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Brenier's 60 birthday

Talk based on:

P1 Unbalanced Optimal Transport: Geometry and Kantorovich
formulation, with L. Chizat, B. Schmitzer, G. Peyré. (2015)

P2 From unbalanced optimal transport to the Camassa-Holm
equation, with T. Gallouet. (2016)
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Arnold’s remark on incompressible Euler

Sur la géométrie différentielle des groupes de Lie de dimension
infinie et ses applications a I'hydrodynamique des fluides parfaits,
Ann. Inst. Fourier, 1966.

The incompressible Euler equation is the geodesic flow of the
(right-invariant) L? Riemannian metric on SDiff(M) (volume
preserving diffeomorphisms).
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Sur la géométrie différentielle des groupes de Lie de dimension
infinie et ses applications a I'hydrodynamique des fluides parfaits,
Ann. Inst. Fourier, 1966.

The incompressible Euler equation is the geodesic flow of the
(right-invariant) L? Riemannian metric on SDiff(M) (volume
preserving diffeomorphisms).

e An intrinsic point of view by Ebin and Marsden, Groups of
diffeomorphisms and the motion of an incompressible fluid,
Ann. of Math., 1970. Short time existence results for smooth
initial conditions.

e An extrinsic point of view by Brenier, relaxation of the
variational problem, optimal transport, polar factorization.




Arnold’s remark continued
The incompressible Euler equation on M (Eulerian form),

Ov(t,x) + v(t,x)-Vv(t,x)=—-Vp(t,x), t>0, xeM,

div(v) =0,
v(0,x) = vo(x),

is the Euler-Lagrange equation for the action

1
//|v(l“,x)\2dxdt7
0 Jm

under the flow constraint

at@(tvx) = V(t,(p(t,X)),
div(v) =0.

and time boundary value constraints:

©(0,-) = @o € SDiff(M) and ¢(1,-) = ¢1 € SDiff(M).
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Arnold’s remark continued

Rewritten in terms of the flow ¢, the action reads

1
//|5‘tgo(t,x)|2dxdt,
o Jm

under the constraint

o(t) € SDiff(M) for all t € [0,1].
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Rewritten in terms of the flow ¢, the action reads

/01/M|8tgo(t,x)|2dxdt, (4)

under the constraint
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o(t) € SDiff(M) for all t € [0,1]. (5)

Riemannian submanifold point of view:

Let M — R be isometrically embedded: A smooth curve
c(t) € M is a geodesic if and only if ¢ L T-M.

Incompressible Euler in Lagrangian form:

$=—-Vpoy
o(t) € SDiff(M).




From unbalanced

About Brenier's approach to incompressible Euler [

equation

Variational approach to minimizing geodesics on SDiff(M) A
isometrically embedded in a Hilbert space. Vialard

e Projection onto SDiff(R9) leads to his polar factorization
theorem:

Polar factorization, Y. Brenier 1991

Let ¥ € L2(R?,RY) s.t. . (Leb) < Leb, then there exists a
unique couple (p, ¢) (up to cste on p) s.t.

¢ =Vpoyp, (7)
and @, (Leb) = Leb and p is a convex function. Moreover,

1 = ¢lliz = inf {[}) — flli2 : f.(Leb) = Leb} (8)

e Smooth solutions of Euler are minimizing (for t € [0,1]) if
V2p is bounded in L> (by 7).

e In general, relaxation of the boundary value problem as
(infinite) multimarginal optimal transport.




A geometric picture: Otto's Riemannian
submersion

Diff(M)
L2(M, M)

SDiff(M): Isotropy
subgroup of p

ﬁ () = @u(n)

(Densp(M),W2)  p

Figure — A Riemannian submersion: SDiff(M) as a Riemannian
submanifold of L>(M, M): Incompressible Euler equation on SDiff(M)
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Reminders: Riemannian submersion

Let (M, gm) and (N, gn) be two Riemannian manifolds and
f: M+— N a differentiable mapping.

Definition

The map f is a Riemannian submersion if f is a submersion and
for any x € M, the map df; : Ker(df)*~ — T¢)N is an isometry.

e Vert, := Ker(df(x)) is the vertical space.
e Hor, = Ker(df(x))" is the horizontal space.
e Geodesics on N can be lifted "horizontally” to geodesics on M.

Theorem (O'Neill's formula)

Let f be a Riemannian submersion and X, Y be two orthonormal
vector fields on M with horizontal lifts X and Y, then

Kn(X, ¥) = Ku(X, ) + S lvert (%, PDIs, - ()

where K denotes the sectional curvature and vert the orthogonal
projection on the vertical space.
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A pre-formulation of the polar factorization optimal ranspor o
Diff(M) F\.m\c/(;j;?((;wicr
L2(M, M) &

SDiff(M)

m(p) = px(n)

(Densp(M),W2)

Figure — A Riemannian submersion: SDiff(M) as a Riemannian
submanifold of L>(M, M): Incompressible Euler equation on SDiff(M)




A pre-formulation of the polar factorization

Diff(M)
LZ(M, M) 81
Id
SDiff(M)
m() = @x(n)
(Densp(M),W2) & m(g1) =

Figure — A pre polar factorization
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. . Fr.om unbalanced
A pre-formulation of the polar factorization e

Diff(M) F\.m\c/(;j;?((;wicr
L2(M, M) 81
() = e« ()
(Densp(M),W2) W(gl) =1

Figure — Polar factorization: go = arg mingespirr ||g1 — &2




Outline

o Unbalanced optimal transport

e An isometric embedding

e Euler-Arnold-Poincaré equation

o The Camassa-Holm equation as an incompressible Euler equation

e Corresponding polar factorization
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Reminders: Static Formulation

Monge formulation (1781)

Let u,v € PL(M),

Minimize /M c(x, o(x))du (10)

among the map s.t. p.(u) =v.
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Reminders: Static Formulation

Monge formulation (1781)

Let u,v € PL(M),
Minimize /M c(x, o(x))du (10)

among the map s.t. p.(u) =v.

© ill posed problem, the constraint may not be satisfied.

@ the constraint can hardly be made weakly closed.

— Relaxation of the Monge problem.
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Kantorovich formulation (1942)

Unbalanced optimal

Let IJ” IS P—‘,—(M), deﬁne D by transport

D(p,v) =y€;g&/,2){/mz c(x,y)dy(x,y) : iy = p and 72y = V}

@ Existence result: ¢ lower semi-continuous and bounded from
below.

@ Also valid in Polish spaces.

Q If c(x,y) = %|X — y|P, DY/P is the Wasserstein distance
denoted by W,.
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Kantorovich formulation (1942)

Unbalanced optimal

Let IJ” IS P—‘,—(M), deﬁne D by transport

D(p,v) =y€;g&/,2){/w c(x,y)dy(x,y) : iy = p and 72y = V}

@ Existence result: ¢ lower semi-continuous and bounded from
below.
@ Also valid in Polish spaces.

Q If c(x,y) = %|X — y|P, DY/P is the Wasserstein distance
denoted by W,.

Linear optimization problem and associated numerical methods.
Recently introduced, entropic regularization. (C. Léonard, M.
Cuturi, ...)




Reminders: Dynamic formulation

(Benamou-Brenier)
For geodesic costs, for instance c(x,y) = 3|x — y|?

inf E(v / / lv(x)?p(x) dxdt ,

p+V-(vp)=0
p(0) = po and p(1) =

s.t.
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Reminders: Dynamic formulation
(Benamou-Brenier)

For geodesic costs, for instance c(x,y) = 3|x — y|?
inf £(v / / lv(x)|?p(x) dxdt , (11)
s.t.
p(0) = po and p(1) =
Convex reformulation: Change of variable: momentum m = pv,
)2
inf &(m / |’" | dxdt, (13)
s.t.
. m—0
p+V-m (14)
p(0) = o and p(1) = p1.

where (p, m) € M([0,1] x M,R x RY).
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Reminders: Dynamic formulation

(Benamou-Brenier)
For geodesic costs, for instance c(x,y) =

//| ()Pl

p+V-(vp)=0
p(0) = po and p(1) = py.

1 | 2

x =yl

inf E(v ) dxdt ,

s.t.

Convex reformulation: Change of variable: momentum m =

inf E(m

2
/ |m|ddt

s.t.

p+V-m=0

p(0) = o and p(1) = p1.
where (p, m) € M([0,1] x M,R x RY).

Existence of minimizers: Fenchel-Rockafellar.

Numerics: First-order splitting algorithm: Douglas-Rachford.
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(14)
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o Extend the Wasserstein L2 distance to positive Radon
measures.

e Develop associated numerical algorithms.

Possible applications: Imaging, machine learning, gradient flows, ...
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Figure — Optimal transport between bimodal densities
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Taking into account locally the change of mass: Unbalanced optimal

transport

Two directions: Static and dynamic.
Static, Partial Optimal Transport [Figalli & Gigli, 2010]
Static, Hanin 1992, Benamou and Brenier 2001.

Dynamic, Numerics, Metamorphoses [Maas et al. , 2015]

Dynamic, Numerics, Growth model
[Lombardi & Maitre, 2013]

Dynamic and static,
[Piccoli & Rossi, 2013, Piccoli & Rossi, 2014]
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Taking into account locally the change of mass: Unbalanced optimal

transport

Two directions: Static and dynamic.
Static, Partial Optimal Transport [Figalli & Gigli, 2010]
Static, Hanin 1992, Benamou and Brenier 2001.

Dynamic, Numerics, Metamorphoses [Maas et al. , 2015]

Dynamic, Numerics, Growth model
[Lombardi & Maitre, 2013]

Dynamic and static,
[Piccoli & Rossi, 2013, Piccoli & Rossi, 2014]

No equivalent of L? Wasserstein distance on positive Radon
measures.




Bibliography after june 2015

More than 300 pages on the same model!
Starting point: Dynamic formulation

e Dynamic, Numerics, Imaging [Chizat et al. , 2015]
e Dynamic, Geometry and Static [Chizat et al. , 2015]
e Dynamic, Gradient flow [Kondratyev et al. , 2015]

e Dynamic, Gradient flow [Liero et al. , 2015b]

e Static and more [Liero et al. , 2015a]

e Optimal transport for contact forms [Rezakhanlou, 2015]

e Static relaxation of OT, machine learning
[Frogner et al. , 2015]
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Pros and cons:
e Extend static formulation: Frogner et al.

min AKL(Proj v, p1) + AKL(Proj? v, p2)
+/ Y(x,y)d(x,y)?dxdy (15)
MZ

Good for numerics, but is it a distance ?

e Extend dynamic formulation: on the tangent space of a
density, choose a metric on the transverse direction.
Built-in metric property but does there exist a static
formulation ?




An extension of Benamou-Brenier formulation

Add a source term in the constraint: (weak sense)
p=—V-(pv)+ap,

where a can be understood as the growth rate.

1
WF(m, a)? = %/0 /M Iv(x, t)|?p(x, t) dxdt

5 [t
+ —/ / alx, t)?p(x, t) dxdt.
2 Jo Jm

where ¢ is a length parameter.
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An extension of Benamou-Brenier formulation

Add a source term in the constraint: (weak sense)
p=—V-(pv)+ap,

where a can be understood as the growth rate.

1
WF(m, a)? = %/0 /M Iv(x, t)|?p(x, t) dxdt

5 [t
+ —/ / alx, t)?p(x, t) dxdt.
2 Jo Jm

where ¢ is a length parameter.
Remark: very natural and not studied before.
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Convex reformulation
Add a source term in the constraint: (weak sense)
p=—V-m+p.

The Wasserstein-Fisher-Rao metric:

WF(m, 1)> //'m“)2d de+ 2 //M

p(x

)

dx dt.
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https://github.com/lchizat/optimal-transport/

Convex reformulation
Add a source term in the constraint: (weak sense)
p=—V-m+p.

The Wasserstein-Fisher-Rao metric:

1 [ [ m(x, t))? 82 [ op(x, t)?
WF(m, 2:7//7’dxdt+—/ /%dxdt.
=5 0y Ju olxt) 2 Jo Ju o)

e Fisher-Rao metric: Hessian of the Boltzmann entropy/
Kullback-Leibler divergence and reparametrization invariant.
Wasserstein metric on the space of variances in 1D.

e Convex and 1-homogeneous: convex analysis (existence and
more)

e Numerics: First-order splitting algorithm: Douglas-Rachford.

e Code available at
https://github.com/lchizat/optimal-transport/
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Corresponding polar
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https://github.com/lchizat/optimal-transport/

A general framework
Definition (Infinitesimal cost)

An infinitesimal cost is f : M x R x R? x R — R, U {+00} such
that for all x € M, f(x,-,-,-) is convex, positively 1-homogeneous,
lower semicontinuous and satisfies

=0 if (m,p) =(0,0) and p >0
f(x,p,m,p)§ >0 if |[m| or |u| >0
=400 if p<O.

Definition (Dynamic problem)
For (p, m,p) € M([0,1] x M)1+d+1 |t

1
Ko p) /0 /M Fx, 42, dm duy gyt x)  (16)

The dynamic problem is, for pg, p1 € M (M),

C(po, p1) = inf J(p,w, Q). 17
(b0 01) = )ity 2 S) (1)
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Existence of minimizers

Proposition (Fenchel-Rockafellar)

Let B(x) be the polar set of f(x,-,-,-) for all x € M and assume it
is a lower semicontinuous set-valued function. Then the minimum
of (17) is attained and it holds

Cp(po, p1) = sup /Mw(lw)dpl—/Mw(O,')dpo (18)

peK

def.

with K =
{o € C([0,1] x M) : (8, Vi, ) € B(x), ¥(t,x) €[0,1] x M} S
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Let B(x) be the polar set of f(x,-,-,-) for all x € M and assume it | ol
is a lower semicontinuous set-valued function. Then the minimum | [,
of (17) is attained and it holds

Cp(po, p1) = sup /Mw(lw)dpl—/Mw(O,')dpo (18)

peK

with K &
{o € C([0,1] x M) : (8, Vi, ) € B(x), ¥(t,x) €[0,1] x M} S

WEE s,
WF(x,y,z) =40 if (x,ly],z) =(0,0,0)
+00 otherwise

and the corresponding Hamilton-Jacobi equation is

2
o+ = <|V<f9|2 ) <0.
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Figure — WFR geodesic between bimodal densities




Numerical simulations

O K

Po P

t=0 t=05 t=1

Figure — Geodesics between po and p1 for (1st row) Hellinger, (2nd row)
Wa, (3rd row) partial OT, (4th row) WF.

An Interpolating Distance between Optimal Transport and
Fisher-Rao, L. Chizat, B. Schmitzer, G. Peyré, and F.-X. Vialard,
FoCM, 2016.
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Numerical simulations

OO0 uWWuWA
O A

Po P

t=0 t=05 t=1

Figure — Geodesics between po and p1 for (1st row) Hellinger, (2nd row)
Wa, (3rd row) partial OT, (4th row) WF.

An Interpolating Distance between Optimal Transport and
Fisher-Rao, L. Chizat, B. Schmitzer, G. Peyré, and F.-X. Vialard,
FoCM, 2016.
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Numerical simulations

Figure — Geodesics between po and p1 for (1st row) Hellinger, (2nd row)
Wa, (3rd row) partial OT, (4th row) WF.

An Interpolating Distance between Optimal Transport and
Fisher-Rao, L. Chizat, B. Schmitzer, G. Peyré, and F.-X. Vialard,
FoCM, 2016.
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Numerical simulations

Figure — Geodesics between po and p1 for (1st row) Hellinger, (2nd row)
Wa, (3rd row) partial OT, (4th row) WF.

An Interpolating Distance between Optimal Transport and
Fisher-Rao, L. Chizat, B. Schmitzer, G. Peyré, and F.-X. Vialard,
FoCM, 2016.
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Figure — Geodesics between po and p1 for (1st row) Hellinger, (2nd row)
Wa, (3rd row) partial OT, (4th row) WF.

An Interpolating Distance between Optimal Transport and
Fisher-Rao, L. Chizat, B. Schmitzer, G. Peyré, and F.-X. Vialard,
FoCM, 2016.




From dynamic to static

Group action

Mass can be moved and changed:

consider m(t)dy(y).-
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Group action

Mass can be moved and changed: consider m(t)dy(y).

Infinitesimal action

x(t) = v(t, x(t))

p=-V-(vp)+p & {r'n(t) = u(t, x(t))




From dynamic to static

Group action

Mass can be moved and changed: consider m(t)dy(y).

Infinitesimal action

ﬁ——V-(VPHu@{

x(t) = v(t, x(t))
m(t) = p(t, x(t))

&
A cone metric
-2

WF2(x, m) (%, i), (x, i) = =

Change of variable: r> = m...

2

A
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Riemannian cone

Definition

Let (M, g) be a Riemannian manifold. The cone over (M, g) is
the Riemannian manifold (M x R%., r’g + dr?).
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Riemannian cone

Definition

Let (M, g) be a Riemannian manifold. The cone over (M, g) is
the Riemannian manifold (M x R%., r’g + dr?).

For M = 5;(r), radius r < 1. One has sin(a) = r.
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Geometry of a cone

Change of variable: WF? = 1r2g +2dr2.
Non complete metric space: add the vertex M x {0}.
The distance:

d((x1, m), (x2, m))? =

1
my + my — 2y/mym» cos <2dM(X1,X2) A 77) . (19)

Curvature tensor: R(X,e) = 0 and
R(X,Y)Z = (R(X,Y)Z — g(Y, Z)X + g(X, Z)Y.0).
e M =R then (x,m) — /me*/? € C local isometry.

Corollary

If (M, g) has sectional curvature greater than 1, then
(M x R%, mg + ;= dm?) has non-negative sectional curvature.
For X, Y two orthornormal vector fields on M,

KX, ¥) = (Kg(X,Y) = 1) (20)

where K and K, denote respectively the sectional curvatures of
M x R% and M.
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Visualize geodesics for r’g + dr?

Mass~1/2

' . q
5] . :
™ q
™ q
P
™ q
™ 1
™
:
o* e
1
lﬂuoﬂ'.. e 1
.
.. - :
.

05 [ ] - P
* . . q
. . b :

0.0 . . I i i .
0.0 0.5 10 15 2.0 25 30

Space

Figure — Geodesics on the cone

From unbalanced
optimal transport to
the Camassa-Holm

equation

Francois-Xavier
Vialard

Unbalanced optimal
transport




From unbalanced

Distance between Diracs optimal transport to
y equation

Francois-Xavier

A~ N
Vialard

Unbalanced optimal
transport

1
2 WF (midy, m26X2)2 =m+m
1
— 2y/mym; cos (§dM(X17X2) A 7r/2) .

Proof: prove that an explicit geodesic is a critical point of the convex
functional.

Properties: positively 1-homogeneous and convex in (my, my).
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7 : (Diff(M) x C>*(M,R%)) x Dens(M) — Dens(M)
(9, A), ) = 0.(\?p)

Group law:

Unbalanced optimal
transport

(1, A1) - (2, A2) = (1 0 P2, (A1 © 2)A2) (21)




Generalization of Otto’s Riemannian submersion

Idea of a left group action:
7 : (Diff(M) x C>*(M,R%)) x Dens(M) — Dens(M)
™ (((pa )‘)7 p) = @*(Azp)

Group law:

(1, A1) - (2, A2) = (1 0 P2, (A1 © 2)A2) (21)

Theorem (P1)

Let po € Dens(M) and mo : Diff(M) x C>°(M,R* ) — Dens(M)
defined by mo(p, \) == p.(A\2po). It is a Riemannian submersion

(Diff(M) x C>°(M,R*), L*(M, M x R*)) = (Dens(M), WF)

(where M x R’ is endowed with the cone metric).

O'Neill's formula: sectional curvature of (Dens(M), WF).
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Geometric consequence optimat wansport o

the Camassa-Holm

equation

The sectional curvature of Dens(M) at point p is:

Francois-Xavier
Vialard

Unbalanced optimal

K(0)0. %) = [ K@ 0. 200210, Za6))ot) o)l

3
+ 21z 2" (22)
where

w(Zi(x), Z2(x)) = g(x)(Z1(x), Z1(x))g(x)(Z2(x), Z2(x))
— g()(Zi(x), Z(x))?

and [Z1, Z,]V denotes the vertical projection of [Z;, Z5] at identity
and || - || denotes the norm at identity.




From unbalanced

Geometric consequence optimat wansport o

the Camassa-Holm

equation

The sectional curvature of Dens(M) at point p is:

Francois-Xavier
Vialard

Unbalanced optimal

K(p)( X1, X2) = /Mk(xv1)(21(X)722(X))W(21(X),Zz(X))P(X) dv(x)

3
+ 21z 2" (22)
where

w(Zi(x), Z2(x)) = g(x)(Z1(x), Z1(x))g(x)(Z2(x), Z2(x))
— g()(Zi(x), Z(x))?

and [Z1, Z,]V denotes the vertical projection of [Z;, Z5] at identity
and || - || denotes the norm at identity.

Let (M, g) be a compact Riemannian manifold of sectional
curvature bounded below by 1, then the sectional curvature of
(Dens(M), WF) is non-negative.
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Monge formulation

Francois-Xavier
Vialard

Unbalanced optimal

WF (po, p1) = (Lni){ll(sa,k) = (1d,1)l|2(0) © px(Xp0) = p1} rorspor
(23) ’

Under existence and smoothness of the minimizer, there exists a
function p € C*°(M,R) such that

(), Mx)) = expStM (VP(X) p(x)), (24)

Equivalent to Monge-Ampeére equation

With z = log(1 + p) one has
(1+|Vz[*)e** po = det(Dgp)p1 o ¢ (25)

and

6109 = explty (srean (51921 ) 265, ) -




From unbalanced

A relaxed static OT formulation optinat trampor o
Define equation

d rancois- Xavier
ki) = [ ﬁo( )du+\u| vl

Unbalanced optimal
transport

Theorem (Dual formulation, P1)

An is

embe
WFZ(pO’pl) = S / ¢(x) dpo +/. P(y)dpr Euler-Arnold-Poincaré
(¢,9)€C(M)?

subject to V(x,y) € M?, ¢(x) <1, (y) <1 and
(1= ¢())(1 —(y)) > cos® (|x — y|/2 A7/2) )

The corresponding primal formulation

WF2(p1, p2) = ir){f KL(Projl v, p1) + KL(Proj2 ~, p2)

equation

_ /M2 7(x,y) log(cos?(d(x, y)/2 A 7/2)) dx dy

Theorem (P2)

On a Riemannian manifold (compact without boundary), the static and
dynamic formulations are equal.




New algorithm

Scaling Algorithms for Unbalanced Transport Problems, L. Chizat,
G. Peyré, B. Schmitzer, F.-X. Vialard.

e Use of entropic regularization.

WF2(p1, p2) = inf KL(Proji v, p1) + KL(Proj2 7, p2)

_ /M () logcos*(d(x,)/2 A /2)) dxdy + <KL(3, o).

e Alternate projection algorithm (contraction for a Hilbert type
metric).

e Applications to color transfer, Fréchet-Karcher mean
(barycenters).

e Simulations for gradient flows.
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. . . From unbalanced
The Riemannian submersion for WFR optimal transpor to
equation

Francois-Xavier

Diff(M) x C>(M, R Vialard

L2(M, Cc(M))

An isometric
embedding

Isotropy

subgroup of 1

(e, A) = 0 (V1)

(Dens(M), WFR) n

Figure — The same picture in our case: what is the corresponding
equation to Euler?




The isotropy subgroup for unbalanced optimal

tra nsport
Recall that

Mo ({po}) = {(, ) € Diff(M) x C*(M,RY) : ¢.(\po) = po}
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From unbalanced

The isotropy subgroup for unbalanced optimal ST
transport

Vialard

Recall that

Mo ({po}) = {(, ) € Diff(M) x C*(M,RY) : ¢.(\po) = po}

An isometric
embedding

o ({ro}) = {(¢, Vdac()) € Diff(M)= C*(M,RY) : € Diff(M)}

The vertical space is

Vert, ) = {(v, @) o (¢, A); div(pv) = 2ap} , (26)
where (v, ) € Vect(M) x C>*(M,R). The horizontal space is

Hory\) = {(;Vp, p) (@ \): pe COQ(M,R)} e




From unbalanced

The isotropy subgroup for unbalanced optimal optimal tansport o

the Camassa-Holm
equation

trans pOFt

Recall that

Mo ({po}) = {(, ) € Diff(M) x C*(M,RY) : ¢.(\po) = po}

Francois-Xavier
Vialard

An isometric
embedding

o ({ro}) = {(¢, Vdac()) € Diff(M)= C*(M,RY) : € Diff(M)}

The vertical space is

Vert, ) = {(v, @) o (¢, A); div(pv) = 2ap} , (26)
where (v, ) € Vect(M) x C>*(M,R). The horizontal space is

1
Horioy = { (57P0) 0 (o) pe xR} (20)
The induced metric is

1
G(v,divv):/ \v|2du+7/ idivv[Pdp.  (28)
M 4 Jm

The HYV right-invariant metric on the group of diffeomorphisms.



Contents

© Euler-Arnold-Poincaré equation
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Right-invariant metric on a Lie group

Definition (Right-invariant metric)

Let g1,8> € G be two group elements, the distance between gy
and g» can be defined by:

dz(gl,gg) = inf
g(t)

1
{ [ IV ctle(0) = g0 andga) = gl}

where 0:g(t)g(t)~! = v(t) € g, with g the Lie algebra.
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Right-invariant metric on a Lie group

Definition (Right-invariant metric)

Let g1,8> € G be two group elements, the distance between gy
and g» can be defined by:

1
Pl )= { / ||v(r)||3dr|g(0)—goandgu)—gl}

= inf
g(t)

where 0:g(t)g(t)~! = v(t) € g, with g the Lie algebra.

Right-invariance means:

d*(g18. 828) = d(g1.82) -

It comes from:

D:(g(t)80)(8(t)g0) ™ = Oeg(t)gogy ‘g(t) ™ = Oeg(t)g(t) .
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Euler-Arnold-Poincaré equation

Compute the Euler-Lagrange equation of the distance functional:
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Euler-Arnold-Poincaré equation optimal transport to

the Camassa-Holm

equation

Francois-Xavier

Compute the Euler-Lagrange equation of the distance functional: Vit
oL d oL
og dtdg

Euler-Arnold-Poincaré

In the case of f01 (g,8)dt = fo ||ul|?dt, equation
Euler-Poincaré-Arnold equation

{?:“"g (29)

b+adju=0

where ad} is the (metric) adjoint of ad,v = [v, u].

Compute variations of v(t) in terms of u(t) = dg(t)g(t)~!. Find
that admissible variations on g can be written as:
dv(t) = i — ad,u for any u vanishing at 0 and 1. O
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Fluid dynamics examples of Euler-Arnold optimal transport to
equations

equation

Francois-Xavier
Vialard

e Incompressible Euler equation.

o Korteweg-de-Vries equation.

e Camassa-Holm equation 1981/1993. An integrable shallow T
water equation with peaked solitons equation ’

Consider Diff(S;) endowed with the H! right-invariant metric
HVH%? + %HaxV”iz One has

(30)

Orll — %atxxu u+30uu— %@XU Okt — %axxxu u=20
81&‘10(t7 X) = U(fa<P(t7X)) :

Model for waves in shallow water.

Completely integrable system (bi-Hamiltonian).

Exhibits particular solutions named as peakons. (geodesics as
collective Hamiltonian).

Blow-up of solutions which gives a model for wave breaking.
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Ebin-Marsden analytical framework optimal transpot o

the Camassa-Holm
equation

Rewrite the metric in Lagrangian coordinates ¢ and a tangent i
vector X,, and realize that it is smooth... T
e The right-invariant H4" metric:

6o(Xos Xe) = [ IXc0 0714 BRdiv(X, 09 P di. (31)
M

Euler-Arnold-Poincaré

can be written oty
Go(Xos X,) = / 21X, 2 Jac(p) + B (Tr(DX, - [Dy] ™)) Jac() du.
M

Smooth metric on an infinite dimensional Riemannian manifold.
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Ebin-Marsden analytical framework optimal transpot o

the Camassa-Holm

equation

Rewrite the metric in Lagrangian coordinates ¢ and a tangent i
vector X,, and realize that it is smooth... T
e The right-invariant H4" metric:

6o(Xos Xe) = [ IXc0 0714 BRdiv(X, 09 P di. (31)
M

Euler-Arnold-Poincaré

can be written oty
Go(Xos X,) = / 21X, 2 Jac(p) + B (Tr(DX, - [Dy] ™)) Jac() du.
M

Smooth metric on an infinite dimensional Riemannian manifold.
Consequences:
e Geodesic equations is a simple ODE (No need for a
Riemannian connection)
e Gauss lemma on H°® for s > d/2 + 2
e Geodesics are minimizing within H*® topology.

Theorem (Consequence of Ebin and Marsden)

Local well-posedness of the geodesics for the HWV right-invariant
metric on Diff*(M) for s > d/2 + 2.




Metric properties

Theorem (Michor and Mumford, 2005)

The distance on Diff(M) endowed with the right-invariant metric
L? is degenerate; i.e. d(¢o, 1) = 0 for every wo, p1 € Diff(M).
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Theorem (Michor and Mumford, 2005)

Euler-Arnold-Poincaré
equation

The distance on Diff(M) endowed with the right-invariant metric
L? is degenerate; i.e. d(¢o, 1) = 0 for every wo, p1 € Diff(M).

Theorem (Michor and Mumford, 2005)

The distance on Diff(M) endowed with the right-invariant metric
HPV s non degenerate.

Direct using the isometric injection. O




An isometric embedding

We have

inj : (Diff(M), H™) — [2(M,C(M))

o = (p, v/ Jac(p)) -

From unbalanced
optimal transport to
the Camassa-Holm

equation

Francois-Xavier
Vialard

Euler-Arnold-Poincaré
equation




A . . b d d . From unbalanced
optimal transport to
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We have

inj : (Diff(M), H™) — [2(M,C(M))

QD = (SD7 \% JaC((p)) : Euler-Arnold-Poincaré

equation

The geodesic equations can be written in Lagrangian coordinates

Ar = Arg(@,9) = =2 rPo .
In Eulerian coordinates,
v+ VEv 4 2va = —VEP (33)
&+ (Va,v) +a? —g(v,v) = —2P,

where o = % op~land v=20,p0p L




Consequences of the isometric embedding

(Diff(M), HIv) < [2(M,C(M))
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Consequences of the isometric embedding

(Diff(M), HIv) < [2(M,C(M)) (34)

© Using Gauss-Codazzi formula, it generalizes a curvature
formula by Khesin et al. obtained on Diff(5;).

@ Smooth geodesics are length minimizing for a short enough
time under mild conditions (generalization of Brenier's proof).

© The Camassa-Holm equation as incompressible Euler.

@ A new polar factorization theorem.
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Generalisation of Brenier's proof
Theorem (P2)

Let (p(t), r(t)) be a smooth solution to the geodesic equations on the time
interval [to, t1]. If (t1 — t0)*(w, V2Wp(y(x, r)w) < w2||wl? holds for all
t € [to, t1] and (x,r) € C(M) and w € T( 1C(M), then for every smooth

curve (po(t), ro(t)) € Autyo(C(M)) sat/sfymg (o(ti), ro(ti)) = (e(ti), r(ti))
for i = 0,1 and the condition (x), one has

t1 5 t1 >
/ 1@, A drs/ (o, )12 dt,

to to

(35)

with equality if and only if the two paths coincide on [ty, t1].
Define 5o & min{r(x, t) :
condition (x) is:

injectivity radius at (¢(t,x), r(t,x))}, then the

@ /f the sectional curvature of C(M) can assume both signs or if
diam(M) > 7, there exists § satisfying 0 < § < 8o such that the curve
(¢0(t), ro(t)) has to belong to a §-neighborhood of (¢(t), r(t)), namely

dC(M) ((po(t, x), ro(t, x)), ((t, x), r(t, x)))) <6
for all (x, t) € M X [to, t1] where dc(py is the distance on the cone.

@ /fC(M) has non positive sectional curvature, then, for every § as above,
there exists a short enough time interval on which the geodesic will be
length minimizing.

© If M = S4(1), the result is valid for every path (o, fo).
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In short:

Gain w.r.t. Ebin and Marsden
e Ebin and Marsden proved that: Smooth solutions are
minimizing in a H/?*t2*¢ neighborhood.
e We have: Smooth solutions are minimizing in a W1
neighborhood.
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In short:

Gain w.r.t. Ebin and Marsden
e Ebin and Marsden proved that: Smooth solutions are
minimizing in a H/?*t2*¢ neighborhood.
e We have: Smooth solutions are minimizing in a W1
neighborhood.

Corollary (P2)

When M = S;, smooth solutions to the Camassa-Holm equation

Ort — 20poct + 3050 u — 201 Ou — 200t =0
(36)
at@(tvx) = “(t,SO(ta X)) .

are length minimizing for short times.
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Toward the incompressible Euler equation

Why? Unbalanced OT is linked to standard OT on the cone.
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Toward the incompressible Euler equation

Why? Unbalanced OT is linked to standard OT on the cone.

Understand Diff(M) x C>°(M,R%) as a subgroup of Diff(C(M))?

The cone C(M) is a trivial principal fibre bundle over M.
The automorphism group Aut(C(M)) C Diff(C(M)) can be
identified with Diff(M) x C*°(M,RR%). One has

(9, A) = (%, 1) = (p(x), A(x)r)-

Recall that ¢ € Aut(C( )) if ¢ € Diff(C (M)) and VA € R% one
has (X - (x,r)) = X - (x, r) where X - (x,r) = (x, Ar).
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CH as an incompressible Euler equation

The geodesic equation on Diff(M) x C>°(M,R% ) can be extended
to Aut(C(M)) as

D . .
E(cpv )‘r) =-VVpo (Spa )‘r) ) (37)

where Wp(x, r) = r2P(x).
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The geodesic equation on Diff(M) x C>°(M,R% ) can be extended
to Aut(C(M)) as

D . .
E(cpv )‘r) =—-VVpo (Spa )‘r) ) (37)
The Camassa-Holm
where W (x, r) = r?P(x). eomese Bl

equation

Does there exist a density [i on the cone such that
inj(Diff(M)) C SDiff5(C(M))? (answer: yes)




CH as an incompressible Euler equation

The geodesic equation on Diff(M) x C>°(M,R% ) can be extended
to Aut(C(M)) as

D . .
E(cpv )‘r) =-VVpo (Spa )‘r) ) (37)

where Wp(x, r) = r2P(x).

Question

Does there exist a density [i on the cone such that
inj(Diff(M)) C SDiff5(C(M))? (answer: yes)

| A\

Proof.
The measure fi = r~3drdu where p denotes the volume form on
M. O

v
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A new geometric picture

‘HVW(¢, A) = pa(A2vol)

(Dens(M), WFR)  vol (Dens(C(M)),W2) 5 = r—3dvol dr
e D) e D)) p=rd

Figure — On the left, the picture represents the Riemannian submersion
between Aut(C(M)) and the space of positive densities on M and the
fiber above the volume form is Auto(C(M)). On the right, the picture
represents the automorphism group Aut(C(M)) isometrically embedded
in Diff(C(M)) and the intersection of Diff;(C(M)) and Aut(C(M)) is
equal to Auty(C(M)).
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Theorem (P2)

Let ¢ be the flow of a smooth solution to the Camassa-Holm

equation then W(0, r) = (¢(0), /Jac(o(0))r) is the flow of a
solution to the mcompress:b/e Euler equatlon for the density

r%rdrd@.
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equation as an
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equation
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Let ¢ be the flow of a smooth solution to the Camassa-Holm

equation then W(0, r) = (¢(0), /Jac(o(0))r) is the flow of a

solution to the mcompressrb/e Euler equatlon for the density
%4 rdrdd.

The Camassa-Holm

Case Where M - 51, M(g@) — [(9, r) = r 8X<p(9)e'@(9)] then the equation as an

incompressible Euler

CH equation iS equation

Ol — 8txxuu—|—38 uu— 28XXU8 u— Allﬁxxxuu:O (38)
8t§0(tax) - U( 7(10(ta X)) :

The Euler equation on the cone, C(M) = R2\ {0} for the density

p= 4 Leb is

V- (pv)=0. (39)

where v(0, r) = (u(6), $0xu(9)).

{vwvv:—w,
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Toward polar factorization

Definition (Admissible measures)

We say that a positive Radon measure p on M is admissible (with
respect to vol) if for any x € M, there exists y € Supp(p) such

that d(x,y) < 7/2.
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Definition (Admissible measures)

We say that a positive Radon measure p on M is admissible (with
respect to vol) if for any x € M, there exists y € Supp(p) such
that d(x,y) < 7/2.

Consequence (Liero, Mielke, Savaré): Existence of a unique
optimal potential which takes finite values a.e. between vol and p

Corresponding polar

admissible. Recall that c(x,y) = — log(cos®(d(x, y) A 7/2)). factorization

WF*(po, p1) = sup /l—e_z"(x)dpo(XH/ 1-e M dpi(y)
(.z)ecmy? "
(40)

subject to V(x,y) € M?,

20() + 21(y) < —log (cos” (d(x.y) A (x/2)) . (41)




Polar factorization

Theorem (Polar factorization, P2)

Let (¢, ) € Aut(C(M)) s.t. p1 = 7o [(¢p, \), vol] is an absolute continuous
admissible measure. Then, there exist a unique minimizer, characterized by a
c-concave function zy, between vol and p1 and a unique measure preserving
generalized automorphism (s, /Jac(s)) € Aut,o|(C(M)) such that vol a.e.

(6,2) = expC™) (%v%, fpzo) o (5, v/Jac(9)) (42)
or equivalently
0.3 = (o715 [Vl ) - (5, V), (43)
where p, = e® — 1 and
o) = expl! (—aretan (V2001 ) T2TT) - (4

Moreover (s, +/Jac(s)) is the unique L>(M,C(M)) projection of (¢, \) onto
Autyol(C(M)).
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Polar factorization

Another formulation of the polar factorization:

Corollary (P2)
Denote by Mes*(C(M)))®+ the space of mesurable and

approximate differentiable functions f : C(M) — R that satisfy
f(x,r) = r’f(x,1) for any r € R%. Under the hypothesis of the

previous theorem, there exists a unique couple

((s, v/ Jac(s)), \Up) € Autyo x Mes(C(M)))®+ such that
(¢, A) = expCM(=VWp) o (s, 1/Jac(s)),

where W(x, r) = r?zy(x).

(45)
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Perspectives

e Study the relaxation of geodesics for CH (uniqueness of the
pressure, how the angle of the cone affects the results...)

e Develop numerical approaches following Mérigot et al.
e Treat other fluid dynamic equations ?

15
Hr /’—- H\
osr / \
) 1
0ol | |
|I ]
05 \'\
1o0f \
15|
-2 -1 o 1 2

Figure — CH equation after the "Madelung transform”
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Polar factorization as extension of the Hodge-Helmholtz
decomposition:

v =w+ Vp where div(v) =0. (46)

In our case,

Corresponding polar
factorization
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The corresponding Monge-Ampére equation can be written as
det [~V22(x) + (Vi) (x, ¢(x))] =

et (7€) ol e 200 (14 219207 ) L)

gop(x)’

where ¢ is the c—exponential of —2z: il ek

) = explt (—arctan (92001 ) k) - (49)




A word about smoothness: Monge-Ampere
equation

The corresponding Monge-Ampeére equation can be written as
det [—V?z(x) + (Vi) (x, ¢(x))] =
- 1 f(x)
det [(Vx,y ) (x, ¢(x))]| e 7220 <1+ Vz(x 2) v
[det [(Vx,y ) (x, 0 (x))]] 2IVZIT ) 2500
(48)

where ¢ is the c—exponential of —2z:

) = explt (—arctan (92001 ) k) - (49)

For the cost c(x,y) = —log(cos?(d(x,y) A 7/2)),

e On the plane, there exist (x,y) € M? and
(v,w) e TIMx T,M, MTW(x,y,v,w) <O0.

e On the sphere of radius r = 1, as well.
e If r small enough, then numerically, MTW > 0.
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Link with the reflector problem

Consider the sphere of radius 1/2, then d(x,y) = % arcos(x - y):

— log(cos?(d(x, y))) = — log(1 + cos(2d(x. y))) + log(2)
—log(1 + x - y) + log(2)
= —2log(|x + y|) = 2¢,(x, —y)

The cost for the reflector antenna is ¢,(x, y) = — log(|x — y|).
Clearly,

sgn(MTW(c,(+,-))) = sen(MTW(c, (-, —)))

Therefore, MTW(— log(cos?(d))) > 0 on the sphere of radius 1/2.

(Loeper, Lee and Li).
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