(\gamma)$
\longrightarrow Similar to Kantorovich's relation of the optimal transport problem.

- Comparison between the relaxations: for $s_{*}, s^{*} \in \mathbb{S D}$ iff,

$$
d^{2}\left(s_{*}, s^{*}\right):=\min _{\substack{\mu \in \operatorname{Prob}(\Gamma) \\ \text { incomp }+\mathbf{b} . \mathbf{c} .}} \mathcal{E}(\mu) \leq \inf _{\substack{s:[0,1] \rightarrow \mathbb{S} \\\left(s_{0}, s_{1}\right)=\left(s_{*}, s^{*}\right)}} \mathcal{E}(s) \leq \inf _{\substack{s:[0,1] \rightarrow \mathbb{S D i f f} \\\left(s_{0}, s_{1}\right)=\left(s_{*}, s^{*}\right)}} \mathcal{E}(s)
$$

\longrightarrow equality in dimension $d \geq 3$ but not in dimension $d=2$.
$\longrightarrow \exists!$ pressure field in $\mathrm{L}_{\text {loc }}^{2}((0,1), \mathrm{BV}(X))$.

Brenier's generalized geodesics

- Measures on paths: $\Gamma:=\mathcal{C}^{0}([0,1], X), \mu \in \operatorname{Prob}(\Gamma)$

(Incompressibility): $\forall t \in[0,1], \quad e_{t \#} \mu=$ Leb where $e_{t}: \gamma \in \Gamma \mapsto \gamma(t) \in X$
(Boundary conditions) $\left(e_{0}, e_{1}\right)_{\#} \mu=\left(s_{*}, s^{*}\right)_{\# \text { Leb }}$
Action is linear: $\mathcal{E}(\mu):=\frac{1}{2} \int_{\Gamma} \int_{0}^{1}\|\dot{\gamma}(t)\|^{2} \mathrm{~d} t \mathrm{~d} \mu(\gamma)$
\longrightarrow Similar to Kantorovich's relation of the optimal transport problem.
- Comparison between the relaxations: for $s_{*}, s^{*} \in \mathbb{S D}$ iff,

$$
d^{2}\left(s_{*}, s^{*}\right):=\min _{\substack{\mu \in \operatorname{Prob}(\Gamma) \\ \text { incomp }+\mathbf{b} . \mathbf{c} .}} \mathcal{E}(\mu) \leq \inf _{\substack{s:[0,1] \rightarrow \mathbb{S} \\\left(s_{0}, s_{1}\right)=\left(s_{*}, s^{*}\right)}} \mathcal{E}(s) \leq \inf _{\substack{s:[0,1] \rightarrow \mathbb{S D i f i f} \\\left(s_{0}, s_{1}\right)=\left(s_{*}, s^{*}\right)}} \mathcal{E}(s)
$$

\longrightarrow equality in dimension $d \geq 3$ but not in dimension $d=2$.
$\longrightarrow \exists!$ pressure field in $\mathrm{L}_{\text {loc }}^{2}((0,1), \mathrm{BV}(X))$.

- Numerics: mostly in 1D using permutations

Time-discretization

Time-discretization of geodesic with endpoints $s_{*}, s^{*} \in \mathbb{S} \quad \mathcal{E}_{N, T, \lambda}:\left(\mathbb{M}_{N}\right)^{T} \rightarrow \mathbb{R}$,

$$
\mathcal{E}_{N, T, \lambda}(m):=\frac{T}{2} \sum_{i=0}^{T-1}\left\|m_{i+1}-m_{i}\right\|_{2}^{2}+\lambda\left(\left\|m_{0}-s_{*}\right\|_{2}^{2}+\left\|m_{T}-s^{*}\right\|_{2}^{2}+\sum_{i=1}^{T-1} \mathrm{~d}_{\mathbb{S}}^{2}\left(m_{i}\right)\right)
$$

Time-discretization

- Time-discretization of geodesic with endpoints $s_{*}, s^{*} \in \mathbb{S} \quad \mathcal{E}_{N, T, \lambda}:\left(\mathbb{M}_{N}\right)^{T} \rightarrow \mathbb{R}$,

$$
\mathcal{E}_{N, T, \lambda}(m):=\frac{T}{2} \sum_{i=0}^{T-1}\left\|m_{i+1}-m_{i}\right\|_{2}^{2}+\lambda\left(\left\|m_{0}-s_{*}\right\|_{2}^{2}+\left\|m_{T}-s^{*}\right\|_{2}^{2}+\sum_{i=1}^{T-1} \mathrm{~d}_{\mathbb{S}}^{2}\left(m_{i}\right)\right)
$$

- Given $m=\left(m_{1}, \ldots, m_{T}\right) \in \mathbb{M}_{N}^{T}$, let $\gamma_{k} \in \mathcal{C}^{0}\left([0,1], \mathbb{R}^{d}\right)$ be PL with $\gamma_{k}\left(t_{i}\right)=m_{i}\left(V_{k}\right)$

Time-discretization

- Time-discretization of geodesic with endpoints $s_{*}, s^{*} \in \mathbb{S} \quad \mathcal{E}_{N, T, \lambda}:\left(\mathbb{M}_{N}\right)^{T} \rightarrow \mathbb{R}$,

$$
\mathcal{E}_{N, T, \lambda}(m):=\frac{T}{2} \sum_{i=0}^{T-1}\left\|m_{i+1}-m_{i}\right\|_{2}^{2}+\lambda\left(\left\|m_{0}-s_{*}\right\|_{2}^{2}+\left\|m_{T}-s^{*}\right\|_{2}^{2}+\sum_{i=1}^{T-1} \mathrm{~d}_{\mathbb{S}}^{2}\left(m_{i}\right)\right)
$$

- Given $m=\left(m_{1}, \ldots, m_{T}\right) \in \mathbb{M}_{N}^{T}$, let $\gamma_{k} \in \mathcal{C}^{0}\left([0,1], \mathbb{R}^{d}\right)$ be PL with $\gamma_{k}\left(t_{i}\right)=m_{i}\left(V_{k}\right)$
 Then, with $\mu_{m}=\frac{1}{N} \sum_{k=1}^{N} \delta_{\gamma_{k}} \in \operatorname{Prob}(\Gamma)$,

$$
\begin{aligned}
\mathcal{E}_{N, T, \lambda}(m)= & \mathcal{E}\left(\mu_{m}\right) \\
& +\lambda \sum_{i=1}^{T} \mathrm{~W}_{2}^{2}\left(e_{t_{i}} \# \mu_{m}, \text { Leb }\right)
\end{aligned}
$$

+ boundary cond.

Time-discretization

- Time-discretization of geodesic with endpoints $s_{*}, s^{*} \in \mathbb{S} \quad \mathcal{E}_{N, T, \lambda}:\left(\mathbb{M}_{N}\right)^{T} \rightarrow \mathbb{R}$,

$$
\mathcal{E}_{N, T, \lambda}(m):=\frac{T}{2} \sum_{i=0}^{T-1}\left\|m_{i+1}-m_{i}\right\|_{2}^{2}+\lambda\left(\left\|m_{0}-s_{*}\right\|_{2}^{2}+\left\|m_{T}-s^{*}\right\|_{2}^{2}+\sum_{i=1}^{T-1} \mathrm{~d}_{\mathbb{S}}^{2}\left(m_{i}\right)\right)
$$

- Given $m=\left(m_{1}, \ldots, m_{T}\right) \in \mathbb{M}_{N}^{T}$, let $\gamma_{k} \in \mathcal{C}^{0}\left([0,1], \mathbb{R}^{d}\right)$ be PL with $\gamma_{k}\left(t_{i}\right)=m_{i}\left(V_{k}\right)$

Then, with $\mu_{m}=\frac{1}{N} \sum_{k=1}^{N} \delta_{\gamma_{k}} \in \operatorname{Prob}(\Gamma)$,

$$
\begin{aligned}
\mathcal{E}_{N, T, \lambda}(m)= & \mathcal{E}\left(\mu_{m}\right) \\
& +\lambda \sum_{i=1}^{T} \mathrm{~W}_{2}^{2}\left(e_{t_{i}} \# \mu_{m}, \text { Leb }\right)
\end{aligned}
$$

+ boundary cond.
$\longrightarrow \simeq$ Common discretization for both relaxations!
\longrightarrow Choice of penalization parameter?

Convergence theorem

Regular generalized geodesic: a probability measure $\mu \in \operatorname{Prob}(\Gamma)$ s.t. (Regularity) $\exists p$ with Lipschitz gradient s.t. $\forall \gamma \in \operatorname{spt}(\mu), \quad \ddot{\gamma}=-\nabla p \circ \gamma$,
(Incompressibility) $e_{t \#} \mu=$ Leb for all t
(Boundary conditions) $\left(e_{0}, e_{1}\right)_{\#} \mathrm{Leb}=\left(s_{*}, s^{*}\right)_{\#} \mathrm{Leb}$

Convergence theorem

Regular generalized geodesic: a probability measure $\mu \in \operatorname{Prob}(\Gamma)$ s.t. (Regularity) $\exists p$ with Lipschitz gradient s.t. $\forall \gamma \in \operatorname{spt}(\mu), \quad \ddot{\gamma}=-\nabla p \circ \gamma$, (Incompressibility) $e_{t \#} \mu=$ Leb for all t (Boundary conditions) $\left(e_{0}, e_{1}\right)_{\#} \mathrm{Leb}=\left(s_{*}, s^{*}\right) \# \mathrm{Leb}$

Theorem: Let μ be a regular generalized geodesic in SDiff between s_{*} and s^{*},

$$
m_{N} \in \arg \min \mathcal{E}_{N, T_{N}, \lambda_{N}} \quad \text { with } \lambda_{N}=N^{2 d} \text { and } T_{N} \lambda_{N} \rightarrow 0,
$$

Then, up to subsequences, $\mu_{m_{N}} \in \operatorname{Prob}(\Gamma)$ converges weakly to a minimizing generalized geodesic between s_{*} and s^{*}.
[Mirebeau-M., 2015]

Convergence theorem

Regular generalized geodesic: a probability measure $\mu \in \operatorname{Prob}(\Gamma)$ s.t. (Regularity) $\exists p$ with Lipschitz gradient s.t. $\forall \gamma \in \operatorname{spt}(\mu), \quad \ddot{\gamma}=-\nabla p \circ \gamma$, (Incompressibility) $e_{t \#} \mu=$ Leb for all t (Boundary conditions) $\left(e_{0}, e_{1}\right)_{\#} \operatorname{Leb}=\left(s_{*}, s^{*}\right)_{\#}$ Leb

Theorem: Let μ be a regular generalized geodesic in SDiff between s_{*} and s^{*},

$$
m_{N} \in \arg \min \mathcal{E}_{N, T_{N}, \lambda_{N}} \quad \text { with } \lambda_{N}=N^{2 d} \text { and } T_{N} \lambda_{N} \rightarrow 0,
$$

Then, up to subsequences, $\mu_{m_{N}} \in \operatorname{Prob}(\Gamma)$ converges weakly to a minimizing generalized geodesic between s_{*} and s^{*}.

- Main step: $\lim \sup _{N} \mathcal{E}_{N, T_{N}, \lambda_{N}}\left(m_{N}\right) \leq \mathcal{E}\left(\mu^{\mathrm{opt}}\right)$.
[Mirebeau-M., 2015]

Convergence theorem

Regular generalized geodesic: a probability measure $\mu \in \operatorname{Prob}(\Gamma)$ s.t. (Regularity) $\exists p$ with Lipschitz gradient s.t. $\forall \gamma \in \operatorname{spt}(\mu), \quad \ddot{\gamma}=-\nabla p \circ \gamma$, (Incompressibility) $e_{t \#} \mu=$ Leb for all t (Boundary conditions) $\left(e_{0}, e_{1}\right)_{\#} \mathrm{Leb}=\left(s_{*}, s^{*}\right)_{\#} \mathrm{Leb}$

Theorem: Let μ be a regular generalized geodesic in SDiff between s_{*} and s^{*},

$$
m_{N} \in \arg \min \mathcal{E}_{N, T_{N}, \lambda_{N}} \quad \text { with } \lambda_{N}=N^{2 d} \text { and } T_{N} \lambda_{N} \rightarrow 0,
$$

Then, up to subsequences, $\mu_{m_{N}} \in \operatorname{Prob}(\Gamma)$ converges weakly to a minimizing generalized geodesic between s_{*} and s^{*}.

- Main step: $\lim \sup _{N} \mathcal{E}_{N, T_{N}, \lambda_{N}}\left(m_{N}\right) \leq \mathcal{E}\left(\mu^{\mathrm{opt}}\right)$.
[Mirebeau-M., 2015]
more precisely, we need $\min _{m \in \mathbb{M}_{N}^{T}} \mathcal{E}_{N, T, \lambda}(m) \leq \mathcal{E}\left(\mu^{\text {opt }}\right)+\mathcal{O}\left(T h_{N}^{2} \lambda\right)$ for $h_{N}:=N^{-\frac{1}{D}}$, with $D \in \mathbb{N}$ to be determined.

Convergence theorem

Regular generalized geodesic: a probability measure $\mu \in \operatorname{Prob}(\Gamma)$ s.t.
(Regularity) $\exists p$ with Lipschitz gradient s.t. $\forall \gamma \in \operatorname{spt}(\mu), \quad \ddot{\gamma}=-\nabla p \circ \gamma$, (Incompressibility) $e_{t \#} \mu=$ Leb for all t
(Boundary conditions) $\left(e_{0}, e_{1}\right)_{\#} \mathrm{Leb}=\left(s_{*}, s^{*}\right)_{\#} \mathrm{Leb}$
Theorem: Let μ be a regular generalized geodesic in SPiff between s_{*} and s^{*},

$$
m_{N} \in \arg \min \mathcal{E}_{N, T_{N}, \lambda_{N}} \quad \text { with } \lambda_{N}=N^{2 d} \text { and } T_{N} \lambda_{N} \rightarrow 0,
$$

Then, up to subsequences, $\mu_{m_{N}} \in \operatorname{Prob}(\Gamma)$ converges weakly to a minimizing generalized geodesic between s_{*} and s^{*}.

- Main step: $\lim \sup _{N} \mathcal{E}_{N, T_{N}, \lambda_{N}}\left(m_{N}\right) \leq \mathcal{E}\left(\mu^{\mathrm{opt}}\right)$.
[Mirebeau-M., 2015]
more precisely, we need $\min _{m \in \mathbb{M}_{N}^{T}} \mathcal{E}_{N, T, \lambda}(m) \leq \mathcal{E}\left(\mu^{\mathrm{opt}}\right)+\mathcal{O}\left(T h_{N}^{2} \lambda\right)$ for $h_{N}:=N^{-\frac{1}{D}}$, with $D \in \mathbb{N}$ to be determined.
- It turns out that one can take $D:=\operatorname{dim}\left(\operatorname{spt}\left(\mu^{\text {opt }}\right)\right)$
\longrightarrow For a classical solution $s:[0,1] \rightarrow \mathbb{S}, \operatorname{dim}\left(\operatorname{spt}\left(\mu^{\mathrm{opt}}\right)\right)=d . \quad\left(\lambda_{N}=N^{d}\right)$
\longrightarrow For a regular generalized solution, $\operatorname{dim}\left(\operatorname{spt}\left(\mu^{\text {opt }}\right)\right) \leq 2 d$.
$\left(\lambda_{N}=N^{2 d}\right)$

Energy estimate for classical solutions

Proposition: Assume that the minimizing geodesic s between s_{*} and s^{*} is classical and that $s \in \mathrm{~L}^{\infty}\left([0,1], H^{1}(X)\right)$. Then, with $h_{N}=N^{-1 / d}$,

$$
\min _{m \in\left(\mathbb{M}_{N}\right)^{T}} \mathcal{E}_{N, T, \lambda}(m) \leq \mathcal{E}(s)+\mathcal{O}\left(T h_{N}^{2} \lambda\right)
$$

Energy estimate for classical solutions

Proposition: Assume that the minimizing geodesic s between s_{*} and s^{*} is classical and that $s \in \mathrm{~L}^{\infty}\left([0,1], H^{1}(X)\right)$. Then, with $h_{N}=N^{-1 / d}$,

$$
\min _{m \in\left(\mathbb{M}_{N}\right)^{T}} \mathcal{E}_{N, T, \lambda}(m) \leq \mathcal{E}(s)+\mathcal{O}\left(T h_{N}^{2} \lambda\right)
$$

Proof: Take $s \in \mathrm{~L}^{\infty}\left([0,1], H^{1}(X)\right)$, and approximate it through $m \in \mathbb{M}_{N}^{T}$,

$$
m_{i}:=\Pi_{N}(s(i / T)) \quad \text { where } \Pi_{N}: \mathbb{M} \rightarrow \mathbb{M}_{N} \text { orthogonal proj. }
$$

Energy estimate for classical solutions

Proposition: Assume that the minimizing geodesic s between s_{*} and s^{*} is classical and that $s \in \mathrm{~L}^{\infty}\left([0,1], H^{1}(X)\right)$. Then, with $h_{N}=N^{-1 / d}$,

$$
\min _{m \in\left(\mathbb{M}_{N}\right)^{T}} \mathcal{E}_{N, T, \lambda}(m) \leq \mathcal{E}(s)+\mathcal{O}\left(T h_{N}^{2} \lambda\right)
$$

Proof: Take $s \in \mathrm{~L}^{\infty}\left([0,1], H^{1}(X)\right)$, and approximate it through $m \in \mathbb{M}_{N}^{T}$,

$$
m_{i}:=\Pi_{N}(s(i / T)) \quad \text { where } \Pi_{N}: \mathbb{M} \rightarrow \mathbb{M}_{N} \text { orthogonal proj. }
$$

Then, $\mathcal{E}_{N, T, \lambda}(m)$ is upper bounded using the Poincaré-Wirtinger inequality.

Energy estimate for generalized solutions

Prop: Assume that the generalized minimizing geodesic in Π is associated to a pressure $p:[0,1] \times \Omega \rightarrow \mathbb{R}$ with Lipschitz gradient. Then, with $h_{N}=N^{-1 / 2 d}$,

$$
\min _{m \in\left(E_{N}\right)^{T}} \mathcal{E}_{N, T, \lambda}(m) \leq \mathcal{E}\left(\mu^{\mathrm{opt}}\right)+\mathcal{O}\left(T h_{N}^{2} \lambda\right)
$$

Energy estimate for generalized solutions

Prop: Assume that the generalized minimizing geodesic in Π is associated to a pressure $p:[0,1] \times \Omega \rightarrow \mathbb{R}$ with Lipschitz gradient. Then, with $h_{N}=N^{-1 / 2 d}$,

$$
\min _{m \in\left(E_{N}\right)^{T}} \mathcal{E}_{N, T, \lambda}(m) \leq \mathcal{E}\left(\mu^{\mathrm{opt}}\right)+\mathcal{O}\left(T h_{N}^{2} \lambda\right)
$$

$$
\Gamma:=\mathcal{C}^{0}\left([0,1], \mathbb{R}^{d}\right), \quad \Gamma_{p}:=\{\gamma \in \Gamma ; \ddot{\gamma}=-\nabla p \circ \gamma\} .
$$

Energy estimate for generalized solutions

Prop: Assume that the generalized minimizing geodesic in Π is associated to a pressure $p:[0,1] \times \Omega \rightarrow \mathbb{R}$ with Lipschitz gradient. Then, with $h_{N}=N^{-1 / 2 d}$,

$$
\min _{m \in\left(E_{N}\right)^{T}} \mathcal{E}_{N, T, \lambda}(m) \leq \mathcal{E}\left(\mu^{\mathrm{opt}}\right)+\mathcal{O}\left(T h_{N}^{2} \lambda\right)
$$

$$
\begin{aligned}
& \Gamma:=\mathcal{C}^{0}\left([0,1], \mathbb{R}^{d}\right), \quad \Gamma_{p}:=\{\gamma \in \Gamma ; \ddot{\gamma}=-\nabla p \circ \gamma\} . \\
& \text { such that } \operatorname{spt}\left(\mu^{\mathrm{opt}}\right) \subseteq \Gamma_{p} \subseteq H^{1}([0,1], X) .
\end{aligned}
$$

Energy estimate for generalized solutions

Prop: Assume that the generalized minimizing geodesic in Π is associated to a pressure $p:[0,1] \times \Omega \rightarrow \mathbb{R}$ with Lipschitz gradient. Then, with $h_{N}=N^{-1 / 2 d}$,

$$
\min _{m \in\left(E_{N}\right)^{T}} \mathcal{E}_{N, T, \lambda}(m) \leq \mathcal{E}\left(\mu^{\mathrm{opt}}\right)+\mathcal{O}\left(T h_{N}^{2} \lambda\right)
$$

$$
\begin{aligned}
& \Gamma:=\mathcal{C}^{0}\left([0,1], \mathbb{R}^{d}\right), \quad \Gamma_{p}:=\{\gamma \in \Gamma ; \ddot{\gamma}=-\nabla p \circ \gamma\} . \\
& \text { such that } \operatorname{spt}\left(\mu^{\mathrm{opt}}\right) \subseteq \Gamma_{p} \subseteq H^{1}([0,1], X)
\end{aligned}
$$

A. $\overline{\operatorname{dim}}\left(\Gamma_{p}\right) \leq 2 d$ by Cauchy-Lipschitz

Energy estimate for generalized solutions

Prop: Assume that the generalized minimizing geodesic in Π is associated to a pressure $p:[0,1] \times \Omega \rightarrow \mathbb{R}$ with Lipschitz gradient. Then, with $h_{N}=N^{-1 / 2 d}$,

$$
\min _{m \in\left(E_{N}\right)^{T}} \mathcal{E}_{N, T, \lambda}(m) \leq \mathcal{E}\left(\mu^{\mathrm{opt}}\right)+\mathcal{O}\left(T h_{N}^{2} \lambda\right)
$$

$$
\begin{aligned}
& \Gamma:=\mathcal{C}^{0}\left([0,1], \mathbb{R}^{d}\right), \quad \Gamma_{p}:=\{\gamma \in \Gamma ; \ddot{\gamma}=-\nabla p \circ \gamma\} . \\
& \text { such that } \operatorname{spt}\left(\mu^{\mathrm{opt}}\right) \subseteq \Gamma_{p} \subseteq H^{1}([0,1], X)
\end{aligned}
$$

A. $\overline{\operatorname{dim}}\left(\Gamma_{p}\right) \leq 2 d$ by Cauchy-Lipschitz
B. Γ_{p} can be covered by N balls with radius $h_{N} \simeq N^{-\frac{1}{2 d}}$ with respect to $\|\cdot\|_{H^{1}(X)}$.

Energy estimate for generalized solutions

Prop: Assume that the generalized minimizing geodesic in Π is associated to a pressure $p:[0,1] \times \Omega \rightarrow \mathbb{R}$ with Lipschitz gradient. Then, with $h_{N}=N^{-1 / 2 d}$,

$$
\min _{m \in\left(E_{N}\right)^{T}} \mathcal{E}_{N, T, \lambda}(m) \leq \mathcal{E}\left(\mu^{\mathrm{opt}}\right)+\mathcal{O}\left(T h_{N}^{2} \lambda\right)
$$

$$
\begin{aligned}
& \Gamma:=\mathcal{C}^{0}\left([0,1], \mathbb{R}^{d}\right), \quad \Gamma_{p}:=\{\gamma \in \Gamma ; \ddot{\gamma}=-\nabla p \circ \gamma\} . \\
& \text { such that } \operatorname{spt}\left(\mu^{\mathrm{opt}}\right) \subseteq \Gamma_{p} \subseteq H^{1}([0,1], X) .
\end{aligned}
$$

A. $\overline{\operatorname{dim}}\left(\Gamma_{p}\right) \leq 2 d$ by Cauchy-Lipschitz
B. Γ_{p} can be covered by N balls with radius $h_{N} \simeq N^{-\frac{1}{2 d}}$ with respect to $\|\cdot\|_{H^{1}(X)}$.
C. $\exists\left(\gamma_{k}\right)_{k=1}^{N}$ in Γ_{p} such that $\mathrm{W}_{2, \mathcal{H}^{1}(X)}\left(\mu^{\mathrm{opt}}, \frac{1}{N} \sum_{k=1}^{N} \delta_{\gamma_{k}}\right) \leq \mathcal{O}\left(h_{N}\right)$

Energy estimate for generalized solutions

Prop: Assume that the generalized minimizing geodesic in Π is associated to a pressure $p:[0,1] \times \Omega \rightarrow \mathbb{R}$ with Lipschitz gradient. Then, with $h_{N}=N^{-1 / 2 d}$,

$$
\min _{m \in\left(E_{N}\right)^{T}} \mathcal{E}_{N, T, \lambda}(m) \leq \mathcal{E}\left(\mu^{\mathrm{opt}}\right)+\mathcal{O}\left(T h_{N}^{2} \lambda\right)
$$

$$
\begin{aligned}
& \Gamma:=\mathcal{C}^{0}\left([0,1], \mathbb{R}^{d}\right), \quad \Gamma_{p}:=\{\gamma \in \Gamma ; \ddot{\gamma}=-\nabla p \circ \gamma\} \\
& \text { such that } \operatorname{spt}\left(\mu^{\mathrm{opt}}\right) \subseteq \Gamma_{p} \subseteq H^{1}([0,1], X)
\end{aligned}
$$

A. $\overline{\operatorname{dim}}\left(\Gamma_{p}\right) \leq 2 d$ by Cauchy-Lipschitz
B. Γ_{p} can be covered by N balls with radius $h_{N} \simeq N^{-\frac{1}{2 d}}$ with respect to $\|\cdot\|_{H^{1}(X)}$.
C. $\exists\left(\gamma_{k}\right)_{k=1}^{N}$ in Γ_{p} such that $\mathrm{W}_{2, \mathcal{H}^{1}(X)}\left(\mu^{\mathrm{opt}}, \frac{1}{N} \sum_{k=1}^{N} \delta_{\gamma_{k}}\right) \leq \mathcal{O}\left(h_{N}\right)$
D. reorder paths so that $\mathrm{d}\left(\gamma_{k}(0), V_{k}\right) \lesssim h_{N}$ and quantize in time: $\left.m_{i}\right|_{\omega_{k}}:=\gamma_{k}(i / T)$

Energy estimate for generalized solutions

Prop: Assume that the generalized minimizing geodesic in Π is associated to a pressure $p:[0,1] \times \Omega \rightarrow \mathbb{R}$ with Lipschitz gradient. Then, with $h_{N}=N^{-1 / 2 d}$,

$$
\min _{m \in\left(E_{N}\right)^{T}} \mathcal{E}_{N, T, \lambda}(m) \leq \mathcal{E}\left(\mu^{\mathrm{opt}}\right)+\mathcal{O}\left(T h_{N}^{2} \lambda\right)
$$

$$
\begin{aligned}
& \Gamma:=\mathcal{C}^{0}\left([0,1], \mathbb{R}^{d}\right), \quad \Gamma_{p}:=\{\gamma \in \Gamma ; \ddot{\gamma}=-\nabla p \circ \gamma\} . \\
& \text { such that } \operatorname{spt}\left(\mu^{\mathrm{opt}}\right) \subseteq \Gamma_{p} \subseteq H^{1}([0,1], X) .
\end{aligned}
$$

A. $\overline{\operatorname{dim}}\left(\Gamma_{p}\right) \leq 2 d$ by Cauchy-Lipschitz
B. Γ_{p} can be covered by N balls with radius $h_{N} \simeq N^{-\frac{1}{2 d}}$ with respect to $\|\cdot\|_{H^{1}(X)}$.
C. $\exists\left(\gamma_{k}\right)_{k=1}^{N}$ in Γ_{p} such that $\mathrm{W}_{2, \mathcal{H}^{1}(X)}\left(\mu^{\mathrm{opt}}, \frac{1}{N} \sum_{k=1}^{N} \delta_{\gamma_{k}}\right) \leq \mathcal{O}\left(h_{N}\right)$
D. reorder paths so that $\mathrm{d}\left(\gamma_{k}(0), V_{k}\right) \lesssim h_{N}$ and quantize in time: $\left.m_{i}\right|_{\omega_{k}}:=\gamma_{k}(i / T)$
E. Upper bound $\mathcal{E}_{N, T, \lambda}(m)$ using the quantization estimate.

Numerical result: Inversion of the Disk

$$
X=\mathrm{B}(0,1) \subseteq \mathbb{R}^{2} \quad\left(s_{*}, s^{*}\right)=(\mathrm{id},-\mathrm{id})
$$

Classical solutions: clockwise/counterclockwise rotations $\mu_{ \pm}$

Numerical result: Inversion of the Disk

$$
X=\mathrm{B}(0,1) \subseteq \mathbb{R}^{2} \quad\left(s_{*}, s^{*}\right)=(\mathrm{id},-\mathrm{id})
$$

Classical solutions: clockwise/counterclockwise rotations $\mu_{ \pm}$

Examples of generalized solutions:

linear combination $\mu_{\frac{1}{2}}$ of $\mu_{ \pm}$constructed from rotations NB: $\operatorname{dim}\left(\operatorname{spt}\left(\mu_{\frac{1}{2}}\right)\right)=2$

Numerical result: Inversion of the Disk

$$
X=\mathrm{B}(0,1) \subseteq \mathbb{R}^{2} \quad\left(s_{*}, s^{*}\right)=(\mathrm{id},-\mathrm{id})
$$

Brenier's generalized solution: $\mu \in \operatorname{Prob}(\Gamma)$:

$$
\begin{aligned}
& \operatorname{spt}(\mu)=\{t \mapsto x \cos (\pi t)+v \sin (\pi t) \in \Gamma \\
& \left.\quad(x, v) \in X \times \mathbb{R}^{2},\|v\|^{2}=1-\|x\|^{2}\right\}
\end{aligned}
$$

\longrightarrow non-deterministic solution, $\operatorname{dim}(\operatorname{spt}(\mu))=3$

Numerical result: Inversion of the Disk

$$
X=\mathrm{B}(0,1) \subseteq \mathbb{R}^{2}
$$

$$
\left(s_{*}, s^{*}\right)=(\mathrm{id},-\mathrm{id})
$$

Brenier's generalized solution: $\mu \in \operatorname{Prob}(\Gamma)$:

$$
\begin{aligned}
& \operatorname{spt}(\mu)=\{t \mapsto x \cos (\pi t)+v \sin (\pi t) \in \Gamma \\
& \left.\quad(x, v) \in X \times \mathbb{R}^{2},\|v\|^{2}=1-\|x\|^{2}\right\}
\end{aligned}
$$

\longrightarrow non-deterministic solution, $\operatorname{dim}(\operatorname{spt}(\mu))=3$

Computed trajectories for $N=10^{5}, T=17$

Numerical result: Beltrami Flow in Square

Stationary flow on $[0,1]^{2}$: speed: $u(\mathbf{x})=\left(\cos \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right), \sin \left(\pi x_{1}\right) \cos \left(\pi x_{2}\right)\right)$
[Brenier-Roesch] pressure: $p(\mathbf{x})=\frac{1}{4}\left(\sin ^{2}\left(\pi x_{1}\right)+\sin ^{2}\left(\pi x_{2}\right)\right)$

Numerical result: Beltrami Flow in Square

Stationary flow on $[0,1]^{2}$: speed: $u(\mathbf{x})=\left(\cos \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right), \sin \left(\pi x_{1}\right) \cos \left(\pi x_{2}\right)\right)$ [Brenier-Roesch] pressure: $p(\mathbf{x})=\frac{1}{4}\left(\sin ^{2}\left(\pi x_{1}\right)+\sin ^{2}\left(\pi x_{2}\right)\right)$

Exact Lagrangian solution:

$$
s_{0}^{e}=\mathrm{id} \quad \dot{s}_{t}^{e}=u \circ s_{t}
$$

NB: s^{e} is minimizing on $[0,1]$

Numerical result: Beltrami Flow in Square

Stationary flow on $[0,1]^{2}$: speed: $u(\mathbf{x})=\left(\cos \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right), \sin \left(\pi x_{1}\right) \cos \left(\pi x_{2}\right)\right)$
[Brenier-Roesch] pressure: $p(\mathbf{x})=\frac{1}{4}\left(\sin ^{2}\left(\pi x_{1}\right)+\sin ^{2}\left(\pi x_{2}\right)\right)$

Exact Lagrangian solution:

$$
s_{0}^{e}=\mathrm{id} \quad \dot{s}_{t}^{e}=u \circ s_{t}
$$

NB: s^{e} is minimizing on $[0,1]$
Reconstruction problem:
$\min \mathcal{E}_{N, T, \lambda}$

$$
s_{*}=s_{0}^{e}, s^{*}=s_{t_{\max }^{e}}^{e}
$$

Numerical result: Beltrami Flow in Square

Stationary flow on $[0,1]^{2}$: speed: $u(\mathbf{x})=\left(\cos \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right), \sin \left(\pi x_{1}\right) \cos \left(\pi x_{2}\right)\right)$
[Brenier-Roesch] pressure: $p(\mathbf{x})=\frac{1}{4}\left(\sin ^{2}\left(\pi x_{1}\right)+\sin ^{2}\left(\pi x_{2}\right)\right)$

Exact Lagrangian solution:

$$
s_{0}^{e}=\mathrm{id} \quad \dot{s}_{t}^{e}=u \circ s_{t}
$$

NB: s^{e} is minimizing on $[0,1]$
Reconstruction problem:

$$
\begin{aligned}
& \min \mathcal{E}_{N, T, \lambda} \\
& s_{*}=s_{0}^{e}, s^{*}=s_{t_{\max }^{e}}^{e}
\end{aligned}
$$

Parameters:
$t_{\max } \in\{0.9,1.1,1.3,1.5\}$

Numerical result: Beltrami Flow in Square

(a) $t=0.0$
(b) $t=0.95$
(c) $t=1.1$
(d) $t=1.3$
(e) $t=1.5$

(f) $t=0.0$
(g) $t=0.25 * t_{\text {max }}$
(h) $t=0.5 * t_{\text {max }}$

(i) $t=0.75 * t_{\text {max }}$
(j) $t=t_{\text {max }}=0.9$

(k) $t=0.0$
(l) $t=0.25 * t_{\max }$

(q) $t=0.25 * t_{\text {max }}$

(v) $t=0.25 * t_{\text {max }}$
(p) $t=0.0$

(u) $t=0.0$

(m) $t=0.5 * t_{\text {max }}$

(o) $t=t_{\text {max }}=1.1$

(r) $t=0.5 * t_{\text {max }}$

(w) $t=0.5 * t_{\text {max }}$

(s) $t=0.75 * t_{\text {max }}$

(x) $t=0.75 * t_{\text {max }}$
(t) $t=t_{\text {max }}=1.3$

(y) $t=t_{\text {max }}=1.5$

NB: qualitatively similar results by Luca Nenna and J.D. Benamou

Numerical result: Comparison of Trajectories

Disk inversion

Square, $t_{\max }=1.5$

Comparison of Minkowski dimensions

Minkowski dimension Let $S \subseteq \Gamma$ be a compact subset of a metric space.

$$
\overline{\operatorname{dim}}(S)=\lim \sup _{N \rightarrow \infty} \log (N) / \log \left(1 / \delta_{N}\right)
$$

where $\delta_{N}=$ minimum radius required to cover S with N balls.

Estimation of $\operatorname{dim}(\operatorname{spt}(\mu))$ via $\log (N) / \log \left(1 / \delta_{N}\right)$

Square rotation, $t_{\max } \in\{0.9,1.1,1.3,1.5\}$
Disk inversion

Perspectives

A) More realistic numerical schemes for the Cauchy problem (e.g. without ε) ?
B) Changing the polar factorization theorem \longrightarrow other fluid models, e.g. fluid-structure interactions / Camassa-Holm equation [Gallouet-Vialard 16], pressureless Euler equation with congestion [Maury-Preux '15]
C) Viscosity?

Solutions to Euler's equations as geodesics in SDiff

$\mathbb{S D i f f}=$ measure-preserving diffeomorphisms from X to itself $\subseteq \mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)$

Solutions to Euler's equations as geodesics in SDiff

$\mathbb{S D i f f}=$ measure-preserving diffeomorphisms from X to itself $\subseteq \mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)$

$\longrightarrow \mathrm{T}_{\mathrm{id}} \mathbb{S D i f f}=$ divergence-free vector fields

Solutions to Euler's equations as geodesics in SDiff

$\mathbb{S D i f f}=$ measure-preserving diffeomorphisms from X to itself $\subseteq \mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)$

$\longrightarrow \mathrm{T}_{\mathrm{id}} \mathbb{S D i f f}=$ divergence-free vector fields

$$
=\{\nabla p \mid p: X \rightarrow \mathbb{R}\}^{\perp}
$$

Solutions to Euler's equations as geodesics in $\mathbb{S D i f f}$

$\mathbb{S D i f f}=$ measure-preserving diffeomorphisms from X to itself $\subseteq \mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)$

$\longrightarrow \mathrm{T}_{\mathrm{id}} \mathbb{S D i f f}=$ divergence-free vector fields

$$
=\{\nabla p \mid p: X \rightarrow \mathbb{R}\}^{\perp}
$$

\longrightarrow Formally, a path $s:[0,1] \rightarrow \mathbb{S D i f f}$ is a geodesic iff $\ddot{s}_{t} \perp \mathrm{~T}_{s_{t}}$ SDiff

Solutions to Euler's equations as geodesics in SDiff

$\mathbb{S D i f f}=$ measure-preserving diffeomorphisms from X to itself $\subseteq \mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)$

$\longrightarrow \mathrm{T}_{\mathrm{id}} \mathbb{S D i f f}=$ divergence-free vector fields

$$
=\{\nabla p \mid p: X \rightarrow \mathbb{R}\}^{\perp}
$$

\longrightarrow Formally, a path $s:[0,1] \rightarrow \mathbb{S D i f f}$ is a geodesic iff $\ddot{s}_{t} \perp \mathrm{~T}_{s_{t}} \mathbb{S D i f f} \Longleftrightarrow \ddot{s}_{t} \circ s_{t}^{-1} \perp \mathrm{~T}_{\mathrm{id}} \mathbb{S D i f f}$

Solutions to Euler's equations as geodesics in SDiff

$\mathbb{S D i f f}=$ measure-preserving diffeomorphisms from X to itself $\subseteq \mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)$
$\longrightarrow \mathrm{T}_{\mathrm{id}} \mathbb{S D i f f}=$ divergence-free vector fields

$$
=\{\nabla p \mid p: X \rightarrow \mathbb{R}\}^{\perp}
$$

\longrightarrow Formally, a path $s:[0,1] \rightarrow \mathbb{S D i f f}$ is a geodesic iff $\ddot{s}_{t} \perp \mathrm{~T}_{s_{t}}$ SDiff $\Longleftrightarrow \ddot{s}_{t} \circ s_{t}^{-1} \perp \mathrm{~T}_{\mathrm{id}} \mathbb{S D i f f}$

$$
\Longleftrightarrow \exists p:[0,1] \times X \rightarrow \mathbb{R}, \ddot{s}_{t}=-\nabla p_{t} \circ s_{t}
$$

Solutions to Euler's equations as geodesics in SDiff

$\mathbb{S D i f f}=$ measure-preserving diffeomorphisms from X to itself $\subseteq \mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)$
$\longrightarrow \mathrm{T}_{\mathrm{id}} \mathbb{S D i f f}=$ divergence-free vector fields

$$
=\{\nabla p \mid p: X \rightarrow \mathbb{R}\}^{\perp}
$$

\longrightarrow Formally, a path $s:[0,1] \rightarrow \mathbb{S D i f f}$ is a geodesic iff $\ddot{s}_{t} \perp \mathrm{~T}_{s_{t}}$ SDiff $\Longleftrightarrow \ddot{s}_{t} \circ s_{t}^{-1} \perp \mathrm{~T}_{\mathrm{id}} \mathbb{S D i f f}$
$\Longleftrightarrow \exists p:[0,1] \times X \rightarrow \mathbb{R}, \ddot{s}_{t}=-\nabla p_{t} \circ s_{t}$
\longrightarrow With $u_{t}:=\dot{s_{t}} \circ s_{t}^{-1}$ (= velocity in Eulerian coordinates),

Solutions to Euler's equations as geodesics in SDiff

$\mathbb{S D i f f}=$ measure-preserving diffeomorphisms from X to itself $\subseteq \mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)$
$\longrightarrow \mathrm{T}_{\mathrm{id}} \mathbb{S D i f f}=$ divergence-free vector fields

$$
=\{\nabla p \mid p: X \rightarrow \mathbb{R}\}^{\perp}
$$

\longrightarrow Formally, a path $s:[0,1] \rightarrow \mathbb{S D i f f}$ is a geodesic iff $\ddot{s}_{t} \perp \mathrm{~T}_{s_{t}}$ SDiff $\Longleftrightarrow \ddot{s}_{t} \circ s_{t}^{-1} \perp \mathrm{~T}_{\mathrm{id}} \mathbb{S D i f f}$

$$
\Longleftrightarrow \exists p:[0,1] \times X \rightarrow \mathbb{R}, \ddot{s}_{t}=-\nabla p_{t} \circ s_{t}
$$

\longrightarrow With $u_{t}:=\dot{s_{t}} \circ s_{t}^{-1}$ (= velocity in Eulerian coordinates), one recovers Euler's equations for incompressible fluids:

$$
\begin{cases}\partial_{t} u+(u \cdot \nabla) u=-\nabla p & \text { in } X \\ \operatorname{div} u=0 & \text { in } X \\ u \cdot n=0 & \text { on } \partial X\end{cases}
$$

Solutions to Euler's equations as geodesics in SDiff

$\mathbb{S D i f f}=$ measure-preserving diffeomorphisms from X to itself $\subseteq \mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)$
$\longrightarrow \mathrm{T}_{\text {id }} \mathbb{S D}$ iff $=$ divergence-free vector fields

$$
=\{\nabla p \mid p: X \rightarrow \mathbb{R}\}^{\perp}
$$

\longrightarrow Formally, a path $s:[0,1] \rightarrow$ SDiff is a geodesic iff $\ddot{s}_{t} \perp \mathrm{~T}_{s_{t}}$ SDiff $\Longleftrightarrow \ddot{s}_{t} \circ s_{t}^{-1} \perp \mathrm{~T}_{\mathrm{id}}$ SDiff

$$
\Longleftrightarrow \exists p:[0,1] \times X \rightarrow \mathbb{R}, \ddot{s}_{t}=-\nabla p_{t} \circ s_{t}
$$

\longrightarrow With $u_{t}:=\dot{s}_{t} \circ s_{t}^{-1}$ (= velocity in Eulerian coordinates), one recovers Euler's equations for incompressible fluids:

$$
\begin{cases}\partial_{t} u+(u \cdot \nabla) u=-\nabla p & \text { in } X \\ \operatorname{div} u=0 & \text { in } X \\ u \cdot n=0 & \text { on } \partial X\end{cases}
$$

Use this formulation for numerical computations (following Brenier):
\longrightarrow Minimizing geodesics (with Jean-Marie Mirebeau, 2015)
\longrightarrow Cauchy problem (with Thomas Gallouet, 2016).

