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Aim of this talk is to review a few results on some

multi-marginal problems i.e. problems of the form:

inf
γ∈Π(µ1,··· ,µN )

∫

X1×···×XN

c(x1, · · · , xN )dγ(x1, · · · , xN ), (1)

where Π(µ1, · · · , µN ) is the set of probability measures on

X1 × · · · ×XN having µ1, · · · , µN as marginals. Much less is

known than in the two-marginals case (e.g. Monge solution for

twisted costs, Brenier, McCann, Gangbo theory, regularity...).
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Important motivation: Brenier’s (CPAM, 1999) relaxation of

Arnold’s interpretation of incompressible Euler as a geodesic

problem on the group of measure preserving diffeomorphisms.

∂tu+∇ · (u⊗ u) +∇p = 0, ∇ · u = 0, t ∈ (0, T ), x ∈ T
d (2)

The two-endpoints problem asks that the flow X of u at the

final time T is a prescribed measure-preserving map h. At least

formally (2) is the Euler-Lagrange equation for the

minimization of
∫ T

0

∫

Td

|Ẋ(t, x)|2dxdt

subject to X0 = id, XT = h and of course that Xt is

measure-preserving for every t.
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No minimizer in general (Shnirelman). Yann’s relaxation (in a

nutshell):

inf
Q∈Γ(h)

I(Q) :=

∫

Ω

E(ω) dQ(ω) (3)

where E(ω) =
∫ T

0
|ω̇(t)|2dt and Γ(h) is the set of probability

measures on Ω = C([0, T ],Td) such that

et#Q = L, t ∈ [0, T ], (e0, eT )#Q = (id, h)#L,

where et is the evaluation map a time t and L is Lebesgue’s

measure on T
d.
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It is an infinitely many-marginals limit case N → ∞ of (1),

inf
γ∈Π(L,··· ,L)

∫

(Td)N
CN (x1, · · · , xN )dγ(x1, · · · , xn)

with

CN (x1, · · · , xN ) = N

N−1
∑

k=1

|xk+1 − xk|2 +N |xN − h(x1)|2.

Without the last term: quadratic multi-marginal OT by

Gangbo-Świȩch. (1996) (I’ll come back to this in relation with

Wasserstein barycenters).

/6



Outline 7

Outline

➀ Matching for teams

➁ Wasserstein barycenters

➂ Limit behavior

➃ Numerics
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Matching for teams

Matching for teams Joint with I. Ekeland. Market for

houses, quality z ∈ Z. For one house z to be available, need for

one buyer and a team of producers (mason, plumber,

electrician). We shall denote by the index i ∈ {1, · · · , I} the

different populations (buyers, plumbers, electricians, masons...),

the agents in each population are hetererogeneous, they are

characterized by a certain type which affects their (quality

dependent) cost function.
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More precisely for each i, we are given a compact metric space

of types Xi and a cost function ci ∈ C(Xi × Z,R) with the

interpretation that ci(xi, z) is the cost for an agent of

population i with type xi to work in a team that produces good

z. The distribution of type xi in population i is known and

given by some Borel probability measure µi ∈ P(Xi). We look

for an equilibrium i.e. a system of transfers (paid by the buyer

to the producers) which clears the markets: everybody is in a

team and the supply and demands for houses coincides.
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A system of transfers is a collection of continuous functions

ϕ1, . . . ϕI : Z → R where ϕi(z) is the amount paid to i by the

other members of the team for producing z. An obvious

equilibrium requirement is that teams are self-financed i.e.

I
∑

i=1

ϕi(z) = 0, ∀z ∈ Z. (4)

Given transfers ϕ1, . . . ϕI , an agent from population i with type

xi ∈ Xi, gets a net minimal cost given by ci-transform of ϕi:

ϕci
i (xi) := min

z∈Z
{ci(xi, z)− ϕi(z)} (5)
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Agents are rational: they choose cost miniminizing qualities i.e.

a z ∈ Z such that

ϕci
i (xi) + ϕi(z) = ci(xi, z). (6)

The last unknown is a collection of plans γi ∈ P(Xi × Z) such

that γi(Ai ×A) represents the probability that an agent in

population i has a type in Ai and belongs to a team that

produces a quality in A. At equilibrium the first marginal of γi
should be µi (this is equilibrium on the i-th labor market) and

the second marginal of γi should not depend on i (this is

equilibrium on the quality good market), this common marginal

represents the equilibrium quality line.
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Equilibrium: transfer system (ϕ1, . . . ϕI) ∈ C(Z,R)I ,

probability measures γi ∈ P(Xi × Z) and a probability measure

ν ∈ P(Z) such that

• teams are self-financed i.e. (4) holds,

• γi ∈ Π(µi, ν) for i = 1, . . . , I (equilibrium on the labor

markets and on the good market),

• (6) holds on the support of γi for i = 1, . . . , I (i.e. agents

choose cost minimizing qualities).
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Variational characterization of equilibria

inf
ν∈P(Z)

J(ν) :=
I

∑

i=1

Wci(µi, ν) (7)

and its dual (concave maximization) formulation

sup

{

I
∑

i=1

∫

Xi

ϕci
i (xi)µi(dxi) :

I
∑

i=1

ϕi = 0

}

. (8)

Theorem 1 (ϕi, γi, ν) is an equilibrium if and only if:

• ν solves (7),

• the transfers (ϕ1, . . . ϕI) solve (8),

• for i = 1, . . . , I, γi solves the Monge-Kantorovich problem

Wci(µi, ν).
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Wasserstein barycenters

Given (µ1, . . . , µI) ∈ P2(R
d) and weights λi > 0 summing to 1,

consider:

inf
ν∈P2(Rd)

J(ν) :=
I

∑

i=1

λiW
2
2 (µi, ν) (9)

Existence is obvious. Special case of Fréchet mean. Special case

of the matching for teams problem (quadratic costs).

Extensions to Riemannian manifolds Kim, Pass.
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Uniqueness holds as soon as one of the µi’s does not give mass

to small sets (in this case ν 7→W 2
2 (µi, ν) is strictly convex).

Proposition 1 Assume that there is an index i ∈ {1, ...I} such

that µi vanishes on small sets. Then (10) admits a unique

solution ν.

As soon as one of the µi’s vanishes on small sets , this therefore

enables one to define unambiguously the barycenter

(bar(µi, λi)i=1,...,I) of the µi’s with weights λi. It is known that

Fréchet means are unique on nonpositively curved metric spaces

(Sturm) BUT the Wasserstein space is not nonpositively curved!

Here, it is standard convexity which matters.
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Characterization by duality. Dual of (9):

sup

{

F (f1, ..., fI) =

I
∑

i=1

∫

Rd

Sλi
fidµi :

I
∑

i=1

fi = 0,

}

(10)

where

Sλf(x) := inf
y∈Rd

{

λ

2
|x− y|2 − f(y)

}

, ∀x ∈ R
d, λ > 0.

Both the infimum in (9) and the supremum in (10) are attained

and values coincide.
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Let (f1, ..., fI) be a solution of (10) and define the convex

potentials:

λiφi(x) :=
λi

2
|x|2 − Sλi

fi(x), (11)

by duality, if ν solves (9) and γi is an optimal transport plan

between µi and ν then:

• the support of γi is included in ∂φi,

• ∑

i φ
∗
i (y) ≤ 1

2 |y|2 for all y ∈ R
d with an equality on the

support of ν.

Wasserstein barycenters/4



Wasserstein barycenters 18

These duality conditions lead to the following characterization

Proposition 2 Assume that µi vanishes on small sets for

every i = 1, .., p, then the following conditions are equivalent:

1. ν = (bar(µi, λi)i=1,...,I),

2. There exist convex potentials φi such that ∇φi is Brenier’s

map transporting µi to ν, and a constant C such that

p
∑

i=1

λiφ
∗
i (y) ≤ C +

|y|2
2

, ∀y ∈ R
d, with equality ν-a.e. (12)
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The optimality conditions for the barycenter ν, at least formally

take the form of an obstacle-like system of Monge-Ampère

equations. Set ψi = φ∗i , so µi = ∇ψi#ν, therefore

ν = µi(∇ψi) det(D
2ψi), i = 1, . . . , I (13)

which is supplemented with

I
∑

i=1

λiψi(y) ≤
|y|2
2

(14)

with equality on the support of ν, yielding in particular

(formally)
I

∑

i=1

λi∇ψi = id ν-a.e..
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There is another characterization of the barycenter in terms of a

multi-marginal quadratic optimal transport problem which was

solved by Gangbo-Świȩch. Adopting this viewpoint one finds

the following structure for the barycenter:

ν =
(

λ1id +
I

∑

i=2

λi∇u∗i ◦ ∇u1
)

#
µ1

where each ui is strongly convex (D2ui ≥ λiid) and such that

∇u∗i ◦ ∇u1 transports µ1 to µi.

Wasserstein barycenters/7
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With M. Agueh, we observed that this gives integral estimates

for barycenters. Indeed, take F : [0,∞) → R, F (0) = 0

continuous, satisfying McCann’s condition

(0,∞) ∋ t 7→ tdF (t−d) is convex and nonincreasing, then

Proposition 3 The internal energy E(ρ) =
∫

Rd F (ρ(x)) dx is

convex along barycenters i.e.

E(bar(µi, λi)i=1,...,I) ≤
∑

i=1

λiE(µi).
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Proof. Write ν := bar(µi, λi)i=1,...,I) = (
∑I

i=1∇u∗i )#ν1 with

ν1 := ∇u1#µ1, so Ti := ∇u∗i transports ν1 to µi and

T :=
∑I

i=1 λiTi transports ν1 to ν, so

E(ν) =

∫

Rd

F
( ν1

detDT

)

detDT

and detDT 1/d ≥ ∑N
i=1 λi det(DTi)

1/d; one gets the result by

McCann’s condition.

In particular for F (t) = tp, p ∈ (1,+∞) this gives Lp bounds:

∫

Rd

ν(x)pdx ≤
N
∑

i=1

λi‖µi‖pLp .

as well as the limiting cases: µi ∈ L1 ⇒ ν ∈ L1,
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and as for the L∞ case:

Theorem 2 Let (µ1, ..., µI) be probability measures with finite

second moments and let (λ1, ..., λI) be positive reals that sum to

1. If µ1 ∈ L∞, then ν := bar((µi, λi)) ∈ L∞ and more precisely:

‖ν‖L∞ ≤ 1

λd1
‖µ1‖L∞ . (15)

It is not kown if there is more regularity? Like

µi ∈ Ck,α ⇒ ν ∈ Ck,α (in the periodic case say)? Also is ν

Lipschitz in the weights?
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Examples

• I = 2 the barycenter of (µ0, (1− t)) and (µ1, t) is McCann’s
(or Wasserstein geodesic) interpolant:

νt := ((1− t)id + t∇φ)#µ0 = (tid + (1− t)∇φ∗)#µ1

where ∇φ is the Brenier’s map between µ0 and µ1.

• d = 1, in dimension one bar(µi, λi)i is simply obtained as
the image of µ1 by the linearly interpolated transport map
∑

i λiT
1
i where T 1

i is the monotone transport from µ1 to µi.

• Gaussian case µi is a gaussian measure with mean 0 and
covariance matrix Si, ν = N (0, S) where S is the unique
positive definite root of the matrix equation

p
∑

i=1

λi

(

S1/2SiS
1/2

)1/2

= S. (16)
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Limit behavior

Given a well-behaved m ∈ P(P2(R
d)) (for instance supported

on regular measures supported on some ball), Bigot and Klein
have considered the barycenter of m, ν = bar(m) as the
minimizer of

ν 7→
∫

P2(Rd)

W 2
2 (µ, ν)dm(µ)

Assume now that for some (large N) we are given an i.i.d.
sample µ̂1, · · · , µ̂N drawn according to m and define (the
random measure)

ν̂N := bar
(

(µ̂1, · · · , µ̂N ,
1

N
)
)

.

From what we saw before, mild conditions on m ensure that ν
and ν̂N have densities.
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Bigot and Klein derived from the usual law of large numbers a

LLN for Wasserstein barycenters, namely that

W 2
2 (ν̂N , ν) → 0 a.s.

in other words the L2(ν) random map T̂N that transports

optimally the true barycenter ν to its empirical counterpart ν̂N
converges to the identity map a.s.. It is tempting to go one step

further through some sort of CLT, which is the validity of

ĥN :=
√
N(T̂N − id)

converging in law to some gaussian on N (0,Σ) for a certain

trace class, positive self adjoint Σ on L2(ν,Rd).
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This seems difficult to establish in general but with M. Agueh,

we could prove validity in some cases

Proposition 4 The Wasserstein CLT holds in the following

cases:

• m is a Benoulli between two P2(R
d) measures, one of which

vanishes on small sets,

• d = 1 and m is concentrated on a bounded (for W2) set of

nonatomic measures,

• m =
∑I

i=1 λiδµi
for nondegenerate gaussian µi’s.
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Numerics

By now, there are fast solvers for entropic-regularized

approximation of multi-marginals OT following the seminal

work of Cuturi, Benamou et al., Nenna. Take the matching for

teams example:

inf
γ:=(γ1,··· ,γI)∈C1∩C2

{

I
∑

i=1

F (γ) :=

∫

Xi×Z

ci(x, z)dγi(xi, z)
}

where

C1 := {(γ1, · · · , γI) : πXi#γi = µi, ∀i}
and

C2 := {(γ1, · · · , γI) : ∃ν ∈ P(Z) πZ#γi = ν, ∀i}.
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Entropic regularization, ε > 0

inf
γ∈C1∩C2

F (γ) + ε

I
∑

i=1

∫

Xi×Z

γi(xi, z) ln(γi(xi, z)) dxidz

which is the same as

inf
γ∈C1×C2

N
∑

i=1

KL(γi|θi)

where θi := e−ci/ε and

KL(γi|θi) :=
∫

X×Z

γi(xi, z) ln
(γi(xi, z)

θi(xi, z)

)

dxidz
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Bregman iterative projections (aka IPFP, Sinkhorn...) start

from γ0 = θ and KL alternately project onto C1 and C2. The

projection onto C1 is close form, the projection onto C2 a well,

γ := projC2

KL(γ) is indeed given by

γi(xi, z) = γi(xi, z)ai(z)

where

ai(z) :=
(ν1(z)× · · · × νI(z))

1

I

νi(z)

and

νi(z) :=

∫

Xi

γi(xi, z)dxi.
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Convergence is well undertsood (Contraction for the Hilbert

projective metric etc...).

Old idea (goes back too Schrödinger), related to several streams

of research:

• probability in statistics (Csisczar, Dykstra, Léonard,

Föllmer, Rüschendorf...),

• optimization (Bregman, Bauschke, Lewis, Cominetti,

San-Martin...).

OT framework: Galichon, Salanié (economics) and Cuturi

(machine learning, link with Sinkhorn). Easily adapts to

multi-marginals, partial transport, barycenters.... cf. Benamou,

C., Cuturi, Nenna and Peyré.
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An application of entropic regularization to W2 barycenters:
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An application to Euler in 1d (see the beautiful simulations of

L. Nenna in higher dimensions):
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On repulsive costs

So far, I have only addressed easy cases where the structure of
the cost is mainly attractive, there are many other relevant
cases which are far from being fully understood and where the
cost is rather repulsive. The most challenging example is the
Coulomb cost which arises in density functional theory:

inf
γ∈Π(ρ,··· ,ρ)

∫

(Rd)N

∑

i<j

1

|xi − xj |
dγ(x1, · · · , xN ), (17)

N electrons, ρ: single-electron density. Received a lot of
attention in recent years (Friesecke, Cotar, Pass, Klüppelberg,
Buttazzo, De Pascale, Gori-Giorgi, Colombo, Di Marino,
Nenna...). Symmetric problem (Ghoussoub-Moameni,
Ghoussoub-Maurey). Determinant cost (C.-Nazaret).

To conclude: on repulsive costs/1
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A striking example due to S. Di Marino, L. Nenna and A.

Gerolin (2015), take N = 3, X1 = X2 = X3 = [0, 1],

µ1 = µ2 = µ3 = µ is the Lebesgue measure on [0, 1] and

c(x1, x2, x3) = (x1 + x2 + x3)
2 (repulsive harmonic case) then

there exists an optimal plan of the form (id, T, T ◦ T )#µ with

T ◦ T ◦ T = id and T is fractal (nowhere smooth). This is also a

challenge for numerics.

To conclude: on repulsive costs/2
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Happy birthday Yann!! C’est gééénial (the other

Benamou-Brenier formula).

To conclude: on repulsive costs/3


