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Solutions to Euler’s equations as geodesics in SDiff

SDiff = measure-preserving diffeomorphisms from X to itself ⊆ L2(X,Rd)

[Arnold 1966]

|X| = 1

s0(x)
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−→ Formally, a path s : [0, 1]→ SDiff is a geodesic iff

s̈t ⊥ TstSDiff

X ⊆ Rd bounded



2

Solutions to Euler’s equations as geodesics in SDiff

SDiff = measure-preserving diffeomorphisms from X to itself ⊆ L2(X,Rd)

[Arnold 1966]

|X| = 1

s0(x)

st(x)

−→ Formally, a path s : [0, 1]→ SDiff is a geodesic iff

s̈t ⊥ TstSDiff ⇐⇒ s̈t ◦ s−1
t ⊥ TidSDiff

X ⊆ Rd bounded



2

Solutions to Euler’s equations as geodesics in SDiff

SDiff = measure-preserving diffeomorphisms from X to itself ⊆ L2(X,Rd)

[Arnold 1966]

|X| = 1

s0(x)

st(x)

−→ Formally, a path s : [0, 1]→ SDiff is a geodesic iff

s̈t ⊥ TstSDiff ⇐⇒ s̈t ◦ s−1
t ⊥ TidSDiff

X ⊆ Rd bounded

(TidSDiff = divergence-free vector fields = {∇p | p : X → R}⊥)



2

Solutions to Euler’s equations as geodesics in SDiff

SDiff = measure-preserving diffeomorphisms from X to itself ⊆ L2(X,Rd)

[Arnold 1966]

|X| = 1

s0(x)

st(x)

−→ Formally, a path s : [0, 1]→ SDiff is a geodesic iff

⇐⇒ ∃p : [0, 1]×X → R, s̈t = −∇pt ◦ st

s̈t ⊥ TstSDiff ⇐⇒ s̈t ◦ s−1
t ⊥ TidSDiff

X ⊆ Rd bounded

(TidSDiff = divergence-free vector fields = {∇p | p : X → R}⊥)



2

Solutions to Euler’s equations as geodesics in SDiff

SDiff = measure-preserving diffeomorphisms from X to itself ⊆ L2(X,Rd)

[Arnold 1966]

|X| = 1

s0(x)

st(x)

−→ Formally, a path s : [0, 1]→ SDiff is a geodesic iff

−→ With ut := ṡt ◦ s−1
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SDiff = measure-preserving diffeomorphisms from X to itself ⊆ L2(X,Rd)

[Arnold 1966]

|X| = 1

s0(x)

st(x)

−→ Formally, a path s : [0, 1]→ SDiff is a geodesic iff

−→ With ut := ṡt ◦ s−1
t (= velocity in Eulerian coordinates),

⇐⇒ ∃p : [0, 1]×X → R, s̈t = −∇pt ◦ st

s̈t ⊥ TstSDiff


∂tu+ (u · ∇)u = −∇p in X

divu = 0 in X

u · n = 0 on ∂X

⇐⇒ s̈t ◦ s−1
t ⊥ TidSDiff

X ⊆ Rd bounded

one recovers Euler’s equations for incompressible fluids:

(TidSDiff = divergence-free vector fields = {∇p | p : X → R}⊥)

This talk: Using this formulation for numerical computations (following Brenier):

−→ Minimizing geodesics (with Jean-Marie Mirebeau, 2015)

−→ Cauchy problem (with Thomas Gallouet, 2016).
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1. Discretization of the Cauchy problem
Joint work with Thomas Gallouët
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Brenier’s approximation of geodesics I

where S ⊆ Rd submanifold


s̈(t) ⊥ Ts(t)S

s(t) ∈ S
(s(0), ṡ(0)) = (s0, v0)
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(m(0), ṁ(0)) = (s̃0, ṽ0)
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Simple example: Take S = R× {0} ⊆ R2, s0 = (0, 0), v0 = (1, 0)

s̃0 = (0, h), ṽ0 = (1, ν)

with m = (x, y) we have

{
ẍ = 0

ÿ + 1
ε2 y = 0

−→ Hamiltonian system for H(m, v) = 1
2‖v‖

2 + 1
2ε2 d2

S(m).

−→ Recall: 1
2∇d2

S(m) = m−ΠS(m) a.e. where ΠS(·) = closest point map

i.e.

{
x(t) = t

y(t) = h cos(t/ε) + νε sin(t/ε)
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Brenier’s approximation of geodesics II
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(m(0), ṁ(0)) = (s̃0, ṽ0)
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I discretizing this formulation for numerical resolution of Euler’s equations ?

−→ early numerical work by Brenier (80’s), where S is approximated

−→ main difficulty: computation of the square distance d2
S and its gradient

by the set of permutations SN of a fixed partition X =
⊔

1≤i≤N ωi.

(NB: in Rd (d ≥ 2), each iterations costs N3... −→ different approach needed)
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Distance to S and polar factorization of maps
Leb = restriction of Lebesgue measure to a compact domain X

S = {s : X → X | s#Leb = Leb} −→ ”measure-preserving maps”

−→ Note that d2
S is 2-semiconcave, i.e. m ∈M 7→ d2

S(m)− ‖m‖2 is concave.

=⇒ Given a finite-dimensional subspace M′ ⊆M, d2
S
∣∣
M′ is differentiable a.e.
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Space-discretization

−→ X is partitioned into (Vk)1≤k≤N with Leb(Vk) = 1
N and diam(Vk) ' N− 1

d
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VN

V2

. . .

. . .

Objective: Constructing a finite-dimensional subspace of M and computing ΠS

(X,Leb)
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Fast computations of d2
S and ∇ d2

S are possible in 2D [M. ’11] and 3D [Lévy ’15]

Objective: Constructing a finite-dimensional subspace of M and computing ΠS

(X,Leb)
m

T̄ = opt. transp.
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Convergence of the space-discretization

(1)


m̈(t) + 1

2ε2 (m−ΠMN
◦ΠS(m(t))) = 0

m(t) ∈MN

(m(0), ṁ(0)) = (ΠMN
(id),ΠMN

(u0))

space-discretization:
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(m(0), ṁ(0)) = (ΠMN
(id),ΠMN

(u0))



8

Convergence of the space-discretization

(1)


m̈(t) + 1

2ε2 (m−ΠMN
◦ΠS(m(t))) = 0

m(t) ∈MN
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[Gallouët–M., 2016]

writing m(t) =
∑
iMi(t)1Vi

: (2)

{
M̈i(t) + 1

2ε2 (Mi(t)− bary(Lagi(m(t))))
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h2
N
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)

−→ Proof: Gronwall on modulated energy Eu(t) = 1
2‖ṁt − ut ◦mt‖2 + 1
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S(mt)
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(Very similar to [Brenier, CMP 2000])

[Gallouët–M., 2016]

writing m(t) =
∑
iMi(t)1Vi

: (2)

{
M̈i(t) + 1

2ε2 (Mi(t)− bary(Lagi(m(t))))
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Numerical result: Stationary flow on [0, 1]2

pressure: p(x) = 1
4 (sin2(πx1) + sin2(πx2))

speed: u(x) = (cos(πx1) sin(πx2), sin(πx1) cos(πx2))

X = [0, 1]2

Stationary flow on [0, 1]2:
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Objectives: −→ ”Large-scale” computations, with more complex behaviour.

−→ Preservation of the Hamiltonian by the discrete scheme.

B. Rayleigh-Taylor instability (Inhomogeneous fluid)

50k particles, 2000 timesteps, tmax = 2

X = [−1, 1]× [−3, 3]

gravity

ρ = 3

ρ = 1

Hamiltonian preservation

symplectic Euler

velocity Verlet
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2. Semi-discrete optimal transport
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Minimizes total distance walked . . . but might exceed the capacity of bakery y0!
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ρ : X → R density of population

Y = location of bakeries

c(x, y) := ‖x− y‖2 cost of walking from x to y

I If prices are given by ψ : Y → R, people make a compromise:

Lagψ(y) = {x ∈ X;∀z ∈ Y, c(x, y) + ψ(y) ≤ c(x, z) + ψ(z)}

Y

X

Solving optimal transport between ρ and
∑
y νyδy ⇐⇒ Finding ψ

Lemma: The map Tψ induced by this decomposition is a c-optimal transport

between ρ and νψ := Tψ#ν =
∑
y∈Y ρ(Lagy(ψ))δy.

x
Tψ(x)
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Theorem: Finding an optimal transport between ρ and ν =
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I Efficient implementation combining a multiscale approach with geometric algo-
rithms to compute Laguerre cells (CGAL): [M. 11] on R2, [Lévy 15] on R3

I Early numerical methods with complexity O(N
3

ε log(N)). [Oliker–Prussner ’99]

In the simulations, we use a (damped) Newton’s algorithm, solving a sequence

of linearized discrete Monge-Ampère equations.

I ∇Φ = 0 ⇐⇒ ”discrete Monge-Ampère equation”: ∀y ∈ Y, ρ(Lagy(ψ)) = νy.

[Gangbo McCann ’96]
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Numerical example
I Simple damped Newton’s algorithm, with global linear convergence,

ρ = 1

ρ = 0

Source: PL density on X = [0, 3]2

Target: Uniform grid Y in [0, 1]2.

Near-O(N) vs O(N3) complexity for fully discrete (combinatorial) OT.

[Mirebeau 15]

under (rather) general assumptions on ρ and c. [Kitagawa, M., Thibert 16]
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3. Minimizing geodesics in SDiff
Joint work with Jean-Marie Mirebeau
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Finite-dimensional example

mins:[0,1]→Rd
1
2

∫ 1

0
‖ṡt‖2 d t where

{
∀t ∈ [0, 1], st ∈ S
s0 = s∗, s1 = s∗

I Minimizing geodesics:

Let S be a submanifold in Rd, whose minimizing geodesics need to be approximated.
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‖ṡt‖2 d t where

{
∀t ∈ [0, 1], st ∈ S
s0 = s∗, s1 = s∗

I Minimizing geodesics:

Let S be a submanifold in Rd, whose minimizing geodesics need to be approximated.

I Relaxation: Given a penalization parameter α > 0, consider

I Time-discretization: Given a number of timesteps T ∈ N, consider

min
m1,...,mT∈Rd

T

2

T−1∑
i=0

‖mi+1 −mi‖2 + λ

(
T−1∑
i=1

d2
S(mi) + ‖m0 − s∗‖2 + ‖mT − s∗‖2

)
.

min
m:[0,1]→Rd

1

2

∫ 1

0
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‖ṡt‖2 d t where

{
∀t ∈ [0, 1], st ∈ S
s0 = s∗, s1 = s∗

I Minimizing geodesics:

Let S be a submanifold in Rd, whose minimizing geodesics need to be approximated.

I Relaxation: Given a penalization parameter α > 0, consider

I Time-discretization: Given a number of timesteps T ∈ N, consider

min
m1,...,mT∈Rd

T

2

T−1∑
i=0

‖mi+1 −mi‖2 + λ

(
T−1∑
i=1

d2
S(mi) + ‖m0 − s∗‖2 + ‖mT − s∗‖2

)
.

min
m:[0,1]→Rd

1

2

∫ 1

0

‖ṁt‖2 d t+ α

(∫
[0,1]

d2
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)
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Imagine now that only a finite sample SK ⊆ S is known, with Card(SK) = K.

−→ How should λ = λ(T,K) be chosen ?
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Finite-dimensional example

Let S be a submanifold in Rd, and SK = {•} ⊆ S.

λ too small −→ discrete path takes ”shortcuts”.

λ too large −→ low-order approximation

−→ combinatorial optimization pb (when λ = +∞)

(K = 4 and T = 10)
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Minimal geodesics in SDiff and relaxations

The endpoints s∗ and s∗ of the geodesic are two (fixed) elements in SDiff.

Leb = restriction of Lebesgue measure to a compact domain X

SDiff = {s : X → X diffeomorphism | s#Leb = Leb} ⊆M = L2(X,Rd)
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A. inf{E(s) | s ∈ H1([0, 1],SDiff), s0 = s∗, s1 = s∗} where E(s) := 1
2

∫ t
0
‖ṡt‖2M d t

The endpoints s∗ and s∗ of the geodesic are two (fixed) elements in SDiff.

Leb = restriction of Lebesgue measure to a compact domain X

SDiff = {s : X → X diffeomorphism | s#Leb = Leb} ⊆M = L2(X,Rd)

B. inf{E(s) | s ∈ H1([0, 1],S), s0 = s∗, s1 = s∗}

where S = {s : X → X measurable | s#Leb = Leb},

−→ might have no solution b/c SDiff is not closed in M

−→ might have no solutions either (' non-existence of Monge solutions in OT)

C. relaxation involving measures over the set Γ of C0 paths in X.
[Brenier ’89]

[Schinerelman ’94]
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s:[0,1]→S

(s0,s1)=(s∗,s
∗)

E(s) ≤ inf
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(s0,s1)=(s∗,s
∗)
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et(ω)

−→ Similar to Kantorovich’s relation of the optimal transport problem.

−→ ∃! pressure field in L2
loc((0, 1),BV(X)). [Brenier ’99, Ambrosio–Figalli ’07]

I Numerics: mostly in 1D using permutations [Brenier ’87, Brenier–Roesch ’98]
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Time-discretization
MN ⊆M

S

m0 mT−1. . .m1 mT

I Time-discretization of geodesic with endpoints s∗, s
∗ ∈ S EN,T,λ : (MN )T → R,

action incompressibilityboundary conditions

s∗ s∗

EN,T,λ(m) :=
T

2

T−1∑
i=0

‖mi+1 −mi‖22 + λ

(
‖m0 − s∗‖22 + ‖mT − s∗‖22 +

T−1∑
i=1

d2
S(mi)

)
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T−1∑
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)

t = 0 t = 1

γk

Then, with µm = 1
N

∑N
k=1 δγk ∈ Prob(Γ),

EN,T,λ(m) = E(µm)

+ boundary cond.

+λ
∑T
i=1 W2

2(eti#µm,Leb)

ti = i
T
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N , let γk ∈ C0([0, 1],Rd) be PL with γk(ti) = mi(Vk)

MN ⊆M

S

m0 mT−1. . .m1 mT

I Time-discretization of geodesic with endpoints s∗, s
∗ ∈ S EN,T,λ : (MN )T → R,

s∗ s∗

EN,T,λ(m) :=
T

2

T−1∑
i=0

‖mi+1 −mi‖22 + λ

(
‖m0 − s∗‖22 + ‖mT − s∗‖22 +

T−1∑
i=1

d2
S(mi)

)

t = 0 t = 1

γk

Then, with µm = 1
N

∑N
k=1 δγk ∈ Prob(Γ),

EN,T,λ(m) = E(µm)

+ boundary cond.

+λ
∑T
i=1 W2

2(eti#µm,Leb)

ti = i
T

−→ ' Common discretization for both relaxations!

−→ Choice of penalization parameter?
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Convergence theorem

(Incompressibility) et#µ = Leb for all t

(Boundary conditions) (e0, e1)#Leb = (s∗, s
∗)#Leb

Regular generalized geodesic: a probability measure µ ∈ Prob(Γ) s.t.

(Regularity) ∃p with Lipschitz gradient s.t. ∀γ ∈ spt(µ), γ̈ = −∇p ◦ γ,
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mN ∈ arg min EN,TN ,λN
with λN = N2d and TNλN → 0,

(Incompressibility) et#µ = Leb for all t

(Boundary conditions) (e0, e1)#Leb = (s∗, s
∗)#Leb

Regular generalized geodesic: a probability measure µ ∈ Prob(Γ) s.t.

(Regularity) ∃p with Lipschitz gradient s.t. ∀γ ∈ spt(µ), γ̈ = −∇p ◦ γ,

Then, up to subsequences, µmN
∈ Prob(Γ) converges weakly to a minimizing

I It turns out that one can take D := dim(spt(µopt))

[Mirebeau–M., 2015]

generalized geodesic between s∗ and s∗.

I Main step: lim supN EN,TN ,λN
(mN ) ≤ E(µopt).

−→ For a classical solution s : [0, 1]→ S, dim(spt(µopt)) = d.

−→ For a regular generalized solution, dim(spt(µopt)) ≤ 2d.

more precisely, we need minm∈MT
N
EN,T,λ(m) ≤ E(µopt) +O(Th2

Nλ)

(λN = Nd)

(λN = N2d)

for hN := N−
1
D , with D ∈ N to be determined.
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Energy estimate for classical solutions

Proposition: Assume that the minimizing geodesic s between s∗ and s∗ is classical

minm∈(MN )T EN,T,λ(m) ≤ E(s) +O(Th2
Nλ)

and that s ∈ L∞([0, 1], H1(X)). Then, with hN = N−1/d,
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Proposition: Assume that the minimizing geodesic s between s∗ and s∗ is classical

minm∈(MN )T EN,T,λ(m) ≤ E(s) +O(Th2
Nλ)

and that s ∈ L∞([0, 1], H1(X)). Then, with hN = N−1/d,

s0 = s∗ si = s(i/T )

mi := ΠN (si)

mi := ΠN (s(i/T )) where ΠN : M→MN orthogonal proj.

S

MN

Proof: Take s ∈ L∞([0, 1], H1(X)), and approximate it through m ∈MT
N ,

Then, EN,T,λ(m) is upper bounded using the Poincaré-Wirtinger inequality.
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Energy estimate for generalized solutions

Prop: Assume that the generalized minimizing geodesic in Π is associated to

minm∈(EN )T EN,T,λ(m) ≤ E(µopt) +O(Th2
Nλ)

a pressure p : [0, 1]× Ω→ R with Lipschitz gradient. Then, with hN = N−1/2d,
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Energy estimate for generalized solutions

Prop: Assume that the generalized minimizing geodesic in Π is associated to

minm∈(EN )T EN,T,λ(m) ≤ E(µopt) +O(Th2
Nλ)

a pressure p : [0, 1]× Ω→ R with Lipschitz gradient. Then, with hN = N−1/2d,

Γ := C0([0, 1],Rd), Γp := {γ ∈ Γ; γ̈ = −∇p ◦ γ}.

D. reorder paths so that d(γk(0), Vk) . hN and quantize in time: mi|ωk
:= γk(i/T )

t = 0 t = 1

γk(i/T )
Vk

E. Upper bound EN,T,λ(m) using the quantization estimate.

such that spt(µopt) ⊆ Γp ⊆ H1([0, 1], X).

A. dim(Γp) ≤ 2d by Cauchy-Lipschitz

B. Γp can be covered by N balls with radius hN ' N−
1
2d

C. ∃(γk)Nk=1 in Γp such that W2,H1(X)

(
µopt, 1

N

∑N
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Numerical result: Inversion of the Disk
X = B(0, 1) ⊆ R2 (s∗, s

∗) = (id,−id)

Classical solutions: clockwise/counterclockwise rotations µ±
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Numerical result: Inversion of the Disk
X = B(0, 1) ⊆ R2 (s∗, s

∗) = (id,−id)

Classical solutions: clockwise/counterclockwise rotations µ±

linear combination µ 1
2

of µ± constructed from rotations

Examples of generalized solutions:

NB: dim(spt(µ 1
2
)) = 2
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Numerical result: Inversion of the Disk
X = B(0, 1) ⊆ R2

spt(µ) = {t 7→ x cos(πt) + v sin(πt) ∈ Γ;

(s∗, s
∗) = (id,−id)

Brenier’s generalized solution: µ ∈ Prob(Γ):

(x, v) ∈ X × R2, ‖v‖2 = 1− ‖x‖2}
t = 0

t = 1
2

t = 1

−→ non-deterministic solution, dim(spt(µ)) = 3
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Numerical result: Inversion of the Disk
X = B(0, 1) ⊆ R2

spt(µ) = {t 7→ x cos(πt) + v sin(πt) ∈ Γ;

(s∗, s
∗) = (id,−id)

Brenier’s generalized solution: µ ∈ Prob(Γ):

(x, v) ∈ X × R2, ‖v‖2 = 1− ‖x‖2}
t = 0

t = 1
2

t = 1

Computed trajectories for N = 105, T = 17

−→ non-deterministic solution, dim(spt(µ)) = 3



25

Numerical result: Beltrami Flow in Square

pressure: p(x) = 1
4 (sin2(πx1) + sin2(πx2))

speed: u(x) = (cos(πx1) sin(πx2), sin(πx1) cos(πx2))

X = [0, 1]2

Stationary flow on [0, 1]2:

[Brenier–Roesch]
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ṡet = u ◦ st
Exact Lagrangian solution:

se0 = id

X = [0, 1]2
Reconstruction problem:
min EN,T,λ
s∗ = se0, s∗ = setmax

Stationary flow on [0, 1]2:

[Brenier–Roesch]



25

Numerical result: Beltrami Flow in Square

NB: se is minimizing on [0, 1]

pressure: p(x) = 1
4 (sin2(πx1) + sin2(πx2))

speed: u(x) = (cos(πx1) sin(πx2), sin(πx1) cos(πx2))

ṡet = u ◦ st
Exact Lagrangian solution:

se0 = id

X = [0, 1]2
Reconstruction problem:
min EN,T,λ
s∗ = se0, s∗ = setmax

tmax ∈ {0.9, 1.1, 1.3, 1.5}
Parameters:

Stationary flow on [0, 1]2:

[Brenier–Roesch]
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Numerical result: Beltrami Flow in Square

NB: qualitatively similar results by Luca Nenna and J.D. Benamou
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Numerical result: Comparison of Trajectories

Square, tmax = 1.5

Disk inversion
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Comparison of Minkowski dimensions

Minkowski dimension Let S ⊆ Γ be a compact subset of a metric space.

dim(S) = lim supN→∞ log(N)/ log(1/δN )

where δN = minimum radius required to cover S with N balls.

Disk inversionSquare rotation, tmax ∈ {0.9, 1.1, 1.3, 1.5}

dim = 2

dim = 3

Estimation of dim(spt(µ)) via log(N)/ log(1/δN )
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Perspectives

A) More realistic numerical schemes for the Cauchy problem (e.g. without ε) ?

B) Changing the polar factorization theorem −→ other fluid models,

e.g. fluid-structure interactions / Camassa-Holm equation [Gallouet-Vialard 16],

pressureless Euler equation with congestion [Maury-Preux ’15]

C) Viscosity?
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Solutions to Euler’s equations as geodesics in SDiff

SDiff = measure-preserving diffeomorphisms from X to itself ⊆ L2(X,Rd)

[Arnold 1966]

|X| = 1

X ⊆ Rd bounded
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∂tu+ (u · ∇)u = −∇p in X

divu = 0 in X

u · n = 0 on ∂X
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t ⊥ TidSDiff
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Solutions to Euler’s equations as geodesics in SDiff

SDiff = measure-preserving diffeomorphisms from X to itself ⊆ L2(X,Rd)

[Arnold 1966]

|X| = 1

s0(x)

st(x)

−→ Formally, a path s : [0, 1]→ SDiff is a geodesic iff

−→ With ut := ṡt ◦ s−1
t (= velocity in Eulerian coordinates),

⇐⇒ ∃p : [0, 1]×X → R, s̈t = −∇pt ◦ st

s̈t ⊥ TstSDiff


∂tu+ (u · ∇)u = −∇p in X

divu = 0 in X

u · n = 0 on ∂X

⇐⇒ s̈t ◦ s−1
t ⊥ TidSDiff

X ⊆ Rd bounded

one recovers Euler’s equations for incompressible fluids:

Use this formulation for numerical computations (following Brenier):

−→ TidSDiff = divergence-free vector fields

= {∇p | p : X → R}⊥

−→ Minimizing geodesics (with Jean-Marie Mirebeau, 2015)

−→ Cauchy problem (with Thomas Gallouet, 2016).


