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1. Remarks on se




Seismic imaging




Compare tomography

* In seismic imaging no explicit formula of inverse Radon
transform type (computed tomography or CT scan)
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Seismic imaging

Find seismic wave velocity and
reflecting interfaces (or low and
high frequency part of velocity field)
separately

— First velocity estimation

— Then reflectivity (details too
small for velocity estimation):
determined by “migration”

We will focus on the first step —
velocity estimation

Source
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Mathematical and computational
challenges

* Velocity estimation is typically done by PDE constrained
optimization (classical inverse problem — compare Calderon)

— Measured and processed data is compared to a computed
wave field based on wave velocity to be determined

— Important steps
* Relevant measure of mismatch
« Fast wave field solver
* Optimization




Velocity estimation

Velocity estimation is typically done by PDE constrained
optimization.

— Measured and processed data is compared to a computed
wave field based on wave velocity to be determined

— Important steps e ———
« Relevant measure of mismatch (v) :;;frix
- Fast wave field solver :f_,«* %
» Optimization = =
Example of forward problem: p - waves = = ——— ——

p, =c(x)*Ap,



2. Measure of mismatch proposal: optimal
transport and the Wasserstein metric

 Compare measured data to computed wave field in full
waveform inversion

* In PDE-constrained optimization process: find parameters
(velocity) that minimizes the mismatch

I}}gl (deata = Peomp (c) HA + ;L”LC ”B)

* c¢(x): velocity, ug,,, measured signal, u
based on velocity c¢(x)

* || . ]| measure of mismatch: L, the standard choice

* || Lc ||z potential regularization term (we will ignore this term,
which is not common in exploration seismology

computed signal

comp



Optimal transport and Wasserstein metric

« Wasserstein metric measures the “cost” for optimally transport
one measure (signal) fto the other, g — Monge-Kantorivich

optimal transport measure
[fO\—/9 \ WWWMMN

/g(y)\ Compare travel time distance
> Classic in seismology




Optimal transport and Wasserstein metric

For some signals the “work” needed to optimally transport one
distribution to the other is similar to L? distance

L2 historically the standard in full waveform inversion

AN | ,
WA~ PN g(y)




Wasserstein distance

Wp(f’g) = (H;f f d(x’y)p dY(xvy))

yEI'C X xY,the set of product measure: f and g
[fyde=[gndy, f,g=0
X Y

Wi(f.0)- (n;f [le-Teof f(x)dx)

Here T is the optimal transport map from fto g



Wasserstein distance




Wasserstein distance

* In this model example W, and L, is equal (modulo a constant) to
leading order when separation distance s is small. Recall L, is
the standard measure



Wasserstein distance

 When sis large W, = s = travel distance (time),
(“higher frequency”), L, independent of s



Wasserstein distance vs L,

Fidelity measure, single seislet or Ricker wavelet

Sz, ()




Wasserstein distance vs L,

Note that “shift” and also “dilation” are natural effects of
difference in velocity c.

p.=c’p., x>0,t>0 1 () |
p(0,)=5s(t)—=> p=s(t-x/c) I i
O
Shift as a function of ¢, dilation o 0 o .
as a function of x J
Natural effect of mismatch in 0.5 U i
velocity N 2



Wasserstein distance vs L,
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Wasserstein distance vs L,
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Wasserstein distance vs L,

1
—So(z) ﬂ n
 Fidelity measure ~=-5:() ¥
o 0.5 .: .:
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This is the basic motivation for
suggesting Wasserstein metric
3l to measure the misfit

Local min are well known problems
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Wasserstein distance vs L,

1
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Analysis

Theorem 1: W,? is convex with respect to translation, s and
dilation, a,

W (f.9la,s], f(x)=glax-s)a’, a>0,x,sER’

Theorem 2: W,? is convex with respect to local amplitude
change, A

W (f.8)IB. f(x)=

XA, xEQ
{ 80x) ' BER Q=QUQ,

Pg(X)A, xEQ,

)L=f9ga’x/(fglgdx+[a’fgzgdx) N
(L, only satisfies 2"d theorem) = ~




Remarks

The scalar dilation ax can be generalized to Ax where Ais a
positive definite matrix. Convexity is then in terms of the
eigenvalues

The proof of theorem 1 is based on c-cyclic monotonicity

{(xj’xj)} €' 26(3@"’@) = Ec(xj,xa(j))

J

The proof of theorem two is based on the inequality

W (sf, + (1= 9)f5.8) = sWy (f,, &)+ (L =)W, (f5,8)



lllustration: discrete proof (theorem 1)

« Equal point masses then weak limit
* Brenier: back of the envelope for laymen at Banff
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lllustration: discrete proof

J
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Noise

« W.,2 less sensitive to noise than L,

 Theorem 3: f= g+ 0, 0 uniformly distributed uncorrelated
random noise, (f> 0), discrete i.e. piecewise constant: N
intervals

|F-¢f, =0 M, W;(f-g)=0W™"
f=(fisfors )

* Proof by “domain decomposition”
dimension by dimension and standard

deviation estimates using closed - f
1D formula




3. Monge-Ampere equation and its
numerical approximation

In 1D, optimal transport is equivalent to sorting with efficient
numerical algorithms O(Nlog(N)) complexity, N data points

In as the
Hungarian algorithm are O(N?), Alternatives: linear
programming, sliced Wasserstein, ADMM

Fortunately the optimal transport related to

[Brenier,..]
1/2

W,(f.8) =] [x - Vu(x)|, f(x)dx

det(D* () = f(x)/ g(Vu(x))



Monge-Ampere equation

» Viscosity solution u if u is both a sub and super solution
det(Dz(u)) — f(x)=0, uconvex, f EC*(Q)
Sub solution (super analogous)
x €Q, if local max of u—¢, then

det(D2¢) < f(x,)
1D

U, =f, ¢(x,)=u(x,), p(x,) =u(x,),

p(X)<u(x)— ¢, < f K /
(o}

i)




Numerical approximation

 Consistent, stable and monotone finite difference
approximations will converge to Monge-Ampeére viscosity
solutions [Barles, Souganidis, 1991]




Numerical approximation

 Example, monotone scheme following [Benamou, Froese,
Oberman, 2014], discrete maximum principle
2
U, = (uj+1,k —2u;, + uj_l,k) /| Ax”  monotone

XX

U, = (u etket FU o — U — U j_l’,ﬁl) [ 4AxAy not monotone

LT
L1




Monotone approximation

+

det(Dzu) = ﬁ(uvm) : {vj} : set of eigenvectors of D’u

j=1

D,, = (u(x+vh)=2u(x)+u(x-vh)/ |vh|2

\ ,  Compare upwind or ENO
& & \ & ) & o adaptive stencils and limiters
RN RS P for nonlinear conservation laws
G- WENO style smooth
1 N~ superposition improves Newton
- ra Vi A\ \" ~
G H—0 convergence
1/ Yl « MG improves linear solver
L L




Numerical approximation

Final algorithm with filter, almost monotone for higher accuracy
(still converging)

Newton’'s method for discretized nonlinear problem — added
regularization in choice of stencil and limiters

-3

Max Error

107

10

Q
\0\
©

N

10

™
\0\ Slope = -2
oo P
A

-©-Monotone )
<>~ Almost Monotone
‘ 10° 10

N

C? Example

10

Max Error
)

®

AN
0.

--Monotone
<> Almost Monotone

¥ Slope~-0.8 |

©

10

1 10°
N

C' Example

10



4. Applications to waveform inversion and
registration

« Two natural seismic applications for optimal transport and
Monge-Ampere

— Measure of mismatch in the inverse problem of finding
velocity: full waveform inversion
— Registration: comparing different datasets

« Convexity relevant property

1 P 2
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Reflections and inversion example

Problem with reflection from two
layers — dependence on
parameters

»
Py
v X

Offset = R-S



Reflections and inversion example
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Gradient for optimization

For large scale optimization, gradient of J(f) = W.2(f,g) with
respect to wave velocity is required in a quasi Newton method in
the PDE constrained optimization step

Based on linearization of J and Monge-Ampeéere equation
resulting in linear elliptic PDE (adjoint source)

J+0J = f(f+ 5f)Hx -V(u, + 5u)H2dx
J+0f =g(V(u, +ou)) det(D’ (u, +0u))
L(v)= g(Vuf)tr((Dzuf )Y D*(v))+ det(Dzuf )8(Vu,) Vv = of



Remarks

+ Captures important features of distance in both travel time and L,
+ There exists fast algorithms

+ Robust vs. noise

Constraints that are not natural for seismology

[Foode=[gmdy, f, g=0

g>0, convex domain
« Consider positive and negative parts of fand g separately and
(regularize) — not appropriate for adjoin field gradient technique
« Normalize and regularize: add small constant where g =0
» Alternative W,: W, trace by trace W, (1D)



Applications Seismic test cases

« Marmousi model (velocity field)
« Original model and initial velocity field to start optimization

True velocity Initial velocity
x (km) x (km)
15 2 A X 1 1.5 2 25 3




Marmousi model

« Original and FWI reconstruction with different initializations:
W2'1 D, W2'2D, L2

True velocity
x (km)
0 05 1 15 2 25 3

[
o

Velocity (km/s)
z (km)

25
2
15
W2 misfit inversion (trace by trace) W2 misfit inversion (globally) L2 misfit inversion
x (km) x (km) x (km)
0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3

35

Velocity (km/s)
z (km)

Velocity (km/s)
t(s)

25




Remark

* Robustness to noise: good for data but allows for oscillations in
“‘optimal” computed velocity

 Remedy: trace by trace, TV - regularization




Remark

Robustness to noise: good for data but allows for oscillations in
“‘optimal” computed velocity

Remedy: trace by trace, TV - regularization




BP 2004 model

High contrast salt deposit, W,-1D, W,-2D, L?

True velocity Initial velocity
x (km) x (km)
0 1 2 3 4 5 6 0 1 2 3 4 5 6
45

Velocity (knvs)

15

L2 misfit inversion

x (km)
0 1 2 3 4 5 6

W2 misfit inversion (trace by trace) W2 misfit inversion (globally)

x (km) x (km)
3 3

0 1 2 4 5 6 0 1 2 4 5 6
45 45

35 __ -
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Camembert

True velocity

Initial velocity

x (km) x (km)
0 05 1 15 2 05 1 15
0 36 0 36
02 02
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W2 misfit inversion (trace by trace)

W2 misfit inversion (globally)

L2 misfit inversion

0 0.5

x (km)
1

15

0 05
r'" _—

x (km)
1

0.5

x (km)
1

36

Velocity (km/s)
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Additional information from Monge-Ampere
solution: T=grad(u) for registration

\ \
oty
180t .. L T
O 05 1 15 ¢ 05 1 15 2
Source grad(u)-x

» Seismic applications
— Matching different measurements (well log — seismic)
— Monitor reservoir year by year

« Common in image processing (often 1D)



Other related work

« Example below: W, measure and Marmousi p-velocity model
[Metivier etr. Al, 2016]

« Current optimal transport based development: Schlumberger,
Total




Registration




Registration




Registration

Optimal transport requirements may have
unwanted effect on seismic registration



Registration

e Need to modify algorithm



Iteration on truncated signals and maps




Using map based on Monge-Ampere
solution for registration

1 05 0 05 1

T,(x) = grad(u) — x
smooth, weighted L2




Using map based on Monge-Ampere
solution for registration

The full algorithms based on
cropping data and iterate over
updated registered maps

* Applications commonly requires
modification to the basic
theory




5. Conclusions

Improved seismic exploration requires progress in
computational mathematics

Optimal transport and the Wasserstein metric are promising
tools in seismic imaging
Theory and basic algorithms need to be substantially modified

to handle realistic seismic data:
— B. Engquist and B. Froese, Application of the Wasserstein metric to seismic
signals, Comm. in Math. Sciences, 12. 979-988, 2014
— B. Engquist, B. Froese and Y. Yang, Optimal transport for Seismic full
waveform inversion, to appear

— Y. Yang, B. Engquist and J. Sun, Convexity of the quadratic Wasserstein
metric as a misfit function for full waveform inversion, SEG 2016, subm.
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