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Arnold’s remark on incompressible Euler

Sur la géométrie différentielle des groupes de Lie de dimension
infinie et ses applications à l’hydrodynamique des fluides parfaits,
Ann. Inst. Fourier, 1966.

Theorem
The incompressible Euler equation is the geodesic flow of the
(right-invariant) L2 Riemannian metric on SDiff(M) (volume
preserving diffeomorphisms).

• An intrinsic point of view by Ebin and Marsden, Groups of
diffeomorphisms and the motion of an incompressible fluid,
Ann. of Math., 1970. Short time existence results for smooth
initial conditions.

• An extrinsic point of view by Brenier, relaxation of the
variational problem, optimal transport, polar factorization.
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Arnold’s remark continued
The incompressible Euler equation on M (Eulerian form),
∂tv(t, x) + v(t, x) · ∇v(t, x) = −∇p(t, x), t > 0, x ∈ M ,

div(v) = 0 ,

v(0, x) = v0(x) ,

(1)
is the Euler-Lagrange equation for the action∫ 1

0

∫
M

|v(t, x)|2 dx dt , (2)

under the flow constraint

∂tϕ(t, x) = v(t, ϕ(t, x)) ,

div(v) = 0 .

and time boundary value constraints:

ϕ(0, ·) = ϕ0 ∈ SDiff(M) and ϕ(1, ·) = ϕ1 ∈ SDiff(M) . (3)
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Arnold’s remark continued
Rewritten in terms of the flow ϕ, the action reads∫ 1

0

∫
M

|∂tϕ(t, x)|2 dx dt , (4)

under the constraint

ϕ(t) ∈ SDiff(M) for all t ∈ [0, 1] . (5)

Riemannian submanifold point of view:

Let M ↪→ Rd be isometrically embedded: A smooth curve
c(t) ∈ M is a geodesic if and only if c̈ ⊥ Tc M.

Incompressible Euler in Lagrangian form:{
ϕ̈ = −∇p ◦ ϕ
ϕ(t) ∈ SDiff(M) .

(6)
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About Brenier’s approach to incompressible Euler
Variational approach to minimizing geodesics on SDiff(M)
isometrically embedded in a Hilbert space.

• Projection onto SDiff(Rd ) leads to his polar factorization
theorem:

Polar factorization, Y. Brenier 1991

Let ψ ∈ L2(Rd ,Rd ) s.t. ψ∗(Leb)� Leb, then there exists a
unique couple (p, ϕ) (up to cste on p) s.t.

ψ = ∇p ◦ ϕ , (7)

and ϕ∗(Leb) = Leb and p is a convex function. Moreover,

‖ψ − ϕ‖L2 = inf
f
{‖ψ − f ‖L2 : f∗(Leb) = Leb} (8)

• Smooth solutions of Euler are minimizing (for t ∈ [0, 1]) if
∇2p is bounded in L∞ (by π).

• In general, relaxation of the boundary value problem as
(infinite) multimarginal optimal transport.
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A geometric picture: Otto’s Riemannian
submersion

SDiff(M): Isotropy

subgroup of µ

(Densp(M),W2) µ

Diff(M)

L2(M,M)

π(ϕ) = ϕ∗(µ)

Figure – A Riemannian submersion: SDiff(M) as a Riemannian
submanifold of L2(M,M): Incompressible Euler equation on SDiff(M)
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Reminders: Riemannian submersion
Let (M, gM ) and (N, gN ) be two Riemannian manifolds and
f : M 7→ N a differentiable mapping.

Definition
The map f is a Riemannian submersion if f is a submersion and
for any x ∈ M, the map dfx : Ker(dfx )⊥ 7→ Tf (x)N is an isometry.

• Vertx := Ker(df (x)) is the vertical space.

• Horx
def.
= Ker(df (x))⊥ is the horizontal space.

• Geodesics on N can be lifted ”horizontally”to geodesics on M.

Theorem (O’Neill’s formula)

Let f be a Riemannian submersion and X ,Y be two orthonormal
vector fields on M with horizontal lifts X̃ and Ỹ , then

KN (X ,Y ) = KM (X̃ , Ỹ ) +
3

4
‖ vert([X̃ , Ỹ ])‖2

M , (9)

where K denotes the sectional curvature and vert the orthogonal
projection on the vertical space.
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A pre-formulation of the polar factorization

SDiff(M)

Id

g1

(Densp(M),W2) µ

Diff(M)

L2(M,M)

π(ϕ) = ϕ∗(µ)

Figure – A Riemannian submersion: SDiff(M) as a Riemannian
submanifold of L2(M,M): Incompressible Euler equation on SDiff(M)
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A pre-formulation of the polar factorization

SDiff(M)

Id

g1

(Densp(M),W2) µ π(g1) = µ1

Diff(M)

L2(M,M)

π(ϕ) = ϕ∗(µ)

Figure – A pre polar factorization
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A pre-formulation of the polar factorization

SDiff(M)

Id

g1

g0

(Densp(M),W2) µ π(g1) = µ1

Diff(M)

L2(M,M)

π(ϕ) = ϕ∗(µ)

Figure – Polar factorization: g0 = arg ming∈SDiff ‖g1 − g‖L2
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Reminders: Static Formulation

Monge formulation (1781)

Let µ, ν ∈ P+(M),

Minimize

∫
M

c(x , ϕ(x))dµ (10)

among the map s.t. ϕ∗(µ) = ν.

1 ill posed problem, the constraint may not be satisfied.

2 the constraint can hardly be made weakly closed.

→ Relaxation of the Monge problem.
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Reminders: Static Formulation

Kantorovich formulation (1942)

Let µ, ν ∈ P+(M), define D by

D(µ, ν)= inf
γ∈P(M2)

{∫
M2

c(x , y)dγ(x , y) : π1
∗γ = µ and π2

∗γ = ν

}

1 Existence result: c lower semi-continuous and bounded from
below.

2 Also valid in Polish spaces.

3 If c(x , y) = 1
p |x − y |p, D1/p is the Wasserstein distance

denoted by Wp.

Linear optimization problem and associated numerical methods.
Recently introduced, entropic regularization. (C. Léonard, M.
Cuturi, ...)
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Reminders: Dynamic formulation
(Benamou-Brenier)

For geodesic costs, for instance c(x , y) = 1
2 |x − y |2

inf E(v) =
1

2

∫ 1

0

∫
M

|v(x)|2ρ(x) dx dt , (11)

s.t. {
ρ̇+∇ · (vρ) = 0

ρ(0) = µ0 and ρ(1) = µ1 .
(12)

Convex reformulation: Change of variable: momentum m = ρv ,

inf E(m) =
1

2

∫ 1

0

∫
M

|m(x)|2

ρ(x)
dx dt , (13)

s.t. {
ρ̇+∇ ·m = 0

ρ(0) = µ0 and ρ(1) = µ1 .
(14)

where (ρ,m) ∈M([0, 1]×M,R× Rd ).

Existence of minimizers: Fenchel-Rockafellar.
Numerics: First-order splitting algorithm: Douglas-Rachford.



From unbalanced
optimal transport to
the Camassa-Holm

equation

François-Xavier
Vialard

Unbalanced optimal
transport

An isometric
embedding

Euler-Arnold-Poincaré
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Starting point and initial motivation

• Extend the Wasserstein L2 distance to positive Radon
measures.

• Develop associated numerical algorithms.

Possible applications: Imaging, machine learning, gradient flows, ...
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Unbalanced optimal transport

Figure – Optimal transport between bimodal densities
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Unbalanced optimal transport

Figure – Another transformation
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Bibliography before (june) 2015

Taking into account locally the change of mass:

Two directions: Static and dynamic.

• Static, Partial Optimal Transport [Figalli & Gigli, 2010]

• Static, Hanin 1992, Benamou and Brenier 2001.

• Dynamic, Numerics, Metamorphoses [Maas et al. , 2015]

• Dynamic, Numerics, Growth model
[Lombardi & Maitre, 2013]

• Dynamic and static,
[Piccoli & Rossi, 2013, Piccoli & Rossi, 2014]

• . . .

No equivalent of L2 Wasserstein distance on positive Radon
measures.
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Bibliography after june 2015

More than 300 pages on the same model!

Starting point: Dynamic formulation

• Dynamic, Numerics, Imaging [Chizat et al. , 2015]

• Dynamic, Geometry and Static [Chizat et al. , 2015]

• Dynamic, Gradient flow [Kondratyev et al. , 2015]

• Dynamic, Gradient flow [Liero et al. , 2015b]

• Static and more [Liero et al. , 2015a]

• Optimal transport for contact forms [Rezakhanlou, 2015]

• Static relaxation of OT, machine learning
[Frogner et al. , 2015]
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Two possible directions

Pros and cons:

• Extend static formulation: Frogner et al.

minλKL(Proj1∗ γ, ρ1) + λKL(Proj2∗ γ, ρ2)

+

∫
M2

γ(x , y)d(x , y)2 dx dy (15)

Good for numerics, but is it a distance ?

• Extend dynamic formulation: on the tangent space of a
density, choose a metric on the transverse direction.
Built-in metric property but does there exist a static
formulation ?
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An extension of Benamou-Brenier formulation

Add a source term in the constraint: (weak sense)

ρ̇ = −∇ · (ρv) + αρ ,

where α can be understood as the growth rate.

WF(m, α)2 =
1

2

∫ 1

0

∫
M

|v(x , t)|2ρ(x , t) dx dt

+
δ2

2

∫ 1

0

∫
M

α(x , t)2ρ(x , t) dx dt .

where δ is a length parameter.

Remark: very natural and not studied before.
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equation

The Camassa-Holm
equation as an
incompressible Euler
equation

Corresponding polar
factorization

Convex reformulation

Add a source term in the constraint: (weak sense)

ρ̇ = −∇ ·m + µ .

The Wasserstein-Fisher-Rao metric:

WF(m, µ)2 =
1

2

∫ 1

0

∫
M

|m(x , t)|2

ρ(x , t)
dx dt +

δ2

2

∫ 1

0

∫
M

µ(x , t)2

ρ(x , t)
dx dt .

• Fisher-Rao metric: Hessian of the Boltzmann entropy/
Kullback-Leibler divergence and reparametrization invariant.
Wasserstein metric on the space of variances in 1D.

• Convex and 1-homogeneous: convex analysis (existence and
more)

• Numerics: First-order splitting algorithm: Douglas-Rachford.

• Code available at
https://github.com/lchizat/optimal-transport/

https://github.com/lchizat/optimal-transport/
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A general framework

Definition (Infinitesimal cost)

An infinitesimal cost is f : M × R× Rd × R→ R+ ∪ {+∞} such
that for all x ∈ M, f (x , ·, ·, ·) is convex, positively 1-homogeneous,
lower semicontinuous and satisfies

f (x , ρ,m, µ)


= 0 if (m, µ) = (0, 0) and ρ ≥ 0

> 0 if |m| or |µ| > 0

= +∞ if ρ < 0 .

Definition (Dynamic problem)

For (ρ,m, µ) ∈M([0, 1]×M)1+d+1, let

J(ρ,m, µ)
def.
=

∫ 1

0

∫
M

f (x , dρ
dλ ,

dm
dλ ,

dµ
dλ ) dλ(t, x) (16)

The dynamic problem is, for ρ0, ρ1 ∈M+(M),

C (ρ0, ρ1)
def.
= inf

(ρ,ω,ζ)∈CE1
0(ρ0,ρ1)

J(ρ, ω, ζ) . (17)
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Existence of minimizers

Proposition (Fenchel-Rockafellar)

Let B(x) be the polar set of f (x , ·, ·, ·) for all x ∈ M and assume it
is a lower semicontinuous set-valued function. Then the minimum
of (17) is attained and it holds

CD(ρ0, ρ1) = sup
ϕ∈K

∫
M

ϕ(1, ·)dρ1 −
∫

M

ϕ(0, ·)dρ0 (18)

with K
def.
={

ϕ ∈ C 1([0, 1]×M) : (∂tϕ,∇ϕ,ϕ) ∈ B(x), ∀(t, x) ∈ [0, 1]×M
}
.

WF(x , y , z) =


|y |2+δ2z2

2x if x > 0,

0 if (x , |y |, z) = (0, 0, 0)

+∞ otherwise

and the corresponding Hamilton-Jacobi equation is

∂tϕ+
1

2

(
|∇ϕ|2 +

ϕ2

δ2

)
≤ 0 .
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Existence of minimizers

Proposition (Fenchel-Rockafellar)

Let B(x) be the polar set of f (x , ·, ·, ·) for all x ∈ M and assume it
is a lower semicontinuous set-valued function. Then the minimum
of (17) is attained and it holds

CD(ρ0, ρ1) = sup
ϕ∈K

∫
M

ϕ(1, ·)dρ1 −
∫

M

ϕ(0, ·)dρ0 (18)

with K
def.
={

ϕ ∈ C 1([0, 1]×M) : (∂tϕ,∇ϕ,ϕ) ∈ B(x), ∀(t, x) ∈ [0, 1]×M
}
.

WF(x , y , z) =


|y |2+δ2z2

2x if x > 0,

0 if (x , |y |, z) = (0, 0, 0)

+∞ otherwise

and the corresponding Hamilton-Jacobi equation is

∂tϕ+
1

2

(
|∇ϕ|2 +

ϕ2

δ2

)
≤ 0 .
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Numerical simulations

Figure – WFR geodesic between bimodal densities
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Numerical simulations

•
t = 0 t = 1t = 0.5

ρ0 ρ1

•
t = 0 t = 1t = 0.5

ρ0 ρ1

Figure – Geodesics between ρ0 and ρ1 for (1st row) Hellinger, (2nd row)
W2, (3rd row) partial OT, (4th row) WF.

An Interpolating Distance between Optimal Transport and
Fisher-Rao, L. Chizat, B. Schmitzer, G. Peyré, and F.-X. Vialard,
FoCM, 2016.
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From dynamic to static

Group action

Mass can be moved and changed: consider m(t)δx(t).

Infinitesimal action

ρ̇ = −∇ · (vρ) + µ ⇔

{
ẋ(t) = v(t, x(t))

ṁ(t) = µ(t, x(t))

A cone metric

WF2(x ,m) ((ẋ , ṁ), (ẋ , ṁ)) =
1

2
(mẋ2 +

ṁ2

m
) ,

Change of variable: r 2 = m...
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Riemannian cone

Definition

Let (M, g) be a Riemannian manifold. The cone over (M, g) is
the Riemannian manifold (M × R∗+, r 2g + dr 2).

r

α

For M = S1(r), radius r ≤ 1. One has sin(α) = r .
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Geometry of a cone
• Change of variable: WF2 = 1

2 r 2g + 2 dr 2.
• Non complete metric space: add the vertex M × {0}.
• The distance:

d((x1,m1), (x2,m2))2 =

m2 + m1 − 2
√

m1m2 cos

(
1

2
dM (x1, x2) ∧ π

)
. (19)

• Curvature tensor: R(X̃ , e) = 0 and
R(X̃ , Ỹ )Z̃ = (Rg (X ,Y )Z − g(Y ,Z )X + g(X ,Z )Y , 0).

• M = R then (x ,m) 7→
√

me ix/2 ∈ C local isometry.

Corollary

If (M, g) has sectional curvature greater than 1, then
(M × R∗+,m g + 1

4m dm2) has non-negative sectional curvature.
For X ,Y two orthornormal vector fields on M,

K (X̃ , Ỹ ) = (Kg (X ,Y )− 1) (20)

where K and Kg denote respectively the sectional curvatures of
M × R∗+ and M.
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Visualize geodesics for r 2g + dr 2

Figure – Geodesics on the cone
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Distance between Diracs

x

y

P1

P2

P3

1

4
WF (m1δx1 ,m2δx2 )2 = m2 + m1

− 2
√
m1m2 cos

(
1

2
dM (x1, x2) ∧ π/2

)
.

Proof: prove that an explicit geodesic is a critical point of the convex
functional.

Properties: positively 1-homogeneous and convex in (m1,m2).
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Generalization of Otto’s Riemannian submersion
Idea of a left group action:

π :
(
Diff(M) n C∞(M,R∗+)

)
× Dens(M) 7→ Dens(M)

π ((ϕ, λ), ρ) := ϕ∗(λ
2ρ)

Group law:

(ϕ1, λ1) · (ϕ2, λ2) = (ϕ1 ◦ ϕ2, (λ1 ◦ ϕ2)λ2) (21)

Theorem (P1)

Let ρ0 ∈ Dens(M) and π0 : Diff(M) n C∞(M,R∗+) 7→ Dens(M)
defined by π0(ϕ, λ) := ϕ∗(λ

2ρ0). It is a Riemannian submersion

(Diff(M) n C∞(M,R∗+), L2(M,M × R∗+))
π0−→ (Dens(M),WF)

(where M × R∗+ is endowed with the cone metric).

O’Neill’s formula: sectional curvature of (Dens(M),WF).
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Geometric consequence
The sectional curvature of Dens(M) at point ρ is:

K (ρ)(X1,X2) =

∫
M

k(x , 1)(Z1(x),Z2(x))w(Z1(x),Z2(x))ρ(x)dν(x)

+
3

4

∥∥[Z1,Z2]V
∥∥2

(22)

where

w(Z1(x),Z2(x)) = g(x)(Z1(x),Z1(x))g(x)(Z2(x),Z2(x))

− g(x)(Z1(x),Z2(x))2

and [Z1,Z2]V denotes the vertical projection of [Z1,Z2] at identity
and ‖ · ‖ denotes the norm at identity.

Corollary

Let (M, g) be a compact Riemannian manifold of sectional
curvature bounded below by 1, then the sectional curvature of
(Dens(M),WF) is non-negative.
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Consequences

Monge formulation

WF (ρ0, ρ1) = inf
(ϕ,λ)

{
‖(ϕ, λ)− (Id, 1)‖L2(ρ0) : ϕ∗(λ

2ρ0) = ρ1

}
(23)

Under existence and smoothness of the minimizer, there exists a
function p ∈ C∞(M,R) such that

(ϕ(x), λ(x)) = expC(M)
x

(
1

2
∇p(x), p(x)

)
, (24)

Equivalent to Monge-Ampère equation

With z
def.
= log(1 + p) one has

(1 + |∇z |2)e2zρ0 = det(Dϕ)ρ1 ◦ ϕ (25)

and

ϕ(x) = expM
(x,1)

(
arctan

(
1

2
|∇z |

)
∇z(x)

|∇z(x)|

)
.
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A relaxed static OT formulation
Define

KL(γ, ν) =

∫
dγ

dν
log

(
dγ

dν

)
dν + |ν| − |γ|

Theorem (Dual formulation, P1)

WF 2(ρ0, ρ1) = sup
(φ,ψ)∈C(M)2

∫
M
φ(x)dρ0 +

∫
M
ψ(y) dρ1

subject to ∀(x , y) ∈ M2, φ(x) ≤ 1 , ψ(y) ≤ 1 and

(1− φ(x))(1− ψ(y)) ≥ cos2 (|x − y |/2 ∧ π/2)

The corresponding primal formulation

WF 2(ρ1, ρ2) = inf
γ

KL(Proj1∗ γ, ρ1) + KL(Proj2∗ γ, ρ2)

−
∫

M2
γ(x , y) log(cos2(d(x , y)/2 ∧ π/2))dx dy

Theorem (P2)

On a Riemannian manifold (compact without boundary), the static and
dynamic formulations are equal.
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New algorithm

Scaling Algorithms for Unbalanced Transport Problems, L. Chizat,
G. Peyré, B. Schmitzer, F.-X. Vialard.

• Use of entropic regularization.

WF 2(ρ1, ρ2) = inf
γ

KL(Proj1∗ γ, ρ1) + KL(Proj2∗ γ, ρ2)

−
∫

M2

γ(x , y) log(cos2(d(x , y)/2 ∧ π/2))dx dy + εKL(γ, µ0) .

• Alternate projection algorithm (contraction for a Hilbert type
metric).

• Applications to color transfer, Fréchet-Karcher mean
(barycenters).

• Simulations for gradient flows.
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The Riemannian submersion for WFR

Isotropy

subgroup of µ

(Dens(M),WFR) µ

Diff(M) n C∞(M,R∗+)

L2(M, C(M))

π(ϕ, λ) = ϕ∗(λ2µ)

Figure – The same picture in our case: what is the corresponding
equation to Euler?
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The isotropy subgroup for unbalanced optimal
transport

Recall that

π−1
0 ({ρ0}) = {(ϕ, λ) ∈ Diff(M) n C∞(M,R∗+) : ϕ∗(λ

2ρ0) = ρ0}

π−1
0 ({ρ0}) = {(ϕ,

√
Jac(ϕ)) ∈ Diff(M)nC∞(M,R∗+) : ϕ ∈ Diff(M)} .

The vertical space is

Vert(ϕ,λ) = {(v , α) ◦ (ϕ, λ) ; div(ρv) = 2αρ} , (26)

where (v , α) ∈ Vect(M)× C∞(M,R). The horizontal space is

Hor(ϕ,λ) =

{(
1

2
∇p, p

)
◦ (ϕ, λ) ; p ∈ C∞(M,R)

}
. (27)

The induced metric is

G (v , div v) =

∫
M

|v |2 dµ+
1

4

∫
M

| div v |2 dµ . (28)

The Hdiv right-invariant metric on the group of diffeomorphisms.
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Right-invariant metric on a Lie group

Definition (Right-invariant metric)

Let g1, g2 ∈ G be two group elements, the distance between g1

and g2 can be defined by:

d2(g1, g2) = inf
g(t)

{∫ 1

0

‖v(t)‖2
g dt |g(0) = g0 and g(1) = g1

}
where ∂tg(t)g(t)−1 = v(t) ∈ g, with g the Lie algebra.

Right-invariance means:

d2(g1g , g2g) = d(g1, g2) .

It comes from:

∂t(g(t)g0)(g(t)g0)−1 = ∂tg(t)g0g−1
0 g(t)−1 = ∂tg(t)g(t)−1 .
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and g2 can be defined by:

d2(g1, g2) = inf
g(t)

{∫ 1

0

‖v(t)‖2
g dt |g(0) = g0 and g(1) = g1

}
where ∂tg(t)g(t)−1 = v(t) ∈ g, with g the Lie algebra.

Right-invariance means:

d2(g1g , g2g) = d(g1, g2) .

It comes from:

∂t(g(t)g0)(g(t)g0)−1 = ∂tg(t)g0g−1
0 g(t)−1 = ∂tg(t)g(t)−1 .
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Euler-Arnold-Poincaré equation

Compute the Euler-Lagrange equation of the distance functional:

∂L

∂g
− d

dt

∂L

∂ġ
= 0

In the case of
∫ 1

0
L(g , ġ)dt =

∫ 1

0
‖u‖2dt,

Euler-Poincaré-Arnold equation{
ġ = u ◦ g

u̇ + ad∗uu = 0
(29)

where ad∗u is the (metric) adjoint of aduv = [v , u].

Proof.

Compute variations of v(t) in terms of u(t) = δg(t)g(t)−1. Find
that admissible variations on g can be written as:
δv(t) = u̇ − adv u for any u vanishing at 0 and 1.
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Fluid dynamics examples of Euler-Arnold
equations

• Incompressible Euler equation.

• Korteweg-de-Vries equation.

• Camassa-Holm equation 1981/1993. An integrable shallow
water equation with peaked solitons

Consider Diff(S1) endowed with the H1 right-invariant metric
‖v‖2

L2 + 1
4‖∂x v‖2

L2 . One has{
∂tu − 1

4∂txx u u + 3∂x u u − 1
2∂xx u ∂x u − 1

4∂xxx u u = 0

∂tϕ(t, x) = u(t, ϕ(t, x)) .
(30)

• Model for waves in shallow water.

• Completely integrable system (bi-Hamiltonian).

• Exhibits particular solutions named as peakons. (geodesics as
collective Hamiltonian).

• Blow-up of solutions which gives a model for wave breaking.
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Ebin-Marsden analytical framework
Rewrite the metric in Lagrangian coordinates ϕ and a tangent
vector Xϕ and realize that it is smooth...
• The right-invariant Hdiv metric:

Gϕ(Xϕ,Xϕ) =

∫
M

a2|Xϕ ◦ ϕ−1|2 + b2 div(Xϕ ◦ ϕ−1)2 dµ . (31)

can be written

Gϕ(Xϕ,Xϕ) =

∫
M

a2|Xϕ|2 Jac(ϕ) + b2
(
Tr(DXϕ · [Dϕ]−1)

)2
Jac(ϕ)dµ .

Smooth metric on an infinite dimensional Riemannian manifold.

Consequences:

• Geodesic equations is a simple ODE (No need for a
Riemannian connection)

• Gauss lemma on Hs for s > d/2 + 2
• Geodesics are minimizing within Hs topology.

Theorem (Consequence of Ebin and Marsden)

Local well-posedness of the geodesics for the Hdiv right-invariant
metric on Diffs(M) for s > d/2 + 2.
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Metric properties

Theorem (Michor and Mumford, 2005)

The distance on Diff(M) endowed with the right-invariant metric
L2 is degenerate; i.e. d(ϕ0, ϕ1) = 0 for every ϕ0, ϕ1 ∈ Diff(M).

Theorem (Michor and Mumford, 2005)

The distance on Diff(M) endowed with the right-invariant metric
HDiv is non degenerate.

Proof.
Direct using the isometric injection.
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An isometric embedding

We have

inj : (Diff(M),Hdiv) ↪→ L2(M, C(M))

ϕ 7→ (ϕ,
√

Jac(ϕ)) .

The geodesic equations can be written in Lagrangian coordinates{
D
Dt ϕ̇+ 2 λ̇λ ϕ̇ = −∇g P ◦ ϕ
λ̈r − λrg(ϕ̇, ϕ̇) = −2λrP ◦ ϕ .

(32)

In Eulerian coordinates,{
v̇ +∇g

v v + 2vα = −∇g P

α̇ + 〈∇α, v〉+ α2 − g(v , v) = −2P ,
(33)

where α = λ̇
λ ◦ ϕ

−1 and v = ∂tϕ ◦ ϕ−1.
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Consequences of the isometric embedding

(Diff(M),Hdiv) ↪→ L2(M, C(M)) (34)

1 Using Gauss-Codazzi formula, it generalizes a curvature
formula by Khesin et al. obtained on Diff(S1).

2 Smooth geodesics are length minimizing for a short enough
time under mild conditions (generalization of Brenier’s proof).

3 The Camassa-Holm equation as incompressible Euler.

4 A new polar factorization theorem.
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Generalisation of Brenier’s proof

Theorem (P2)

Let (ϕ(t), r(t)) be a smooth solution to the geodesic equations on the time
interval [t0, t1]. If (t1 − t0)2〈w ,∇2ΨP(t)(x , r)w〉 < π2‖w‖2 holds for all
t ∈ [t0, t1] and (x , r) ∈ C(M) and w ∈ T(x,r)C(M), then for every smooth
curve (ϕ0(t), r0(t)) ∈ Autvol(C(M)) satisfying (ϕ0(ti ), r0(ti )) = (ϕ(ti ), r(ti ))
for i = 0, 1 and the condition (∗), one has∫ t1

t0

‖(ϕ̇, ṙ)‖2 dt ≤
∫ t1

t0

‖(ϕ̇0, ṙ0)‖2 dt , (35)

with equality if and only if the two paths coincide on [t0, t1].

Define δ0
def.
= min{r(x , t) : injectivity radius at (ϕ(t, x), r(t, x))}, then the

condition (∗) is:

1 If the sectional curvature of C(M) can assume both signs or if
diam(M) ≥ π, there exists δ satisfying 0 < δ < δ0 such that the curve
(ϕ0(t), r0(t)) has to belong to a δ-neighborhood of (ϕ(t), r(t)), namely

dC(M) ((ϕ0(t, x), r0(t, x)), (ϕ(t, x), r(t, x)))) ≤ δ

for all (x , t) ∈ M × [t0, t1] where dC(M) is the distance on the cone.

2 If C(M) has non positive sectional curvature, then, for every δ as above,
there exists a short enough time interval on which the geodesic will be
length minimizing.

3 If M = Sd (1), the result is valid for every path (ϕ̇0, ṙ0).
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equation

The Camassa-Holm
equation as an
incompressible Euler
equation

Corresponding polar
factorization

In short:

Gain w.r.t. Ebin and Marsden

• Ebin and Marsden proved that: Smooth solutions are
minimizing in a Hd/2+2+ε neighborhood.

• We have: Smooth solutions are minimizing in a W 1,∞

neighborhood.

Corollary (P2)

When M = S1, smooth solutions to the Camassa-Holm equation{
∂tu − 1

4∂txx u + 3∂x u u − 1
2∂xx u ∂x u − 1

4∂xxx u u = 0

∂tϕ(t, x) = u(t, ϕ(t, x)) .
(36)

are length minimizing for short times.
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equation

The Camassa-Holm
equation as an
incompressible Euler
equation

Corresponding polar
factorization

In short:

Gain w.r.t. Ebin and Marsden

• Ebin and Marsden proved that: Smooth solutions are
minimizing in a Hd/2+2+ε neighborhood.

• We have: Smooth solutions are minimizing in a W 1,∞

neighborhood.

Corollary (P2)

When M = S1, smooth solutions to the Camassa-Holm equation{
∂tu − 1

4∂txx u + 3∂x u u − 1
2∂xx u ∂x u − 1

4∂xxx u u = 0

∂tϕ(t, x) = u(t, ϕ(t, x)) .
(36)

are length minimizing for short times.



From unbalanced
optimal transport to
the Camassa-Holm

equation

François-Xavier
Vialard

Unbalanced optimal
transport

An isometric
embedding

Euler-Arnold-Poincaré
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Toward the incompressible Euler equation

Why? Unbalanced OT is linked to standard OT on the cone.

Question

Understand Diff(M) n C∞(M,R∗+) as a subgroup of Diff(C(M))?

Answer

The cone C(M) is a trivial principal fibre bundle over M.
The automorphism group Aut(C(M)) ⊂ Diff(C(M)) can be
identified with Diff(M) n C∞(M,R∗+). One has
(ϕ, λ) : (x , r) 7→ (ϕ(x), λ(x)r).

Recall that ψ ∈ Aut(C(M)) if ψ ∈ Diff(C(M)) and ∀λ ∈ R∗+ one

has ψ(λ · (x , r)) = λ · ψ(x , r) where λ · (x , r)
def.
= (x , λr).
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CH as an incompressible Euler equation

The geodesic equation on Diff(M) n C∞(M,R∗+) can be extended
to Aut(C(M)) as

D

Dt
(ϕ̇, λ̇r) = −∇ΨP ◦ (ϕ, λr) , (37)

where ΨP (x , r)
def.
= r 2P(x).

Question
Does there exist a density µ̃ on the cone such that
inj(Diff(M)) ⊂ SDiffµ̃(C(M))? (answer: yes)

Proof.

The measure µ̃
def.
= r−3 dr dµ where µ denotes the volume form on

M.
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A new geometric picture

Autvol(C(M))

(Dens(M),WFR) vol

Aut(C(M))

L2(M, C(M))

π(ϕ, λ) = ϕ∗(λ2 vol)

Aut(C(M))

Diff(C(M))

L2(C(M))

(Dens(C(M)),W2) ν̃ = r−3 dvol dr

Diff ν̃(C(M))

Autvol(C(M))

π̃(ψ) = ψ∗(ν̃)

Figure – On the left, the picture represents the Riemannian submersion
between Aut(C(M)) and the space of positive densities on M and the
fiber above the volume form is Autvol(C(M)). On the right, the picture
represents the automorphism group Aut(C(M)) isometrically embedded
in Diff(C(M)) and the intersection of Diff ν̃(C(M)) and Aut(C(M)) is
equal to Autvol(C(M)).
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Results

Theorem (P2)

Let ϕ be the flow of a smooth solution to the Camassa-Holm

equation then Ψ(θ, r)
def.
= (ϕ(θ),

√
Jac(ϕ(θ))r) is the flow of a

solution to the incompressible Euler equation for the density
1
r4 r dr dθ.

Case where M = S1, M(ϕ) = [(θ, r) 7→ r
√
∂xϕ(θ)e iϕ(θ)] then the

CH equation is

{
∂tu − 1

4∂txx u u + 3∂x u u − 1
2∂xx u ∂x u − 1

4∂xxx u u = 0

∂tϕ(t, x) = u(t, ϕ(t, x)) .
(38)

The Euler equation on the cone, C(M) = R2 \ {0} for the density
ρ = 1

r4 Leb is {
v̇ +∇v v = −∇p ,

∇ · (ρv) = 0 .
(39)

where v(θ, r)
def.
=
(
u(θ), r

2∂x u(θ)
)
.
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Toward polar factorization

Definition (Admissible measures)

We say that a positive Radon measure ρ on M is admissible (with
respect to vol) if for any x ∈ M, there exists y ∈ Supp(ρ) such
that d(x , y) < π/2.

Consequence (Liero, Mielke, Savaré): Existence of a unique
optimal potential which takes finite values a.e. between vol and ρ
admissible. Recall that c(x , y) = − log(cos2(d(x , y) ∧ π/2)).

WF2(ρ0, ρ1) = sup
(z0,z1)∈C(M)2

∫
M

1− e−z0(x) dρ0(x) +

∫
M

1− e−z1(y) dρ1(y)

(40)
subject to ∀(x , y) ∈ M2,

z0(x) + z1(y) ≤ − log
(

cos2 (d(x , y) ∧ (π/2))
)
. (41)
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Polar factorization

Theorem (Polar factorization, P2)

Let (φ, λ) ∈ Aut(C(M)) s.t. ρ1 = π0 [(φ, λ), vol] is an absolute continuous
admissible measure. Then, there exist a unique minimizer, characterized by a
c-concave function z0, between vol and ρ1 and a unique measure preserving
generalized automorphism (s,

√
Jac(s)) ∈ Autvol(C(M)) such that vol a.e.

(φ, λ) = expC(M)

(
−

1

2
∇pz0 ,−pz0

)
◦ (s,

√
Jac(s)) (42)

or equivalently

(φ, λ) =

(
ϕ, e−z0

√
1 + ‖∇z0‖2

)
· (s,

√
Jac(s)) , (43)

where pz0 = ez0 − 1 and

ϕ(x) = expM
x

(
− arctan

(
1

2
‖∇z0(x)‖

)
∇z0(x)

‖∇z0(x)‖

)
. (44)

Moreover (s,
√

Jac(s)) is the unique L2(M, C(M)) projection of (φ, λ) onto

Autvol(C(M)).
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Polar factorization

Another formulation of the polar factorization:

Corollary (P2)

Denote by Mes1(C(M)))R
∗
+ the space of mesurable and

approximate differentiable functions f : C(M) 7→ R that satisfy
f (x , r) = r 2f (x , 1) for any r ∈ R∗+. Under the hypothesis of the
previous theorem, there exists a unique couple(

(s,
√

Jac(s)),ΨP

)
∈ Autvol×Mes1(C(M)))R

∗
+ such that

(φ, λ) = expC(M)(−∇ΨP ) ◦ (s,
√

Jac(s)) , (45)

where Ψ(x , r) = r 2z0(x).
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Perspectives
• Study the relaxation of geodesics for CH (uniqueness of the

pressure, how the angle of the cone affects the results...)

• Develop numerical approaches following Mérigot et al.

• Treat other fluid dynamic equations ?

Figure – CH equation after the ”Madelung transform”
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Corresponding decomposition of vector fields

Polar factorization as extension of the Hodge-Helmholtz
decomposition:

v = w +∇p where div(v) = 0 . (46)

In our case,

(v(θ), rλ(θ)) =
(

w(θ),
r

2
div(w(θ))

)
+

(
1

2
∇p(θ), rp(θ)

)
. (47)
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A word about smoothness: Monge-Ampère
equation

The corresponding Monge-Ampère equation can be written as

det
[
−∇2z(x) + (∇2

xx c)(x , ϕ(x))
]

=

|det [(∇x,y c)(x , ϕ(x))]| e−2z(x)

(
1 +

1

4
‖∇z(x)‖2

)
f (x)

g ◦ ϕ(x)
,

(48)

where ϕ is the c−exponential of −z :

ϕ(x) = expM
x

(
− arctan

(
1

2
‖∇z(x)‖

)
∇z(x)

‖∇z(x)‖

)
. (49)

For the cost c(x , y) = − log(cos2(d(x , y) ∧ π/2)),

• On the plane, there exist (x , y) ∈ M2 and
(v ,w) ∈ Tx M × Ty M, MTW(x , y , v ,w) < 0.

• On the sphere of radius r = 1, as well.

• If r small enough, then numerically, MTW ≥ 0.
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Link with the reflector problem

Consider the sphere of radius 1/2, then d(x , y) = 1
2 arcos(x · y):

− log(cos2(d(x , y))) = − log(1 + cos(2d(x , y))) + log(2)

= − log(1 + x · y) + log(2)

= −2 log(|x + y |) = 2cr (x ,−y)

The cost for the reflector antenna is cr (x , y) = − log(|x − y |).
Clearly,

sgn(MTW(cr (·, ·))) = sgn(MTW(cr (·,−·)))

Therefore, MTW(− log(cos2(d))) ≥ 0 on the sphere of radius 1/2.
(Loeper, Lee and Li).
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