# Discretization of Euler's equations for incompressible fluids through semi-discrete optimal transport.

Quentin Mérigot

Joint works with Jean-Marie Mirebeau et Thomas Gallouët

Brenier60: Calculus of Variations & Optimal Transport / January 2017 / IHP

1

# Discretization of Euler's equations for incompressible fluids through semi-discrete optimal transport.

Quentin Mérigot

Joint works with Jean-Marie Mirebeau et Thomas Gallouët

(... and borrowing many ideas from Yann...)

Brenier60: Calculus of Variations & Optimal Transport / January 2017 / IHP

1

 $\mathbb{SDiff} = \text{measure-preserving diffeomorphisms from } X \text{ to itself} \subseteq L^2(X, \mathbb{R}^d)$ 

[Arnold 1966]



 $\longrightarrow$  Formally, a path  $s : [0,1] \rightarrow \mathbb{SDiff}$  is a **geodesic** iff  $\ddot{s}_t \perp T_{s_t} \mathbb{SDiff}$ 

 $\mathbb{SDiff} = \text{measure-preserving diffeomorphisms from } X \text{ to itself} \subseteq L^2(X, \mathbb{R}^d)$ 

[Arnold 1966]



 $\longrightarrow$  Formally, a path  $s : [0,1] \rightarrow \mathbb{SDiff}$  is a **geodesic** iff  $\ddot{s}_t \perp T_{s_t} \mathbb{SDiff} \iff \ddot{s}_t \circ s_t^{-1} \perp T_{id} \mathbb{SDiff}$ 

 $\mathbb{SDiff} = \text{measure-preserving diffeomorphisms from } X \text{ to itself} \subseteq L^2(X, \mathbb{R}^d)$ 

[Arnold 1966]



 $\longrightarrow$  Formally, a path  $s : [0,1] \rightarrow \mathbb{SDiff}$  is a **geodesic** iff  $\ddot{s}_t \perp T_{s_t} \mathbb{SDiff} \iff \ddot{s}_t \circ s_t^{-1} \perp T_{id} \mathbb{SDiff}$ 

 $(T_{id} SDiff = divergence-free vector fields = {\nabla p \mid p : X \to \mathbb{R}}^{\perp})$ 

 $\mathbb{SDiff} = \text{measure-preserving diffeomorphisms from } X \text{ to itself} \subseteq L^2(X, \mathbb{R}^d)$ 

[Arnold 1966]



 $\longrightarrow$  Formally, a path  $s : [0,1] \rightarrow \mathbb{SDiff}$  is a **geodesic** iff  $\ddot{s}_t \perp T_{s_t} \mathbb{SDiff} \iff \ddot{s}_t \circ s_t^{-1} \perp T_{id} \mathbb{SDiff}$ 

 $\iff \exists p: [0,1] \times X \to \mathbb{R}, \ddot{s}_t = -\nabla p_t \circ s_t$ 

 $(T_{id} SDiff = divergence-free vector fields = {\nabla p \mid p : X \to \mathbb{R}}^{\perp})$ 

 $\mathbb{SDiff} = \text{measure-preserving diffeomorphisms from } X \text{ to itself} \subseteq L^2(X, \mathbb{R}^d)$ 

[Arnold 1966]



$$\rightarrow \text{ Formally, a path } s: [0,1] \rightarrow \mathbb{SDiff} \text{ is a geodesic iff} \\ \ddot{s}_t \perp \mathrm{T}_{s_t} \mathbb{SDiff} \iff \ddot{s}_t \circ s_t^{-1} \perp \mathrm{T}_{\mathrm{id}} \mathbb{SDiff} \\ \iff \exists p: [0,1] \times X \rightarrow \mathbb{R}, \\ \ddot{s}_t = -\nabla p_t \circ s_t \end{aligned}$$

 $(T_{id} SDiff = divergence-free vector fields = {\nabla p \mid p : X \to \mathbb{R}}^{\perp})$ 

 $\longrightarrow$  With  $u_t := \dot{s_t} \circ s_t^{-1}$  (= velocity in Eulerian coordinates), one recovers **Euler's equations** for incompressible fluids:

$$\begin{cases} \partial_t u + (u \cdot \nabla)u = -\nabla p & \text{ in } X \\ \operatorname{div} u = 0 & \text{ in } X \\ u \cdot n = 0 & \text{ on } \partial X \end{cases}$$

 $\mathbb{SDiff} = \text{measure-preserving diffeomorphisms from } X \text{ to itself} \subseteq L^2(X, \mathbb{R}^d)$ 

[Arnold 1966]



This talk: Using this formulation for numerical computations (following Brenier):
→ Minimizing geodesics (with Jean-Marie Mirebeau, 2015)
→ Cauchy problem (with Thomas Gallouet, 2016).

# 1. Discretization of the Cauchy problem

Joint work with Thomas Gallouët

$$\begin{cases} \ddot{s}(t) \perp \mathbf{T}_{s(t)} S\\ s(t) \in S\\ (s(0), \dot{s}(0)) = (s_0, v_0) \end{cases}$$

where  $S \subseteq \mathbb{R}^d$  submanifold

 $\begin{cases} \ddot{s}(t) \perp \mathcal{T}_{s(t)}S \\ s(t) \in S \\ (s(0), \dot{s}(0)) = (s_0, v_0) \end{cases} \longrightarrow \begin{cases} \ddot{m}(t) + \frac{1}{2\varepsilon^2} \nabla d_S^2(m(t)) = 0 \\ m(t) \in \mathbb{R}^d \\ (m(0), \dot{m}(0)) = (\tilde{s}_0, \tilde{v}_0) \end{cases}$ where  $S \subseteq \mathbb{R}^d$  submanifold where  $d_S^2(m) = \min_{s \in S} ||m - s||^2$ .

 $\begin{cases} \ddot{s}(t) \perp T_{s(t)}S \\ s(t) \in S \\ (s(0), \dot{s}(0)) = (s_0, v_0) \end{cases} \rightarrow \begin{cases} \ddot{m}(t) + \frac{1}{2\varepsilon^2} \nabla d_S^2(m(t)) = 0 \\ m(t) \in \mathbb{R}^d \\ (m(0), \dot{m}(0)) = (\tilde{s}_0, \tilde{v}_0) \end{cases}$ where  $S \subseteq \mathbb{R}^d$  submanifold where  $d_S^2(m) = \min_{s \in S} \|m - s\|^2$ .

 $\longrightarrow$  Recall:  $\frac{1}{2}\nabla d_S^2(m) = m - \Pi_S(m)$  a.e. where  $\Pi_S(\cdot) = \text{closest point map}$ 

 $\begin{cases} \ddot{s}(t) \perp \mathcal{T}_{s(t)}S \\ s(t) \in S \\ (s(0), \dot{s}(0)) = (s_0, v_0) \end{cases} \rightarrow \begin{cases} \ddot{m}(t) + \frac{1}{2\varepsilon^2} \nabla \, \mathrm{d}_S^2(m(t)) = 0 \\ m(t) \in \mathbb{R}^d \\ (m(0), \dot{m}(0)) = (\tilde{s}_0, \tilde{v}_0) \end{cases}$ where  $S \subseteq \mathbb{R}^d$  submanifold where  $\mathrm{d}_S^2(m) = \min_{s \in S} \|m - s\|^2$ .

 $\longrightarrow$  Recall:  $\frac{1}{2}\nabla d_S^2(m) = m - \Pi_S(m)$  a.e. where  $\Pi_S(\cdot) = \text{closest point map}$ 

 $\longrightarrow$  Hamiltonian system for  $H(m,v) = \frac{1}{2} ||v||^2 + \frac{1}{2\varepsilon^2} d_S^2(m)$ .

 $\begin{cases} \ddot{s}(t) \perp \mathcal{T}_{s(t)}S \\ s(t) \in S \\ (s(0), \dot{s}(0)) = (s_0, v_0) \end{cases} \rightarrow \begin{cases} \ddot{m}(t) + \frac{1}{2\varepsilon^2}\nabla d_S^2(m(t)) = 0 \\ m(t) \in \mathbb{R}^d \\ (m(0), \dot{m}(0)) = (\tilde{s}_0, \tilde{v}_0) \end{cases}$ where  $S \subseteq \mathbb{R}^d$  submanifold where  $d_S^2(m) = \min_{s \in S} \|m - s\|^2$ .

 $\longrightarrow$  Recall:  $\frac{1}{2}\nabla d_S^2(m) = m - \Pi_S(m)$  a.e. where  $\Pi_S(\cdot) = \text{closest point map}$ 

 $\longrightarrow$  Hamiltonian system for  $H(m, v) = \frac{1}{2} ||v||^2 + \frac{1}{2\varepsilon^2} d_S^2(m)$ .

Simple example: Take 
$$S = \mathbb{R} \times \{0\} \subseteq \mathbb{R}^2$$
,  $s_0 = (0, 0)$ ,  $v_0 = (1, 0)$   
 $\tilde{s}_0 = (0, h)$ ,  $\tilde{v}_0 = (1, \nu)$ 

with 
$$m = (x, y)$$
 we have  $\begin{cases} \ddot{x} = 0 \\ \ddot{y} + \frac{1}{\varepsilon^2} y = 0 \end{cases}$ 

 $\begin{cases} \ddot{s}(t) \perp T_{s(t)}S \\ s(t) \in S \\ (s(0), \dot{s}(0)) = (s_0, v_0) \end{cases} \rightarrow \begin{cases} \ddot{m}(t) + \frac{1}{2\varepsilon^2} \nabla d_S^2(m(t)) = 0 \\ m(t) \in \mathbb{R}^d \\ (m(0), \dot{m}(0)) = (\tilde{s}_0, \tilde{v}_0) \end{cases}$ where  $S \subseteq \mathbb{R}^d$  submanifold where  $d_S^2(m) = \min_{s \in S} ||m - s||^2$ .

 $\longrightarrow$  Recall:  $\frac{1}{2}\nabla d_S^2(m) = m - \Pi_S(m)$  a.e. where  $\Pi_S(\cdot) = \text{closest point map}$ 

 $\longrightarrow$  Hamiltonian system for  $H(m, v) = \frac{1}{2} \|v\|^2 + \frac{1}{2\varepsilon^2} d_S^2(m)$ .

4

Simple example: Take 
$$S = \mathbb{R} \times \{0\} \subseteq \mathbb{R}^2$$
,  $s_0 = (0,0)$ ,  $v_0 = (1,0)$   
 $\tilde{s}_0 = (0,h)$ ,  $\tilde{v}_0 = (1,\nu)$ 

with m = (x, y) we have  $\begin{cases} \ddot{x} = 0 \\ \ddot{y} + \frac{1}{\varepsilon^2}y = 0 \end{cases}$  i.e.  $\begin{cases} x(t) = t \\ y(t) = h\cos(t/\varepsilon) + \nu\varepsilon\sin(t/\varepsilon) \end{cases}$ 

 $\begin{cases} \ddot{s}(t) \perp T_{s(t)}S \\ s(t) \in S \\ (s(0), \dot{s}(0)) = (s_0, v_0) \end{cases} \rightarrow \begin{cases} \ddot{m}(t) + \frac{1}{2\varepsilon^2} \nabla d_S^2(m(t)) = 0 \\ m(t) \in \mathbb{R}^d \\ (m(0), \dot{m}(0)) = (\tilde{s}_0, \tilde{v}_0) \end{cases}$ where  $S \subseteq \mathbb{R}^d$  submanifold where  $d_S^2(m) = \min_{s \in S} ||m - s||^2$ .

 $\longrightarrow$  Recall:  $\frac{1}{2}\nabla d_S^2(m) = m - \Pi_S(m)$  a.e. where  $\Pi_S(\cdot) = \text{closest point map}$ 

 $\longrightarrow$  Hamiltonian system for  $H(m, v) = \frac{1}{2} ||v||^2 + \frac{1}{2\varepsilon^2} d_S^2(m)$ .

Simple example: Take 
$$S = \mathbb{R} \times \{0\} \subseteq \mathbb{R}^2$$
,  $s_0 = (0,0)$ ,  $v_0 = (1,0)$   
 $\tilde{s}_0 = (0,h)$ ,  $\tilde{v}_0 = (1,\nu)$ 

with m = (x, y) we have  $\begin{cases} \ddot{x} = 0 \\ \ddot{y} + \frac{1}{\varepsilon^2}y = 0 \end{cases}$  i.e.  $\begin{cases} x(t) = t \\ y(t) = h\cos(t/\varepsilon) + \nu\varepsilon\sin(t/\varepsilon) \end{cases}$ 

 $\rightarrow \mathcal{C}^1$  convergence towards the geodesic requires  $\frac{h}{\varepsilon} \longrightarrow 0$ .

Leb = restriction of Lebesgue measure to a compact domain X  $S = \{s : X \to X \mid s_{\#} \text{Leb} = \text{Leb}\} \longrightarrow$  "measure-preserving maps"  $M = L^2(X, \mathbb{R}^d)$ 

$$\begin{cases} \ddot{m}(t) + \frac{1}{2\varepsilon^2} \nabla \, \mathrm{d}_{\mathbb{S}}^2(m(t)) = 0\\ m(t) \in \mathbb{M}\\ (m(0), \dot{m}(0)) = (\tilde{s}_0, \tilde{v}_0) \end{cases}$$

Leb = restriction of Lebesgue measure to a compact domain X  $S = \{s : X \to X \mid s_{\#} \text{Leb} = \text{Leb}\} \longrightarrow$  "measure-preserving maps"  $M = L^2(X, \mathbb{R}^d)$ 

$$\begin{cases} \ddot{m}(t) + \frac{1}{2\varepsilon^2} \nabla \, \mathrm{d}_{\mathbb{S}}^2(m(t)) = 0\\ m(t) \in \mathbb{M}\\ (m(0), \dot{m}(0)) = (\tilde{s}_0, \tilde{v}_0) \end{cases}$$

discretizing this formulation for numerical resolution of Euler's equations ?

 $\longrightarrow$  main difficulty: computation of the square distance  $d_s^2$  and its gradient

Leb = restriction of Lebesgue measure to a compact domain X  $S = \{s : X \to X \mid s_{\#} \text{Leb} = \text{Leb}\} \longrightarrow$  "measure-preserving maps"  $M = L^2(X, \mathbb{R}^d)$ 

 $\begin{cases} \ddot{m}(t) + \frac{1}{2\varepsilon^2} \nabla \, \mathrm{d}_{\mathbb{S}}^2(m(t)) = 0\\ m(t) \in \mathbb{M}\\ (m(0), \dot{m}(0)) = (\tilde{s}_0, \tilde{v}_0) \end{cases}$ 

discretizing this formulation for numerical resolution of Euler's equations ?

 $\longrightarrow$  main difficulty: computation of the square distance  $d_s^2$  and its gradient

 $\longrightarrow$  early numerical work by Brenier (80's), where  $\mathbb{S}$  is approximated by the set of permutations  $\mathbb{S}_N$  of a fixed partition  $X = \bigsqcup_{1 \le i \le N} \omega_i$ .

Leb = restriction of Lebesgue measure to a compact domain X  $S = \{s : X \to X \mid s_{\#} \text{Leb} = \text{Leb}\} \longrightarrow$  "measure-preserving maps"  $M = L^2(X, \mathbb{R}^d)$ 

 $\begin{cases} \ddot{m}(t) + \frac{1}{2\varepsilon^2} \nabla d_{\mathbb{S}}^2(m(t)) = 0\\ m(t) \in \mathbb{M}\\ (m(0), \dot{m}(0)) = (\tilde{s}_0, \tilde{v}_0) \end{cases}$ 

discretizing this formulation for numerical resolution of Euler's equations ?

 $\longrightarrow$  main difficulty: computation of the square distance  $d_s^2$  and its gradient

 $\longrightarrow$  early numerical work by Brenier (80's), where  $\mathbb{S}$  is approximated by the set of permutations  $\mathbb{S}_N$  of a fixed partition  $X = \bigsqcup_{1 \le i \le N} \omega_i$ .

(NB: in  $\mathbb{R}^d$   $(d \ge 2)$ , each iterations costs  $N^3 \dots \longrightarrow$  different approach needed)

Leb = restriction of Lebesgue measure to a compact domain X

 $S = \{s : X \to X \mid s_{\#} \text{Leb} = \text{Leb}\} \longrightarrow$  "measure-preserving maps"

Leb = restriction of Lebesgue measure to a compact domain X

 $S = \{s : X \to X \mid s_{\#} \text{Leb} = \text{Leb}\} \longrightarrow$  "measure-preserving maps"

**Notation:** Let  $d_{\mathbb{S}}^2(\cdot) = \min_{s \in \mathbb{S}} \| \cdot -s \|_2^2$  and  $\Pi_{\mathbb{S}}(\cdot)$  the set of projections.

Leb = restriction of Lebesgue measure to a compact domain X

 $S = \{s : X \to X \mid s_{\#} \text{Leb} = \text{Leb}\} \longrightarrow$  "measure-preserving maps"

**Notation:** Let  $d_{\mathbb{S}}^2(\cdot) = \min_{s \in \mathbb{S}} \| \cdot -s \|_2^2$  and  $\Pi_{\mathbb{S}}(\cdot)$  the set of projections.

Polar Factorization Theorem (Brenier): For every map m in  $\mathbb{M} = L^2(X, \mathbb{R}^d)$ ,  $d_{\mathbb{S}}^2(m) = W_2^2(\text{Leb}, m_{\#}\text{Leb})$ 

[Brenier '92]

Leb = restriction of Lebesgue measure to a compact domain X

 $S = \{s : X \to X \mid s_{\#} \text{Leb} = \text{Leb}\} \longrightarrow$  "measure-preserving maps"

**Notation:** Let  $d_{\mathbb{S}}^2(\cdot) = \min_{s \in \mathbb{S}} \| \cdot -s \|_2^2$  and  $\Pi_{\mathbb{S}}(\cdot)$  the set of projections.

Polar Factorization Theorem (Brenier): For every map m in  $\mathbb{M} = L^2(X, \mathbb{R}^d)$ ,  $d_{\mathbb{S}}^2(m) = W_2^2(\text{Leb}, m_{\#}\text{Leb})$ 



Leb = restriction of Lebesgue measure to a compact domain X

 $S = \{s : X \to X \mid s_{\#} \text{Leb} = \text{Leb}\} \longrightarrow$  "measure-preserving maps"

**Notation:** Let  $d_{\mathbb{S}}^2(\cdot) = \min_{s \in \mathbb{S}} \| \cdot -s \|_2^2$  and  $\Pi_{\mathbb{S}}(\cdot)$  the set of projections.

Polar Factorization Theorem (Brenier): For every map m in  $\mathbb{M} = L^2(X, \mathbb{R}^d)$ ,  $d_{\mathbb{S}}^2(m) = W_2^2(\text{Leb}, m_{\#}\text{Leb})$ 

Let T be the quadratic optimal transport map between Leb and  $m_{\#}$ Leb. Then,

$$\Pi_{\mathbb{S}}(m) = \{ \bar{s} \in \mathbb{S} \mid \bar{T} \circ \bar{s} = m \}$$



**Objective:** Constructing a finite-dimensional subspace of  $\mathbb{M}$  and computing  $\Pi_{\mathbb{S}}$  $\longrightarrow X$  is partitioned into  $(V_k)_{1 \leq k \leq N}$  with  $\operatorname{Leb}(V_k) = \frac{1}{N}$  and  $\operatorname{diam}(V_k) \simeq N^{-\frac{1}{d}}$ 



**Objective:** Constructing a finite-dimensional subspace of M and computing  $\Pi_{\mathbb{S}}$ 

 $\longrightarrow X$  is partitioned into  $(V_k)_{1 \le k \le N}$  with  $\operatorname{Leb}(V_k) = \frac{1}{N}$  and  $\operatorname{diam}(V_k) \simeq N^{-\frac{1}{d}}$ 

 $\longrightarrow \mathbb{M}_N := \{ \text{ piecewise constant functions on } (V_k) \} \subseteq \mathbb{M}$ 



**Objective:** Constructing a finite-dimensional subspace of  $\mathbb{M}$  and computing  $\Pi_{\mathbb{S}}$ 

- $\longrightarrow X$  is partitioned into  $(V_k)_{1 \le k \le N}$  with  $\operatorname{Leb}(V_k) = \frac{1}{N}$  and  $\operatorname{diam}(V_k) \simeq N^{-\frac{1}{d}}$
- $\longrightarrow \mathbb{M}_N := \{ \text{ piecewise constant functions on } (V_k) \} \subseteq \mathbb{M}$
- $\longrightarrow$  Given  $m = \sum_i M_i \mathbf{1}_{V_i} \in \mathbb{M}_N$  one has  $m_{\#} \text{Leb} = \frac{1}{N} \sum_i \delta_{M_i}$



**Objective:** Constructing a finite-dimensional subspace of  $\mathbb{M}$  and computing  $\Pi_{\mathbb{S}}$ 

- $\longrightarrow X$  is partitioned into  $(V_k)_{1 \le k \le N}$  with  $\operatorname{Leb}(V_k) = \frac{1}{N}$  and  $\operatorname{diam}(V_k) \simeq N^{-\frac{1}{d}}$
- $\longrightarrow \mathbb{M}_N := \{ \text{ piecewise constant functions on } (V_k) \} \subseteq \mathbb{M}$
- $\longrightarrow$  Given  $m = \sum_i M_i \mathbf{1}_{V_i} \in \mathbb{M}_N$  one has  $m_{\#} \text{Leb} = \frac{1}{N} \sum_i \delta_{M_i}$



Fast computations of  $d_{S}^{2}$  and  $\nabla d_{S}^{2}$  are possible in 2D [M. '11] and 3D [Lévy '15]

**Objective:** Constructing a finite-dimensional subspace of  $\mathbb{M}$  and computing  $\Pi_{\mathbb{S}}$ 

- $\longrightarrow X$  is partitioned into  $(V_k)_{1 \le k \le N}$  with  $\operatorname{Leb}(V_k) = \frac{1}{N}$  and  $\operatorname{diam}(V_k) \simeq N^{-\frac{1}{d}}$
- $\longrightarrow \mathbb{M}_N := \{ \text{ piecewise constant functions on } (V_k) \} \subseteq \mathbb{M}$
- $\longrightarrow$  Given  $m = \sum_i M_i \mathbf{1}_{V_i} \in \mathbb{M}_N$  one has  $m_{\#} \text{Leb} = \frac{1}{N} \sum_i \delta_{M_i}$



Fast computations of  $d_{S}^{2}$  and  $\nabla d_{S}^{2}$  are possible in 2D [M. '11] and 3D [Lévy '15]

space-discretization:

(1) 
$$\begin{cases} \ddot{m}(t) + \frac{1}{2\varepsilon^2}(m - \Pi_{\mathbb{M}_N} \circ \Pi_{\mathbb{S}}(m(t))) = 0 \\ m(t) \in \mathbb{M}_N \\ (m(0), \dot{m}(0)) = (\Pi_{\mathbb{M}_N}(\mathrm{id}), \Pi_{\mathbb{M}_N}(u_0)) \end{cases}$$

space-discretization: (1)  $\begin{cases} \ddot{m}(t) + \frac{1}{2\varepsilon^2}(m - \Pi_{\mathbb{M}_N} \circ \Pi_{\mathbb{S}}(m(t))) = 0\\ m(t) \in \mathbb{M}_N\\ (m(0), \dot{m}(0)) = (\Pi_{\mathbb{M}_N}(\mathrm{id}), \Pi_{\mathbb{M}_N}(u_0)) \end{cases}$   $\begin{cases} \ddot{M}_i(t) + \frac{1}{2\varepsilon^2}(M_i(t) - \mathrm{bary}(\mathrm{Lag}_i(m(t)))) \end{cases}$ 

writing  $m(t) = \sum_{i} M_{i}(t) \mathbf{1}_{V_{i}}$ : (2)  $\begin{cases} M_{i}(t) + \frac{1}{2\varepsilon^{2}} (M_{i}(t) - \operatorname{bary}(\operatorname{Lag}_{i}(m(t)))) \\ (m(0), \dot{m}(0)) = (\prod_{M_{N}} (\operatorname{id}), \prod_{M_{N}} (u_{0})) \end{cases}$ 

space-discretization: (1)  $\begin{cases} \ddot{m}(t) + \frac{1}{2\varepsilon^2}(m - \Pi_{\mathbb{M}_N} \circ \Pi_{\mathbb{S}}(m(t))) = 0\\ m(t) \in \mathbb{M}_N\\ (m(0), \dot{m}(0)) = (\Pi_{\mathbb{M}_N}(\mathrm{id}), \Pi_{\mathbb{M}_N}(u_0)) \end{cases}$ 

writing  $m(t) = \sum_{i} M_{i}(t) \mathbf{1}_{V_{i}}$ : (2)  $\begin{cases} M_{i}(t) + \frac{1}{2\varepsilon^{2}}(M_{i}(t) - \operatorname{bary}(\operatorname{Lag}_{i}(m(t)))) \\ (m(0), \dot{m}(0)) = (\prod_{M_{N}}(\operatorname{id}), \prod_{M_{N}}(u_{0})) \end{cases}$ 

 $[\simeq M_i$  is attached by a spring to the barycenter of its (time-dependent) Laguerre cell.]

space-discretization: (1)  $\begin{cases} \ddot{m}(t) + \frac{1}{2\varepsilon^2}(m - \Pi_{\mathbb{M}_N} \circ \Pi_{\mathbb{S}}(m(t))) = 0\\ m(t) \in \mathbb{M}_N\\ (m(0), \dot{m}(0)) = (\Pi_{\mathbb{M}_N}(\mathrm{id}), \Pi_{\mathbb{M}_N}(u_0)) \end{cases}$ 

writing  $m(t) = \sum_{i} M_{i}(t) \mathbf{1}_{V_{i}}$ : (2)  $\begin{cases} M_{i}(t) + \frac{1}{2\varepsilon^{2}}(M_{i}(t) - \operatorname{bary}(\operatorname{Lag}_{i}(m(t)))) \\ (m(0), \dot{m}(0)) = (\prod_{M_{N}}(\operatorname{id}), \prod_{M_{N}}(u_{0})) \end{cases}$ 

 $[\simeq M_i$  is attached by a spring to the barycenter of its (time-dependent) Laguerre cell.]

**Theorem:** Let (u, p) be a regular (e.g.  $\mathcal{C}^{1,1}$ ) solution to Euler's equations. Then,  $\forall t \in [0, T], \quad \|\dot{m}_t - u_t \circ m_t\|_{L^2(X, \mathbb{R}^d)}^2 \leq C\left(\frac{h_N^2}{\varepsilon^2} + \varepsilon^2 + h_N\right) \quad \text{w.} \quad h_N = N^{-1/d}$ 

[Gallouët-M., 2016]

space-discretization: (1)  $\begin{cases} \ddot{m}(t) + \frac{1}{2\varepsilon^2}(m - \Pi_{\mathbb{M}_N} \circ \Pi_{\mathbb{S}}(m(t))) = 0\\ m(t) \in \mathbb{M}_N\\ (m(0), \dot{m}(0)) = (\Pi_{\mathbb{M}_N}(\mathrm{id}), \Pi_{\mathbb{M}_N}(u_0)) \end{cases}$ 

writing  $m(t) = \sum_{i} M_{i}(t) \mathbf{1}_{V_{i}}$ : (2)  $\begin{cases} M_{i}(t) + \frac{1}{2\varepsilon^{2}} (M_{i}(t) - \operatorname{bary}(\operatorname{Lag}_{i}(m(t)))) \\ (m(0), \dot{m}(0)) = (\prod_{M_{N}} (\operatorname{id}), \prod_{M_{N}} (u_{0})) \end{cases}$ 

 $[\simeq M_i$  is attached by a spring to the barycenter of its (time-dependent) Laguerre cell.]

**Theorem:** Let (u, p) be a regular (e.g.  $\mathcal{C}^{1,1}$ ) solution to Euler's equations. Then,  $\forall t \in [0, T], \quad \|\dot{m}_t - u_t \circ m_t\|_{L^2(X, \mathbb{R}^d)}^2 \leq C\left(\frac{h_N^2}{\varepsilon^2} + \varepsilon^2 + h_N\right) \quad \text{w.} \quad h_N = N^{-1/d}$ 

[Gallouët–M., 2016]

 $\longrightarrow \text{ Proof: Gronwall on modulated energy } E_u(t) = \frac{1}{2} \|\dot{m}_t - u_t \circ m_t\|^2 + \frac{1}{2\varepsilon^2} d_{\mathbb{S}}^2(m_t)$ (Very similar to [Brenier, CMP 2000])

space-discretization: (1)  $\begin{cases} \ddot{m}(t) + \frac{1}{2\varepsilon^2}(m - \Pi_{\mathbb{M}_N} \circ \Pi_{\mathbb{S}}(m(t))) = 0\\ m(t) \in \mathbb{M}_N\\ (m(0), \dot{m}(0)) = (\Pi_{\mathbb{M}_N}(\mathrm{id}), \Pi_{\mathbb{M}_N}(u_0)) \end{cases}$ 

writing  $m(t) = \sum_{i} M_{i}(t) \mathbf{1}_{V_{i}}$ : (2)  $\begin{cases} M_{i}(t) + \frac{1}{2\varepsilon^{2}} (M_{i}(t) - \operatorname{bary}(\operatorname{Lag}_{i}(m(t)))) \\ (m(0), \dot{m}(0)) = (\prod_{M_{N}} (\operatorname{id}), \prod_{M_{N}} (u_{0})) \end{cases}$ 

 $[\simeq M_i$  is attached by a spring to the barycenter of its (time-dependent) Laguerre cell.]

**Theorem:** Let (u, p) be a regular (e.g.  $\mathcal{C}^{1,1}$ ) solution to Euler's equations. Then,  $\forall t \in [0, T], \quad \|\dot{m}_t - u_t \circ m_t\|_{L^2(X, \mathbb{R}^d)}^2 \leq C\left(\frac{h_N^2}{\varepsilon^2} + \varepsilon^2 + h_N\right) \quad \text{w.} \quad h_N = N^{-1/d}$ 

[Gallouët-M., 2016]

 $\longrightarrow \text{ Proof: Gronwall on modulated energy } E_u(t) = \frac{1}{2} \|\dot{m}_t - u_t \circ m_t\|^2 + \frac{1}{2\varepsilon^2} d_{\mathbb{S}}^2(m_t)$ (Very similar to [Brenier, CMP 2000])

Convergence of a time-discretization using the symplectic Euler scheme.

8
## Numerical result: Stationary flow on $[0, 1]^2$

Stationary flow on  $[0,1]^2$ : speed:  $u(\mathbf{x}) = (\cos(\pi x_1)\sin(\pi x_2), \sin(\pi x_1)\cos(\pi x_2))$ pressure:  $p(\mathbf{x}) = \frac{1}{4}(\sin^2(\pi x_1) + \sin^2(\pi x_2))$ 



**Objectives:**  $\longrightarrow$  "Large-scale" computations, with more complex behaviour.  $\longrightarrow$  Preservation of the Hamiltonian by the discrete scheme.

**Objectives:**  $\longrightarrow$  "Large-scale" computations, with more complex behaviour.  $\longrightarrow$  Preservation of the Hamiltonian by the discrete scheme.

**A.** Discontinuous initial velocity



 $X = [0, 2] \times [-.5, .5] / (x = 0 \sim x = 2)$ 200k particles, 2000 timesteps,  $t_{\text{max}} = 8$ 

- **Objectives:**  $\longrightarrow$  "Large-scale" computations, with more complex behaviour.  $\longrightarrow$  Preservation of the Hamiltonian by the discrete scheme.
- A. Discontinuous initial velocity





 $X = [0, 2] \times [-.5, .5] / (x = 0 \sim x = 2)$ 200k particles, 2000 timesteps,  $t_{\text{max}} = 8$ 

- **Objectives:**  $\longrightarrow$  "Large-scale" computations, with more complex behaviour.  $\longrightarrow$  Preservation of the Hamiltonian by the discrete scheme.
- B. Rayleigh-Taylor instability (Inhomogeneous fluid)



10

 $X = [-1, 1] \times [-3, 3]$ 50k particles, 2000 timesteps,  $t_{\text{max}} = 2$ 

- **Objectives:**  $\longrightarrow$  "Large-scale" computations, with more complex behaviour.  $\longrightarrow$  Preservation of the Hamiltonian by the discrete scheme.
- B. Rayleigh-Taylor instability (Inhomogeneous fluid)



50k particles, 2000 timesteps,  $t_{\rm max} = 2$ 

10

## 2. Semi-discrete optimal transport





► If the price of bread is uniform, people go the closest bakery:

$$Vor(y) = \{ x \in X; \forall z \in Y, \ c(x,y) \le c(x,z) \}$$



► If the price of bread is uniform, people go the closest bakery:

$$Vor(y) = \{ x \in X; \forall z \in Y, \ c(x,y) \le c(x,z) \}$$

Minimizes total distance walked ... but might exceed the capacity of bakery  $y_0!$ 



▶ If prices are given by  $\psi: Y \to \mathbb{R}$ , people make a compromise:

$$\operatorname{Lag}_{\psi}(y) = \{ x \in X; \forall z \in Y, \ c(x, y) + \psi(y) \le c(x, z) + \psi(z) \}$$



▶ If prices are given by  $\psi: Y \to \mathbb{R}$ , people make a compromise:

$$\operatorname{Lag}_{\psi}(y) = \{ x \in X; \forall z \in Y, \ c(x, y) + \psi(y) \le c(x, z) + \psi(z) \}$$

**Lemma:** The map  $T_{\psi}$  induced by this decomposition is a *c*-optimal transport between  $\rho$  and  $\nu_{\psi} := T_{\psi \#} \nu = \sum_{y \in Y} \rho(\operatorname{Lag}_{y}(\psi)) \delta_{y}.$ 

**Theorem:** Finding an **optimal transport** between  $\rho$  and  $\nu = \sum_{Y} \nu_y \delta_y$ 

 $\iff$  finding **prices**  $\psi$  on Y such that  $\nu_{\psi} = \nu$ 

[Gangbo McCann '96]

**Theorem:** Finding an **optimal transport** between  $\rho$  and  $\nu = \sum_{Y} \nu_y \delta_y$ 

 $\iff$  finding **prices**  $\psi$  on Y such that  $\nu_{\psi} = \nu$  [Gangbo McCann '96]

 $\iff$  maximizing the **concave** function  $\Phi$  [Aurenhammer, Hoffman, Aronov '98]

 $\Phi(\psi) := \sum_{y} \int_{\operatorname{Lag}_{y}(\psi)} [c(x, y) + \psi(y)] d\rho(x) - \sum_{y} \psi(y)\nu_{y}$ 

Byproduct of Kantorovich duality.

**Theorem:** Finding an **optimal transport** between  $\rho$  and  $\nu = \sum_{Y} \nu_y \delta_y$   $\iff$  finding **prices**  $\psi$  on Y such that  $\nu_{\psi} = \nu$  [Gangbo McCann '96]  $\iff$  maximizing the **concave** function  $\Phi$  [Aurenhammer, Hoffman, Aronov '98]  $\Phi(\psi) := \sum_{y} \int_{\text{Lag}_y(\psi)} [c(x, y) + \psi(y)] \, d \rho(x) - \sum_{y} \psi(y) \nu_y$ 

Byproduct of Kantorovich duality.

►  $\nabla \Phi = 0 \iff$  "discrete Monge-Ampère equation":  $\forall y \in Y, \ \rho(\text{Lag}_u(\psi)) = \nu_y.$ 

**Theorem:** Finding an **optimal transport** between  $\rho$  and  $\nu = \sum_{Y} \nu_y \delta_y$   $\iff$  finding **prices**  $\psi$  on Y such that  $\nu_{\psi} = \nu$  [Gangbo McCann '96]  $\iff$  maximizing the **concave** function  $\Phi$  [Aurenhammer, Hoffman, Aronov '98]  $\Phi(\psi) := \sum_{y} \int_{\text{Lag}_y(\psi)} [c(x, y) + \psi(y)] \, d \rho(x) - \sum_{y} \psi(y) \nu_y$ 

Byproduct of Kantorovich duality.

►  $\nabla \Phi = 0 \iff$  "discrete Monge-Ampère equation":  $\forall y \in Y, \ \rho(\text{Lag}_y(\psi)) = \nu_y.$ 

• Early numerical methods with complexity  $O(\frac{N^3}{\varepsilon} \log(N))$ . [Oliker–Prussner '99]

**Theorem:** Finding an **optimal transport** between  $\rho$  and  $\nu = \sum_{Y} \nu_y \delta_y$   $\iff$  finding **prices**  $\psi$  on Y such that  $\nu_{\psi} = \nu$  [Gangbo McCann '96]  $\iff$  maximizing the **concave** function  $\Phi$  [Aurenhammer, Hoffman, Aronov '98]  $\Phi(\psi) := \sum_{y} \int_{\text{Lag}_{y}(\psi)} [c(x, y) + \psi(y)] \, d \rho(x) - \sum_{y} \psi(y) \nu_{y}$ 

Byproduct of Kantorovich duality.

►  $\nabla \Phi = 0 \iff$  "discrete Monge-Ampère equation":  $\forall y \in Y, \ \rho(\text{Lag}_y(\psi)) = \nu_y.$ 

• Early numerical methods with complexity  $O(\frac{N^3}{\varepsilon} \log(N))$ . [Oliker–Prussner '99]

► Efficient implementation combining a multiscale approach with geometric algorithms to compute Laguerre cells (CGAL): [M. 11] on  $\mathbb{R}^2$ , [Lévy 15] on  $\mathbb{R}^3$ 

**Theorem:** Finding an **optimal transport** between  $\rho$  and  $\nu = \sum_{Y} \nu_y \delta_y$   $\iff$  finding **prices**  $\psi$  on Y such that  $\nu_{\psi} = \nu$  [Gangbo McCann '96]  $\iff$  maximizing the **concave** function  $\Phi$  [Aurenhammer, Hoffman, Aronov '98]  $\Phi(\psi) := \sum_{y} \int_{\text{Lag}_y(\psi)} [c(x, y) + \psi(y)] \, d \rho(x) - \sum_{y} \psi(y) \nu_y$ 

Byproduct of Kantorovich duality.

►  $\nabla \Phi = 0 \iff$  "discrete Monge-Ampère equation":  $\forall y \in Y, \ \rho(\text{Lag}_y(\psi)) = \nu_y.$ 

• Early numerical methods with complexity  $O(\frac{N^3}{\varepsilon} \log(N))$ . [Oliker–Prussner '99]

► Efficient implementation combining a multiscale approach with geometric algorithms to compute Laguerre cells (CGAL): [M. 11] on  $\mathbb{R}^2$ , [Lévy 15] on  $\mathbb{R}^3$ 

In the simulations, we use a (damped) Newton's algorithm, solving a sequence of linearized **discrete** Monge-Ampère equations.

Simple damped Newton's algorithm, with global linear convergence, [Mirebeau 15] under (rather) general assumptions on  $\rho$  and c. [Kitagawa, M., Thibert 16]

Simple damped Newton's algorithm, with global linear convergence, [Mirebeau 15] under (rather) general assumptions on  $\rho$  and c. [Kitagawa, M., Thibert 16]



**Source:** PL density on  $X = [0,3]^2$ **Target:** Uniform grid Y in  $[0,1]^2$ .

Simple damped Newton's algorithm, with global linear convergence, [Mirebeau 15] under (rather) general assumptions on  $\rho$  and c. [Kitagawa, M., Thibert 16]



Simple damped Newton's algorithm, with global linear convergence, [Mirebeau 15] under (rather) general assumptions on  $\rho$  and c. [Kitagawa, M., Thibert 16]



Near- $\mathcal{O}(N)$  vs  $\mathcal{O}(N^3)$  complexity for fully discrete (combinatorial) OT.

# 3. Minimizing geodesics in $\operatorname{\mathbb{S}Diff}$

Joint work with Jean-Marie Mirebeau

Let S be a submanifold in  $\mathbb{R}^d$ , whose minimizing geodesics need to be approximated.

 $\blacktriangleright \text{ Minimizing geodesics: } \min_{s:[0,1] \to \mathbb{R}^d} \frac{1}{2} \int_0^1 \|\dot{s}_t\|^2 \, \mathrm{d} t \quad \text{where } \begin{cases} \forall t \in [0,1], \ s_t \in S \\ s_0 = s_*, s_1 = s^* \end{cases}$ 

Let S be a submanifold in  $\mathbb{R}^d$ , whose minimizing geodesics need to be approximated.

- Minimizing geodesics:  $\min_{s:[0,1]\to\mathbb{R}^d} \frac{1}{2} \int_0^1 \|\dot{s}_t\|^2 \,\mathrm{d}\,t$  where  $\begin{cases} \forall t \in [0,1], s_t \in S \\ s_0 = s_*, s_1 = s^* \end{cases}$
- **Relaxation:** Given a penalization parameter  $\alpha > 0$ , consider

$$\min_{m:[0,1]\to\mathbb{R}^d} \frac{1}{2} \int_0^1 \|\dot{m}_t\|^2 \,\mathrm{d}\,t + \alpha \left( \int_{[0,1]} \mathrm{d}_S^2(m_t) \,\mathrm{d}\,t + \|m_0 - s_*\|^2 + \|m_1 - s^*\|^2 \right)$$

Let S be a submanifold in  $\mathbb{R}^d$ , whose minimizing geodesics need to be approximated.

- Minimizing geodesics:  $\min_{s:[0,1]\to\mathbb{R}^d} \frac{1}{2} \int_0^1 \|\dot{s}_t\|^2 \,\mathrm{d}\,t$  where  $\begin{cases} \forall t \in [0,1], s_t \in S \\ s_0 = s_*, s_1 = s^* \end{cases}$
- **Relaxation:** Given a penalization parameter  $\alpha > 0$ , consider

$$\min_{m:[0,1]\to\mathbb{R}^d} \frac{1}{2} \int_0^1 \|\dot{m}_t\|^2 \,\mathrm{d}\,t + \alpha \left( \int_{[0,1]} \mathrm{d}_S^2(m_t) \,\mathrm{d}\,t + \|m_0 - s_*\|^2 + \|m_1 - s^*\|^2 \right)$$

• **Time-discretization:** Given a number of timesteps  $T \in \mathbb{N}$ , consider

$$\min_{m_1,\dots,m_T \in \mathbb{R}^d} \frac{T}{2} \sum_{i=0}^{T-1} \|m_{i+1} - m_i\|^2 + \lambda \left( \sum_{i=1}^{T-1} \mathrm{d}_S^2(m_i) + \|m_0 - s_*\|^2 + \|m_T - s^*\|^2 \right)$$

Let S be a submanifold in  $\mathbb{R}^d$ , whose minimizing geodesics need to be approximated.

- Minimizing geodesics:  $\min_{s:[0,1]\to\mathbb{R}^d} \frac{1}{2} \int_0^1 \|\dot{s}_t\|^2 \,\mathrm{d}\,t$  where  $\begin{cases} \forall t \in [0,1], s_t \in S \\ s_0 = s_*, s_1 = s^* \end{cases}$
- **Relaxation:** Given a penalization parameter  $\alpha > 0$ , consider

$$\min_{m:[0,1]\to\mathbb{R}^d} \frac{1}{2} \int_0^1 \|\dot{m}_t\|^2 \,\mathrm{d}\,t + \alpha \left( \int_{[0,1]} \mathrm{d}_S^2(m_t) \,\mathrm{d}\,t + \|m_0 - s_*\|^2 + \|m_1 - s^*\|^2 \right)$$

• **Time-discretization:** Given a number of timesteps  $T \in \mathbb{N}$ , consider

$$\min_{m_1,\dots,m_T \in \mathbb{R}^d} \frac{T}{2} \sum_{i=0}^{T-1} \|m_{i+1} - m_i\|^2 + \lambda \left( \sum_{i=1}^{T-1} \mathrm{d}_S^2(m_i) + \|m_0 - s_*\|^2 + \|m_T - s^*\|^2 \right)$$

Imagine now that only a finite sample  $S_K \subseteq S$  is known, with  $Card(S_K) = K$ .  $\longrightarrow$  How should  $\lambda = \lambda(T, K)$  be chosen ?

Let S be a submanifold in  $\mathbb{R}^d$ , and  $S_K = \{\bullet\} \subseteq S$ .



Let S be a submanifold in  $\mathbb{R}^d$ , and  $S_K = \{\bullet\} \subseteq S$ .

$$\min_{m_1,\dots,m_T \in \mathbb{R}^d} \frac{T}{2} \sum_{i=0}^{T-1} \|m_{i+1} - m_i\|^2 + \lambda \left( \sum_{i=1}^{T-1} \mathrm{d}_{S_K}^2(m_i) + \|m_0 - s_*\|^2 + \|m_T - s^*\|^2 \right)$$



Let S be a submanifold in  $\mathbb{R}^d$ , and  $S_K = \{\bullet\} \subseteq S$ . (K = 4 and T = 10)

$$\min_{m_1,\dots,m_T \in \mathbb{R}^d} \frac{T}{2} \sum_{i=0}^{T-1} \|m_{i+1} - m_i\|^2 + \lambda \left( \sum_{i=1}^{T-1} \mathrm{d}_{S_K}^2(m_i) + \|m_0 - s_*\|^2 + \|m_T - s^*\|^2 \right)$$



Let S be a submanifold in  $\mathbb{R}^d$ , and  $S_K = \{\bullet\} \subseteq S$ . (K = 4 and T = 10)

$$\min_{m_1,\dots,m_T \in \mathbb{R}^d} \frac{T}{2} \sum_{i=0}^{T-1} \|m_{i+1} - m_i\|^2 + \lambda \left( \sum_{i=1}^{T-1} \mathrm{d}_{S_K}^2(m_i) + \|m_0 - s_*\|^2 + \|m_T - s^*\|^2 \right)$$





Let S be a submanifold in  $\mathbb{R}^d$ , and  $S_K = \{\bullet\} \subseteq S$ . (K = 4 and T = 10)

$$\min_{m_1,\dots,m_T \in \mathbb{R}^d} \frac{T}{2} \sum_{i=0}^{T-1} \|m_{i+1} - m_i\|^2 + \lambda \left( \sum_{i=1}^{T-1} \mathrm{d}_{S_K}^2(m_i) + \|m_0 - s_*\|^2 + \|m_T - s^*\|^2 \right)$$



 $\rightarrow$  combinatorial optimization pb (when  $\lambda = +\infty$ )

 $\lambda$  too large  $\longrightarrow$  low-order approximation

Leb = restriction of Lebesgue measure to a compact domain X

 $\mathbb{SDiff} = \{s : X \to X \text{ diffeomorphism } | s_{\#} \text{Leb} = \text{Leb}\} \subseteq \mathbb{M} = L^2(X, \mathbb{R}^d)$ 

The endpoints  $s_*$  and  $s^*$  of the geodesic are two (fixed) elements in SDiff.

Leb = restriction of Lebesgue measure to a compact domain X  $SDiff = \{s : X \to X \text{ diffeomorphism } | s_{\#}Leb = Leb\} \subseteq \mathbb{M} = L^2(X, \mathbb{R}^d)$ 

The endpoints  $s_*$  and  $s^*$  of the geodesic are two (fixed) elements in SDiff.

A.  $\inf \{\mathcal{E}(s) \mid s \in \mathcal{H}^1([0,1], \mathbb{SDiff}), s_0 = s_*, s_1 = s^*\}$  where  $\mathcal{E}(s) := \frac{1}{2} \int_0^t \|\dot{s}_t\|_{\mathbb{M}}^2 dt$  $\longrightarrow$  might have no solution b/c  $\mathbb{SDiff}$  is not closed in  $\mathbb{M}$ 

Leb = restriction of Lebesgue measure to a compact domain X  $SDiff = \{s : X \to X \text{ diffeomorphism } | s_{\#}Leb = Leb\} \subseteq \mathbb{M} = L^2(X, \mathbb{R}^d)$ 

The endpoints  $s_*$  and  $s^*$  of the geodesic are two (fixed) elements in SDiff.

A.  $\inf \{\mathcal{E}(s) \mid s \in \mathcal{H}^1([0,1], \mathbb{SDiff}), s_0 = s_*, s_1 = s^*\}$  where  $\mathcal{E}(s) := \frac{1}{2} \int_0^t \|\dot{s}_t\|_{\mathbb{M}}^2 dt$  $\longrightarrow$  might have no solution b/c  $\mathbb{SDiff}$  is not closed in  $\mathbb{M}$ 

**B.**  $\inf \{ \mathcal{E}(s) \mid s \in \mathcal{H}^1([0,1], \mathbb{S}), s_0 = s_*, s_1 = s^* \}$ where  $\mathbb{S} = \{s : X \to X \text{ measurable} \mid s_\# \text{Leb} = \text{Leb}\},$ 

 $\rightarrow$  might have no solutions either ( $\simeq$  non-existence of Monge solutions in OT)

Leb = restriction of Lebesgue measure to a compact domain X  $SDiff = \{s : X \to X \text{ diffeomorphism } | s_{\#}Leb = Leb\} \subseteq \mathbb{M} = L^2(X, \mathbb{R}^d)$ 

The endpoints  $s_*$  and  $s^*$  of the geodesic are two (fixed) elements in SDiff.

A.  $\inf \{\mathcal{E}(s) \mid s \in \mathcal{H}^1([0,1], \mathbb{SDiff}), s_0 = s_*, s_1 = s^*\}$  where  $\mathcal{E}(s) := \frac{1}{2} \int_0^t \|\dot{s}_t\|_{\mathbb{M}}^2 dt$  $\longrightarrow$  might have no solution b/c  $\mathbb{SDiff}$  is not closed in  $\mathbb{M}$ 

**B.**  $\inf \{ \mathcal{E}(s) \mid s \in \mathcal{H}^1([0,1],\mathbb{S}), s_0 = s_*, \ s_1 = s^* \}$ 

where  $S = \{s : X \to X \text{ measurable} \mid s_{\#} \text{Leb} = \text{Leb}\},\$ 

 $\rightarrow$  might have no solutions either ( $\simeq$  non-existence of Monge solutions in OT)

**C.** relaxation involving measures over the set  $\Gamma$  of  $C^0$  paths in X. [Brenier '89] [Schinerelman '94]
• Measures on paths:  $\Gamma := \mathcal{C}^0([0,1],X)$ ,  $\mu \in \operatorname{Prob}(\Gamma)$ 



• Measures on paths:  $\Gamma := \mathcal{C}^0([0,1],X)$ ,  $\mu \in \operatorname{Prob}(\Gamma)$ 



(Incompressibility):  $\forall t \in [0, 1], e_{t\#}\mu = \text{Leb}$ where  $e_t : \gamma \in \Gamma \mapsto \gamma(t) \in X$ 

• Measures on paths:  $\Gamma := \mathcal{C}^0([0,1],X)$ ,  $\mu \in \operatorname{Prob}(\Gamma)$ 



(Incompressibility):  $\forall t \in [0, 1], e_{t\#}\mu = \text{Leb}$ where  $e_t : \gamma \in \Gamma \mapsto \gamma(t) \in X$ 

(Boundary conditions)  $(e_0, e_1)_{\#}\mu = (s_*, s^*)_{\#}$ Leb

• Measures on paths:  $\Gamma := \mathcal{C}^0([0,1],X)$ ,  $\mu \in \operatorname{Prob}(\Gamma)$ 



(Incompressibility):  $\forall t \in [0,1], e_{t\#}\mu = \text{Leb}$ where  $e_t : \gamma \in \Gamma \mapsto \gamma(t) \in X$ (Boundary conditions)  $(e_0, e_1)_{\#}\mu = (s_*, s^*)_{\#}\text{Leb}$ Action is linear:  $\mathcal{E}(\mu) := \frac{1}{2} \int_{\Gamma} \int_0^1 \|\dot{\gamma}(t)\|^2 \, \mathrm{d} t \, \mathrm{d} \mu(\gamma)$ 

• Measures on paths:  $\Gamma := \mathcal{C}^0([0,1],X)$ ,  $\mu \in \operatorname{Prob}(\Gamma)$ 



(Incompressibility):  $\forall t \in [0,1], e_{t\#}\mu = \text{Leb}$ where  $e_t : \gamma \in \Gamma \mapsto \gamma(t) \in X$ (Boundary conditions)  $(e_0, e_1)_{\#}\mu = (s_*, s^*)_{\#}\text{Leb}$ Action is linear:  $\mathcal{E}(\mu) := \frac{1}{2} \int_{\Gamma} \int_0^1 \|\dot{\gamma}(t)\|^2 \, \mathrm{d} t \, \mathrm{d} \mu(\gamma)$ 

 $\longrightarrow$  Similar to Kantorovich's relation of the optimal transport problem.

• Measures on paths:  $\Gamma := \mathcal{C}^0([0,1],X)$ ,  $\mu \in \operatorname{Prob}(\Gamma)$ 



(Incompressibility):  $\forall t \in [0, 1], e_{t\#}\mu = \text{Leb}$ where  $e_t : \gamma \in \Gamma \mapsto \gamma(t) \in X$ (Boundary conditions)  $(e_0, e_1)_{\#}\mu = (s_*, s^*)_{\#}\text{Leb}$ Action is linear:  $\mathcal{E}(\mu) := \frac{1}{2} \int_{\Gamma} \int_0^1 \|\dot{\gamma}(t)\|^2 \, \mathrm{d} t \, \mathrm{d} \mu(\gamma)$ 

 $\longrightarrow$  Similar to Kantorovich's relation of the optimal transport problem.

• Comparison between the relaxations: for  $s_*, s^* \in SDiff$ ,

$$d^{2}(s_{*}, s^{*}) := \min_{\substack{\mu \in \operatorname{Prob}(\Gamma) \\ \text{incomp+b.c.}}} \mathcal{E}(\mu) \leq \inf_{\substack{s:[0,1] \to \mathbb{S} \\ (s_{0},s_{1})=(s_{*},s^{*})}} \mathcal{E}(s) \leq \inf_{\substack{s:[0,1] \to \mathbb{SDiff} \\ (s_{0},s_{1})=(s_{*},s^{*})}} \mathcal{E}(s)$$

• Measures on paths:  $\Gamma := C^0([0,1],X)$ ,  $\mu \in \operatorname{Prob}(\Gamma)$ 



(Incompressibility):  $\forall t \in [0, 1], e_{t\#}\mu = \text{Leb}$ where  $e_t : \gamma \in \Gamma \mapsto \gamma(t) \in X$ (Boundary conditions)  $(e_0, e_1)_{\#}\mu = (s_*, s^*)_{\#}\text{Leb}$ Action is linear:  $\mathcal{E}(\mu) := \frac{1}{2} \int_{\Gamma} \int_0^1 \|\dot{\gamma}(t)\|^2 \, \mathrm{d} t \, \mathrm{d} \mu(\gamma)$ 

 $\longrightarrow$  Similar to Kantorovich's relation of the optimal transport problem.

• Comparison between the relaxations: for  $s_*, s^* \in SDiff$ ,

$$d^{2}(s_{*}, s^{*}) := \min_{\substack{\mu \in \operatorname{Prob}(\Gamma) \\ \text{incomp+b.c.}}} \mathcal{E}(\mu) \leq \inf_{\substack{s:[0,1] \to \mathbb{S} \\ (s_{0},s_{1})=(s_{*},s^{*})}} \mathcal{E}(s) \leq \inf_{\substack{s:[0,1] \to \mathbb{SDiff} \\ (s_{0},s_{1})=(s_{*},s^{*})}} \mathcal{E}(s)$$

 $\rightarrow$  equality in dimension  $d \ge 3$  but not in dimension d = 2. [Schinerelman '94]

• Measures on paths:  $\Gamma := C^0([0,1],X)$ ,  $\mu \in \operatorname{Prob}(\Gamma)$ 



(Incompressibility):  $\forall t \in [0, 1], e_{t\#}\mu = \text{Leb}$ where  $e_t : \gamma \in \Gamma \mapsto \gamma(t) \in X$ (Boundary conditions)  $(e_0, e_1)_{\#}\mu = (s_*, s^*)_{\#}\text{Leb}$ Action is linear:  $\mathcal{E}(\mu) := \frac{1}{2} \int_{\Gamma} \int_0^1 \|\dot{\gamma}(t)\|^2 \, \mathrm{d} t \, \mathrm{d} \mu(\gamma)$ 

 $\longrightarrow$  Similar to Kantorovich's relation of the optimal transport problem.

• Comparison between the relaxations: for  $s_*, s^* \in SDiff$ ,

$$d^{2}(s_{*}, s^{*}) := \min_{\substack{\mu \in \operatorname{Prob}(\Gamma) \\ \text{incomp+b.c.}}} \mathcal{E}(\mu) \leq \inf_{\substack{s:[0,1] \to \mathbb{S} \\ (s_{0},s_{1})=(s_{*},s^{*})}} \mathcal{E}(s) \leq \inf_{\substack{s:[0,1] \to \mathbb{SDiff} \\ (s_{0},s_{1})=(s_{*},s^{*})}} \mathcal{E}(s)$$

→ equality in dimension  $d \ge 3$  but not in dimension d = 2. [Schinerelman '94] →  $\exists$ ! pressure field in  $L^2_{loc}((0,1), BV(X))$ . [Brenier '99, Ambrosio–Figalli '07]

• Measures on paths:  $\Gamma := \mathcal{C}^0([0,1],X)$ ,  $\mu \in \operatorname{Prob}(\Gamma)$ 



(Incompressibility):  $\forall t \in [0, 1], e_{t\#}\mu = \text{Leb}$ where  $e_t : \gamma \in \Gamma \mapsto \gamma(t) \in X$ (Boundary conditions)  $(e_0, e_1)_{\#}\mu = (s_*, s^*)_{\#}\text{Leb}$ Action is linear:  $\mathcal{E}(\mu) := \frac{1}{2} \int_{\Gamma} \int_0^1 \|\dot{\gamma}(t)\|^2 \, \mathrm{d} t \, \mathrm{d} \mu(\gamma)$ 

 $\longrightarrow$  Similar to Kantorovich's relation of the optimal transport problem.

• Comparison between the relaxations: for  $s_*, s^* \in SDiff$ ,

$$d^{2}(s_{*}, s^{*}) := \min_{\substack{\mu \in \operatorname{Prob}(\Gamma) \\ \text{incomp+b.c.}}} \mathcal{E}(\mu) \leq \inf_{\substack{s:[0,1] \to \mathbb{S} \\ (s_{0},s_{1})=(s_{*},s^{*})}} \mathcal{E}(s) \leq \inf_{\substack{s:[0,1] \to \mathbb{SDiff} \\ (s_{0},s_{1})=(s_{*},s^{*})}} \mathcal{E}(s)$$

 $\rightarrow \text{ equality in dimension } d \ge 3 \text{ but not in dimension } d = 2.$  [Schinerelman '94]  $\rightarrow \exists! \text{ pressure field in } L^2_{loc}((0,1), BV(X)).$  [Brenier '99, Ambrosio–Figalli '07]

Numerics: mostly in 1D using permutations

[Brenier '87, Brenier-Roesch '98]



► Time-discretization of geodesic with endpoints  $s_*, s^* \in \mathbb{S}$   $\mathcal{E}_{N,T,\lambda} : (\mathbb{M}_N)^T \to \mathbb{R}$ ,

$$\mathcal{E}_{N,T,\lambda}(m) := \frac{T}{2} \sum_{i=0}^{T-1} \|m_{i+1} - m_i\|_2^2 + \lambda \left( \|m_0 - s_*\|_2^2 + \|m_T - s^*\|_2^2 + \sum_{i=1}^{T-1} \mathrm{d}_{\mathbb{S}}^2(m_i) \right)$$

action

boundary conditions

incompressibility



► Time-discretization of geodesic with endpoints  $s_*, s^* \in \mathbb{S}$   $\mathcal{E}_{N,T,\lambda} : (\mathbb{M}_N)^T \to \mathbb{R}$ ,

$$\mathcal{E}_{N,T,\lambda}(m) := \frac{T}{2} \sum_{i=0}^{T-1} \|m_{i+1} - m_i\|_2^2 + \lambda \left( \|m_0 - s_*\|_2^2 + \|m_T - s^*\|_2^2 + \sum_{i=1}^{T-1} \mathrm{d}_{\mathbb{S}}^2(m_i) \right)$$

• Given  $m = (m_1, \ldots, m_T) \in \mathbb{M}_N^T$ , let  $\gamma_k \in \mathcal{C}^0([0, 1], \mathbb{R}^d)$  be PL with  $\gamma_k(t_i) = m_i(V_k)$ 





► Time-discretization of geodesic with endpoints  $s_*, s^* \in \mathbb{S}$   $\mathcal{E}_{N,T,\lambda} : (\mathbb{M}_N)^T \to \mathbb{R}$ ,

$$\mathcal{E}_{N,T,\lambda}(m) := \frac{T}{2} \sum_{i=0}^{T-1} \|m_{i+1} - m_i\|_2^2 + \lambda \left( \|m_0 - s_*\|_2^2 + \|m_T - s^*\|_2^2 + \sum_{i=1}^{T-1} \mathrm{d}_{\mathbb{S}}^2(m_i) \right)$$

• Given  $m = (m_1, \ldots, m_T) \in \mathbb{M}_N^T$ , let  $\gamma_k \in \mathcal{C}^0([0, 1], \mathbb{R}^d)$  be PL with  $\gamma_k(t_i) = m_i(V_k)$ 



Then, with 
$$\mu_m = \frac{1}{N} \sum_{k=1}^N \delta_{\gamma_k} \in \operatorname{Prob}(\Gamma)$$
,

$$\begin{aligned} \mathcal{E}_{N,T,\lambda}(m) &= \mathcal{E}(\mu_m) \\ &+ \lambda \sum_{i=1}^T W_2^2(e_{t_i \#} \mu_m, \text{Leb}) \\ &+ \text{boundary cond.} \end{aligned}$$



► Time-discretization of geodesic with endpoints  $s_*, s^* \in \mathbb{S}$   $\mathcal{E}_{N,T,\lambda} : (\mathbb{M}_N)^T \to \mathbb{R}$ ,

$$\mathcal{E}_{N,T,\lambda}(m) := \frac{T}{2} \sum_{i=0}^{T-1} \|m_{i+1} - m_i\|_2^2 + \lambda \left( \|m_0 - s_*\|_2^2 + \|m_T - s^*\|_2^2 + \sum_{i=1}^{T-1} \mathrm{d}_{\mathbb{S}}^2(m_i) \right)$$

• Given  $m = (m_1, \ldots, m_T) \in \mathbb{M}_N^T$ , let  $\gamma_k \in \mathcal{C}^0([0, 1], \mathbb{R}^d)$  be PL with  $\gamma_k(t_i) = m_i(V_k)$ 



Then, with 
$$\mu_m = \frac{1}{N} \sum_{k=1}^N \delta_{\gamma_k} \in \operatorname{Prob}(\Gamma)$$
,

$$\mathcal{E}_{N,T,\lambda}(\boldsymbol{m}) = \mathcal{E}(\boldsymbol{\mu}_{\boldsymbol{m}}) + \lambda \sum_{i=1}^{T} W_2^2(e_{t_i \#} \boldsymbol{\mu}_{\boldsymbol{m}}, \text{Leb})$$

+ boundary cond.

 $\rightarrow$   $\simeq$  Common discretization for both relaxations!  $\rightarrow$  Choice of penalization parameter?

**Regular generalized geodesic**: a probability measure  $\mu \in \operatorname{Prob}(\Gamma)$  s.t. (Regularity)  $\exists p$  with Lipschitz gradient s.t.  $\forall \gamma \in \operatorname{spt}(\mu), \quad \ddot{\gamma} = -\nabla p \circ \gamma,$ (Incompressibility)  $e_{t\#}\mu = \operatorname{Leb}$  for all t(Boundary conditions)  $(e_0, e_1)_{\#}\operatorname{Leb} = (s_*, s^*)_{\#}\operatorname{Leb}$ 

**Regular generalized geodesic**: a probability measure  $\mu \in \operatorname{Prob}(\Gamma)$  s.t. (Regularity)  $\exists p$  with Lipschitz gradient s.t.  $\forall \gamma \in \operatorname{spt}(\mu), \quad \ddot{\gamma} = -\nabla p \circ \gamma,$ (Incompressibility)  $e_{t\#}\mu = \operatorname{Leb}$  for all t(Boundary conditions)  $(e_0, e_1)_{\#}\operatorname{Leb} = (s_*, s^*)_{\#}\operatorname{Leb}$ 

**Theorem:** Let  $\mu$  be a regular generalized geodesic in SDiff between  $s_*$  and  $s^*$ ,

 $m_N \in \arg \min \mathcal{E}_{N,T_N,\lambda_N}$  with  $\lambda_N = N^{2d}$  and  $T_N \lambda_N \to 0$ ,

Then, up to subsequences,  $\mu_{m_N} \in \operatorname{Prob}(\Gamma)$  converges weakly to a minimizing generalized geodesic between  $s_*$  and  $s^*$ .

[Mirebeau-M., 2015]

**Regular generalized geodesic**: a probability measure  $\mu \in \operatorname{Prob}(\Gamma)$  s.t. (Regularity)  $\exists p$  with Lipschitz gradient s.t.  $\forall \gamma \in \operatorname{spt}(\mu), \quad \ddot{\gamma} = -\nabla p \circ \gamma,$ (Incompressibility)  $e_{t\#}\mu = \operatorname{Leb}$  for all t(Boundary conditions)  $(e_0, e_1)_{\#}\operatorname{Leb} = (s_*, s^*)_{\#}\operatorname{Leb}$ 

**Theorem:** Let  $\mu$  be a regular generalized geodesic in  $\mathbb{SDiff}$  between  $s_*$  and  $s^*$ ,

 $m_N \in \arg \min \mathcal{E}_{N,T_N,\lambda_N}$  with  $\lambda_N = N^{2d}$  and  $T_N \lambda_N \to 0$ ,

Then, up to subsequences,  $\mu_{m_N} \in \operatorname{Prob}(\Gamma)$  converges weakly to a minimizing generalized geodesic between  $s_*$  and  $s^*$ .

[Mirebeau-M., 2015]

Main step:  $\limsup_N \mathcal{E}_{N,T_N,\lambda_N}(m_N) \leq \mathcal{E}(\mu^{\text{opt}}).$ 

**Regular generalized geodesic**: a probability measure  $\mu \in \operatorname{Prob}(\Gamma)$  s.t. (Regularity)  $\exists p$  with Lipschitz gradient s.t.  $\forall \gamma \in \operatorname{spt}(\mu), \quad \ddot{\gamma} = -\nabla p \circ \gamma,$ (Incompressibility)  $e_{t\#}\mu = \operatorname{Leb}$  for all t(Boundary conditions)  $(e_0, e_1)_{\#}\operatorname{Leb} = (s_*, s^*)_{\#}\operatorname{Leb}$ 

**Theorem:** Let  $\mu$  be a regular generalized geodesic in  $\mathbb{SDiff}$  between  $s_*$  and  $s^*$ ,

 $m_N \in \arg \min \mathcal{E}_{N, T_N, \lambda_N}$  with  $\lambda_N = N^{2d}$  and  $T_N \lambda_N \to 0$ ,

Then, up to subsequences,  $\mu_{m_N} \in \operatorname{Prob}(\Gamma)$  converges weakly to a minimizing generalized geodesic between  $s_*$  and  $s^*$ .

 $\begin{array}{ll} \text{Main step: } \limsup_N \mathcal{E}_{N,T_N,\lambda_N}(m_N) \leq \mathcal{E}(\mu^{\text{opt}}). \end{array} \\ \text{more precisely, we need} \quad \min_{m \in \mathbb{M}_N^T} \mathcal{E}_{N,T,\lambda}(m) \leq \mathcal{E}(\mu^{\text{opt}}) + \mathcal{O}(Th_N^2\lambda) \end{array} \end{array}$ 

for  $h_N := N^{-\frac{1}{D}}$ , with  $D \in \mathbb{N}$  to be determined.

**Regular generalized geodesic**: a probability measure  $\mu \in \operatorname{Prob}(\Gamma)$  s.t. (Regularity)  $\exists p$  with Lipschitz gradient s.t.  $\forall \gamma \in \operatorname{spt}(\mu), \quad \ddot{\gamma} = -\nabla p \circ \gamma,$ (Incompressibility)  $e_{t\#}\mu = \operatorname{Leb}$  for all t(Boundary conditions)  $(e_0, e_1)_{\#}\operatorname{Leb} = (s_*, s^*)_{\#}\operatorname{Leb}$ 

**Theorem:** Let  $\mu$  be a regular generalized geodesic in SDiff between  $s_*$  and  $s^*$ ,  $m_N \in \arg \min \mathcal{E}_{N,T_N,\lambda_N}$  with  $\lambda_N = N^{2d}$  and  $T_N \lambda_N \to 0$ ,

Then, up to subsequences,  $\mu_{m_N} \in \operatorname{Prob}(\Gamma)$  converges weakly to a minimizing generalized geodesic between  $s_*$  and  $s^*$ .

[Mirebeau-M., 2015]

Main step:  $\limsup_N \mathcal{E}_{N,T_N,\lambda_N}(m_N) \leq \mathcal{E}(\mu^{\text{opt}}).$ more precisely, we need  $\min_{m \in \mathbb{M}_N^T} \mathcal{E}_{N,T,\lambda}(m) \leq \mathcal{E}(\mu^{\text{opt}}) + \mathcal{O}(Th_N^2\lambda)$ for  $h_N := N^{-\frac{1}{D}}$ , with  $D \in \mathbb{N}$  to be determined.

It turns out that one can take D := dim(spt(μ<sup>opt</sup>))
→ For a classical solution s : [0,1] → S, dim(spt(μ<sup>opt</sup>)) = d. (λ<sub>N</sub> = N<sup>d</sup>)
→ For a regular generalized solution, dim(spt(μ<sup>opt</sup>)) ≤ 2d. (λ<sub>N</sub> = N<sup>2d</sup>)

# Energy estimate for classical solutions

**Proposition:** Assume that the minimizing geodesic s between  $s_*$  and  $s^*$  is classical and that  $s \in L^{\infty}([0,1], H^1(X))$ . Then, with  $h_N = N^{-1/d}$ ,

 $\min_{m \in (\mathbb{M}_N)^T} \mathcal{E}_{N,T,\lambda}(m) \le \mathcal{E}(s) + \mathcal{O}(Th_N^2\lambda)$ 

# Energy estimate for classical solutions

**Proposition:** Assume that the minimizing geodesic s between  $s_*$  and  $s^*$  is classical and that  $s \in L^{\infty}([0,1], H^1(X))$ . Then, with  $h_N = N^{-1/d}$ ,

$$\min_{m \in (\mathbb{M}_N)^T} \mathcal{E}_{N,T,\lambda}(m) \le \mathcal{E}(s) + \mathcal{O}(Th_N^2\lambda)$$

**Proof:** Take  $s \in L^{\infty}([0,1], H^1(X))$ , and approximate it through  $m \in \mathbb{M}_N^T$ ,  $m_i := \Pi_N(s(i/T))$  where  $\Pi_N : \mathbb{M} \to \mathbb{M}_N$  orthogonal proj.



# Energy estimate for classical solutions

**Proposition:** Assume that the minimizing geodesic s between  $s_*$  and  $s^*$  is classical and that  $s \in L^{\infty}([0,1], H^1(X))$ . Then, with  $h_N = N^{-1/d}$ ,

$$\min_{m \in (\mathbb{M}_N)^T} \mathcal{E}_{N,T,\lambda}(m) \le \mathcal{E}(s) + \mathcal{O}(Th_N^2\lambda)$$

**Proof:** Take  $s \in L^{\infty}([0,1], H^1(X))$ , and approximate it through  $m \in \mathbb{M}_N^T$ ,

 $m_i := \Pi_N(s(i/T))$  where  $\Pi_N : \mathbb{M} \to \mathbb{M}_N$  orthogonal proj.

Then,  $\mathcal{E}_{N,T,\lambda}(m)$  is upper bounded using the Poincaré-Wirtinger inequality.



**Prop:** Assume that the generalized minimizing geodesic in  $\Pi$  is associated to a pressure  $p: [0,1] \times \Omega \to \mathbb{R}$  with Lipschitz gradient. Then, with  $h_N = N^{-1/2d}$ ,

$$\min_{m \in (E_N)^T} \mathcal{E}_{N,T,\lambda}(m) \le \mathcal{E}(\mu^{\text{opt}}) + \mathcal{O}(Th_N^2\lambda)$$

**Prop:** Assume that the generalized minimizing geodesic in  $\Pi$  is associated to a pressure  $p: [0,1] \times \Omega \to \mathbb{R}$  with Lipschitz gradient. Then, with  $h_N = N^{-1/2d}$ ,

$$\min_{m \in (E_N)^T} \mathcal{E}_{N,T,\lambda}(m) \le \mathcal{E}(\mu^{\text{opt}}) + \mathcal{O}(Th_N^2\lambda)$$



$$\Gamma := \mathcal{C}^0([0,1], \mathbb{R}^d), \quad \Gamma_p := \{\gamma \in \Gamma; \ \ddot{\gamma} = -\nabla p \circ \gamma \}.$$

**Prop:** Assume that the generalized minimizing geodesic in  $\Pi$  is associated to a pressure  $p: [0,1] \times \Omega \to \mathbb{R}$  with Lipschitz gradient. Then, with  $h_N = N^{-1/2d}$ ,

$$\min_{m \in (E_N)^T} \mathcal{E}_{N,T,\lambda}(m) \le \mathcal{E}(\mu^{\text{opt}}) + \mathcal{O}(Th_N^2\lambda)$$



$$\Gamma := \mathcal{C}^0([0,1], \mathbb{R}^d), \quad \Gamma_p := \{\gamma \in \Gamma; \ \ddot{\gamma} = -\nabla p \circ \gamma\}.$$
  
such that  $\operatorname{spt}(\mu^{\operatorname{opt}}) \subseteq \Gamma_p \subseteq H^1([0,1], X).$ 

**Prop:** Assume that the generalized minimizing geodesic in  $\Pi$  is associated to a pressure  $p: [0,1] \times \Omega \to \mathbb{R}$  with Lipschitz gradient. Then, with  $h_N = N^{-1/2d}$ ,

$$\min_{m \in (E_N)^T} \mathcal{E}_{N,T,\lambda}(m) \le \mathcal{E}(\mu^{\text{opt}}) + \mathcal{O}(Th_N^2\lambda)$$



 $\Gamma := \mathcal{C}^0([0,1], \mathbb{R}^d), \quad \Gamma_p := \{\gamma \in \Gamma; \ \ddot{\gamma} = -\nabla p \circ \gamma\}.$ such that  $\operatorname{spt}(\mu^{\operatorname{opt}}) \subseteq \Gamma_p \subseteq H^1([0,1], X).$ 

A.  $\overline{\dim}(\Gamma_p) \leq 2d$  by Cauchy-Lipschitz

**Prop:** Assume that the generalized minimizing geodesic in  $\Pi$  is associated to a pressure  $p: [0,1] \times \Omega \to \mathbb{R}$  with Lipschitz gradient. Then, with  $h_N = N^{-1/2d}$ ,

$$\min_{m \in (E_N)^T} \mathcal{E}_{N,T,\lambda}(m) \le \mathcal{E}(\mu^{\text{opt}}) + \mathcal{O}(Th_N^2\lambda)$$



- $\Gamma := \mathcal{C}^0([0,1], \mathbb{R}^d), \quad \Gamma_p := \{\gamma \in \Gamma; \ \ddot{\gamma} = -\nabla p \circ \gamma\}.$ such that  $\operatorname{spt}(\mu^{\operatorname{opt}}) \subseteq \Gamma_p \subseteq H^1([0,1], X).$
- **A.**  $\overline{\dim}(\Gamma_p) \leq 2d$  by Cauchy-Lipschitz
- **B.**  $\Gamma_p$  can be covered by N balls with radius  $h_N \simeq N^{-\frac{1}{2d}}$ with respect to  $\|.\|_{H^1(X)}$ .

**Prop:** Assume that the generalized minimizing geodesic in  $\Pi$  is associated to a pressure  $p: [0,1] \times \Omega \to \mathbb{R}$  with Lipschitz gradient. Then, with  $h_N = N^{-1/2d}$ ,

$$\min_{m \in (E_N)^T} \mathcal{E}_{N,T,\lambda}(m) \le \mathcal{E}(\mu^{\text{opt}}) + \mathcal{O}(Th_N^2\lambda)$$



- $\Gamma := \mathcal{C}^0([0,1], \mathbb{R}^d), \quad \Gamma_p := \{\gamma \in \Gamma; \ \ddot{\gamma} = -\nabla p \circ \gamma\}.$ such that  $\operatorname{spt}(\mu^{\operatorname{opt}}) \subseteq \Gamma_p \subseteq H^1([0,1], X).$
- **A.**  $\overline{\dim}(\Gamma_p) \leq 2d$  by Cauchy-Lipschitz
- **B.**  $\Gamma_p$  can be covered by N balls with radius  $h_N \simeq N^{-\frac{1}{2d}}$ with respect to  $\|.\|_{H^1(X)}$ .

**C.**  $\exists (\gamma_k)_{k=1}^N$  in  $\Gamma_p$  such that  $W_{2,\mathcal{H}^1(X)}\left(\mu^{\text{opt}}, \frac{1}{N}\sum_{k=1}^N \delta_{\gamma_k}\right) \leq \mathcal{O}(h_N)$ 

**Prop:** Assume that the generalized minimizing geodesic in  $\Pi$  is associated to a pressure  $p: [0,1] \times \Omega \to \mathbb{R}$  with Lipschitz gradient. Then, with  $h_N = N^{-1/2d}$ ,

$$\min_{m \in (E_N)^T} \mathcal{E}_{N,T,\lambda}(m) \le \mathcal{E}(\mu^{\text{opt}}) + \mathcal{O}(Th_N^2\lambda)$$



 $\Gamma := \mathcal{C}^0([0,1], \mathbb{R}^d), \quad \Gamma_p := \{\gamma \in \Gamma; \ \dot{\gamma} = -\nabla p \circ \gamma\}.$ such that  $\operatorname{spt}(\mu^{\operatorname{opt}}) \subseteq \Gamma_p \subseteq H^1([0,1], X).$ 

- **A.**  $\overline{\dim}(\Gamma_p) \leq 2d$  by Cauchy-Lipschitz
- **B.**  $\Gamma_p$  can be covered by N balls with radius  $h_N \simeq N^{-\frac{1}{2d}}$ with respect to  $\|.\|_{H^1(X)}$ .

**C.**  $\exists (\gamma_k)_{k=1}^N$  in  $\Gamma_p$  such that  $W_{2,\mathcal{H}^1(X)}\left(\mu^{\text{opt}}, \frac{1}{N}\sum_{k=1}^N \delta_{\gamma_k}\right) \leq \mathcal{O}(h_N)$ **D.** reorder paths so that  $d(\gamma_k(0), V_k) \lesssim h_N$  and quantize in time:  $m_i|_{\omega_k} := \gamma_k(i/T)$ 

**Prop:** Assume that the generalized minimizing geodesic in  $\Pi$  is associated to a pressure  $p: [0,1] \times \Omega \to \mathbb{R}$  with Lipschitz gradient. Then, with  $h_N = N^{-1/2d}$ ,

$$\min_{m \in (E_N)^T} \mathcal{E}_{N,T,\lambda}(m) \le \mathcal{E}(\mu^{\text{opt}}) + \mathcal{O}(Th_N^2\lambda)$$



- $\Gamma := \mathcal{C}^0([0,1], \mathbb{R}^d), \quad \Gamma_p := \{\gamma \in \Gamma; \ \ddot{\gamma} = -\nabla p \circ \gamma\}.$ such that  $\operatorname{spt}(\mu^{\operatorname{opt}}) \subseteq \Gamma_p \subseteq H^1([0,1], X).$
- **A.**  $\overline{\dim}(\Gamma_p) \leq 2d$  by Cauchy-Lipschitz
- **B.**  $\Gamma_p$  can be covered by N balls with radius  $h_N \simeq N^{-\frac{1}{2d}}$ with respect to  $\|.\|_{H^1(X)}$ .

**C.**  $\exists (\gamma_k)_{k=1}^N$  in  $\Gamma_p$  such that  $W_{2,\mathcal{H}^1(X)}\left(\mu^{\text{opt}}, \frac{1}{N}\sum_{k=1}^N \delta_{\gamma_k}\right) \leq \mathcal{O}(h_N)$  **D.** reorder paths so that  $d(\gamma_k(0), V_k) \lesssim h_N$  and quantize in time:  $m_i|_{\omega_k} := \gamma_k(i/T)$ **E.** Upper bound  $\mathcal{E}_{N,T,\lambda}(m)$  using the quantization estimate.



$$X = B(0,1) \subseteq \mathbb{R}^2 \qquad (s_*,s^*) = (\mathrm{id},-\mathrm{id})$$

**Classical solutions:** clockwise/counterclockwise rotations  $\mu_{\pm}$ 



 $X = B(0,1) \subseteq \mathbb{R}^2 \qquad (s_*, s^*) = (\mathrm{id}, -\mathrm{id})$ 

**Classical solutions:** clockwise/counterclockwise rotations  $\mu_{\pm}$ 

**Examples of generalized solutions:** 

linear combination  $\mu_{\frac{1}{2}}$  of  $\mu_{\pm}$  constructed from rotations NB: dim $(spt(\mu_{\frac{1}{2}})) = 2$ 



**Brenier's generalized solution:**  $\mu \in \operatorname{Prob}(\Gamma)$ :

$$\operatorname{spt}(\mu) = \{t \mapsto x \cos(\pi t) + v \sin(\pi t) \in \Gamma; \\ (x, v) \in X \times \mathbb{R}^2, \|v\|^2 = 1 - \|x\|^2\}$$

 $\longrightarrow$  non-deterministic solution,  $\dim(\operatorname{spt}(\mu)) = 3$ 





 $X = B(0,1) \subseteq \mathbb{R}^2 \qquad (s_*, s^*) = (\mathrm{id}, -\mathrm{id})$ 

**Brenier's generalized solution:**  $\mu \in \operatorname{Prob}(\Gamma)$ :

$$\operatorname{spt}(\mu) = \{t \mapsto x \cos(\pi t) + v \sin(\pi t) \in \Gamma; \\ (x, v) \in X \times \mathbb{R}^2, \|v\|^2 = 1 - \|x\|^2\}$$

 $\longrightarrow$  non-deterministic solution,  $\dim(\operatorname{spt}(\mu)) = 3$ 

Computed trajectories for  $N = 10^5$ , T = 17



#### Numerical result: Beltrami Flow in Square

Stationary flow on  $[0,1]^2$ :speed:  $u(\mathbf{x}) = (\cos(\pi x_1)\sin(\pi x_2), \sin(\pi x_1)\cos(\pi x_2))$ [Brenier-Roesch]pressure:  $p(\mathbf{x}) = \frac{1}{4}(\sin^2(\pi x_1) + \sin^2(\pi x_2))$ 



#### Numerical result: Beltrami Flow in Square

Stationary flow on  $[0,1]^2$ :speed:  $u(\mathbf{x}) = (\cos(\pi x_1)\sin(\pi x_2), \sin(\pi x_1)\cos(\pi x_2))$ [Brenier-Roesch]pressure:  $p(\mathbf{x}) = \frac{1}{4}(\sin^2(\pi x_1) + \sin^2(\pi x_2))$ 



#### **Exact Lagrangian solution:** $s_0^e = \text{id}$ $\dot{s}_t^e = u \circ s_t$

NB:  $s^e$  is minimizing on [0, 1]

#### Numerical result: Beltrami Flow in Square

Stationary flow on  $[0,1]^2$ :speed:  $u(\mathbf{x}) = (\cos(\pi x_1)\sin(\pi x_2), \sin(\pi x_1)\cos(\pi x_2))$ [Brenier-Roesch]pressure:  $p(\mathbf{x}) = \frac{1}{4}(\sin^2(\pi x_1) + \sin^2(\pi x_2))$ 



Exact Lagrangian solution:  $s_0^e = \operatorname{id} \quad \dot{s}_t^e = u \circ s_t$ NB:  $s^e$  is minimizing on [0, 1]

#### **Reconstruction problem:**

 $\min \mathcal{E}_{N,T,\lambda}$  $s_* = s_0^e$ ,  $s^* = s_{t_{\max}}^e$
#### Numerical result: Beltrami Flow in Square

Stationary flow on  $[0,1]^2$ :speed:  $u(\mathbf{x}) = (\cos(\pi x_1)\sin(\pi x_2), \sin(\pi x_1)\cos(\pi x_2))$ [Brenier-Roesch]pressure:  $p(\mathbf{x}) = \frac{1}{4}(\sin^2(\pi x_1) + \sin^2(\pi x_2))$ 



Exact Lagrangian solution: $s_0^e = \mathrm{id}$  $\dot{s}_t^e = u \circ s_t$ NB:  $s^e$  is minimizing on [0, 1]

#### Reconstruction problem: $\min \mathcal{E}_{N,T,\lambda}$ $s_* = s_0^e, \ s^* = s_{t_{\max}}^e$

#### **Parameters:**

 $t_{\max} \in \{0.9, 1.1, 1.3, 1.5\}$ 

#### Numerical result: Beltrami Flow in Square



NB: qualitatively similar results by Luca Nenna and J.D. Benamou

#### Numerical result: Comparison of Trajectories



Square,  $t_{\rm max} = 1.5$ 

#### Comparison of Minkowski dimensions

**Minkowski dimension** Let  $S \subseteq \Gamma$  be a compact subset of a metric space.

 $\overline{\dim}(S) = \limsup_{N \to \infty} \log(N) / \log(1/\delta_N)$ 

where  $\delta_N = \text{minimum radius required to cover } S$  with N balls.

Estimation of dim(spt( $\mu$ )) via log(N)/log( $1/\delta_N$ )



# Perspectives

- A) More realistic numerical schemes for the Cauchy problem (e.g. without  $\varepsilon$ )?
- B) Changing the polar factorization theorem  $\rightarrow$  other fluid models, e.g. fluid-structure interactions / Camassa-Holm equation [Gallouet-Vialard 16], pressureless Euler equation with congestion [Maury-Preux '15]

C) Viscosity?

 $\mathbb{SDiff} = \text{measure-preserving diffeomorphisms from } X \text{ to itself} \subseteq L^2(X, \mathbb{R}^d)$ 



 $\mathbb{SDiff} = \text{measure-preserving diffeomorphisms from } X \text{ to itself} \subseteq L^2(X, \mathbb{R}^d)$ 



 $SDiff = measure-preserving diffeomorphisms from X to itself \subseteq L^2(X, \mathbb{R}^d)$ 



 $SDiff = measure-preserving diffeomorphisms from X to itself \subseteq L^2(X, \mathbb{R}^d)$ 

[Arnold 1966]



$$\rightarrow T_{id} SDiff = divergence-free vector fields$$

$$= \{ \nabla p \mid p : X \to \mathbb{R} \}^{\perp}$$

 $\longrightarrow$  Formally, a path  $s : [0, 1] \rightarrow \mathbb{SDiff}$  is a **geodesic** iff  $\ddot{s}_t \perp T_{s_t} \mathbb{SDiff}$ 

 $\mathbb{SDiff} = \text{measure-preserving diffeomorphisms from } X \text{ to itself} \subseteq L^2(X, \mathbb{R}^d)$ 

[Arnold 1966]



$$\rightarrow \mathrm{T}_{\mathrm{id}} \mathbb{S}\mathrm{Diff} = \mathsf{divergence}\text{-}\mathsf{free} \text{ vector fields}$$

$$= \{ \nabla p \mid p : X \to \mathbb{R} \}^{\perp}$$

 $\longrightarrow$  Formally, a path  $s : [0, 1] \rightarrow \mathbb{SDiff}$  is a **geodesic** iff  $\ddot{s}_t \perp T_{s_t} \mathbb{SDiff} \iff \ddot{s}_t \circ s_t^{-1} \perp T_{id} \mathbb{SDiff}$ 

 $SDiff = measure-preserving diffeomorphisms from X to itself \subseteq L^2(X, \mathbb{R}^d)$ 

[Arnold 1966]



$$ightarrow T_{id} SDiff = divergence-free vector fields$$

$$= \{\nabla p \mid p : X \to \mathbb{R}\}^{\perp}$$

 $\longrightarrow$  Formally, a path  $s : [0,1] \rightarrow \mathbb{SDiff}$  is a **geodesic** iff  $\ddot{s}_t \perp T_{s_t} \mathbb{SDiff} \iff \ddot{s}_t \circ s_t^{-1} \perp T_{id} \mathbb{SDiff}$ 

 $\iff \exists p: [0,1] \times X \to \mathbb{R}, \ddot{s}_t = -\nabla p_t \circ s_t$ 

 $SDiff = measure-preserving diffeomorphisms from X to itself \subseteq L^2(X, \mathbb{R}^d)$ 



 $SDiff = measure-preserving diffeomorphisms from X to itself \subseteq L^2(X, \mathbb{R}^d)$ 

[Arnold 1966]



$$\rightarrow T_{id} SDiff = divergence-free vector fields$$

$$= \{ \nabla p \mid p : X \to \mathbb{R} \}^{\perp}$$

 $\begin{array}{l} \longrightarrow \text{ Formally, a path } s: [0,1] \rightarrow \mathbb{S}\text{Diff is a geodesic iff} \\ \ddot{s}_t \perp \mathrm{T}_{s_t} \mathbb{S}\text{Diff} & \Longleftrightarrow \ddot{s}_t \circ s_t^{-1} \perp \mathrm{T}_{\mathrm{id}} \mathbb{S}\text{Diff} \\ & \Longleftrightarrow \exists t : [0,1] \times X \rightarrow \mathbb{R}, \\ \ddot{s}_t = -\nabla p_t \circ s_t \end{array}$ 

 $\longrightarrow$  With  $u_t := \dot{s_t} \circ s_t^{-1}$  (= velocity in Eulerian coordinates), one recovers **Euler's equations** for incompressible fluids:

$$\begin{cases} \partial_t u + (u \cdot \nabla)u = -\nabla p & \text{ in } X \\ \operatorname{div} u = 0 & \text{ in } X \\ u \cdot n = 0 & \text{ on } \partial X \end{cases}$$

 $\mathbb{SDiff} = \text{measure-preserving diffeomorphisms from } X \text{ to itself} \subseteq L^2(X, \mathbb{R}^d)$ 

[Arnold 1966]



Use this formulation for numerical computations (following Brenier):  $\longrightarrow$  Minimizing geodesics (with Jean-Marie Mirebeau, 2015)  $\longrightarrow$  Cauchy problem (with Thomas Gallouet, 2016).