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1. Remarks on seismic imaging 



Seismic imaging 



Compare tomography 

•  In seismic imaging no explicit formula of inverse Radon 
transform type (computed tomography or CT scan) 



Seismic imaging 

•  Find seismic wave velocity and 
reflecting interfaces (or low and 
high frequency part of velocity field) 
separately 
–  First velocity estimation 
–  Then reflectivity (details too 

small for velocity estimation): 
determined by “migration” 

•  We will focus on the first step – 
velocity estimation 



Mathematical and computational 
challenges 

•  Velocity estimation is typically done by PDE constrained 
optimization (classical inverse problem – compare Calderon) 
–  Measured and processed data is compared to a computed 

wave field based on wave velocity to be determined 
–  Important steps 

•  Relevant measure of mismatch 
•  Fast wave field solver 
•  Optimization 

  



Velocity estimation 

•  Velocity estimation is typically done by PDE constrained 
optimization.  
–  Measured and processed data is compared to a computed 

wave field based on wave velocity to be determined 
–  Important steps 

•  Relevant measure of mismatch (✔) 
•  Fast wave field solver 
•  Optimization 

•  Example of forward problem: p - waves  
  ptt = c(x)

2Δp,



2. Measure of mismatch proposal: optimal 
transport and the Wasserstein metric 

•  Compare measured data to computed wave field in full 
waveform inversion 

•  In PDE-constrained optimization process: find parameters 
(velocity) that minimizes the mismatch 

 
•  c(x): velocity, udata measured signal, ucomp  computed signal 

based on velocity c(x) 
•  || . ||A measure of mismatch: L2 the standard choice 
•  || Lc ||B potential regularization term (we will ignore this term, 

which is not common in exploration seismology 

min
c(x )

pdata − pcomp(c) A
+λ Lc

B( )



Optimal transport and Wasserstein metric 

•  Wasserstein metric  measures the “cost” for optimally transport 
one measure (signal) f to the other, g  – Monge-Kantorivich 
optimal transport measure  

g(y) 

g f(x) 

Compare travel time distance 
Classic in seismology 



•  For some signals the “work” needed to optimally transport one 
distribution to the other is similar to Lp distance 

•  L2 historically the standard in full waveform inversion 

Optimal transport and Wasserstein metric 

f(x) 

g(y) 



Wasserstein distance 

•  Here T is the optimal transport map from f to g 

Wp( f ,g) = inf
γ

d(x, y)p dγ (x, y)
X×Y
∫
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γ ∈ Γ⊂ X ×Y, the set of product measure : f and g

f (x)dx =
X
∫ g(y)dy

Y
∫ , f , g ≥ 0

W2 ( f ,g) = inf
T

x −T (x)
2

2 f (x)dx
X
∫
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Wasserstein distance 

f 

s 

g 



Wasserstein distance 

•  In this model example W2 and L2 is equal (modulo a constant) to 
leading order when separation distance s is small. Recall L2 is 
the standard measure 

f 

s 

g 



Wasserstein distance 

•  When s is large W2 = s = travel distance (time),                
(“higher frequency”), L2

 independent of s 

f 

s 

g 



Wasserstein distance vs L2 

•  Fidelity measure, single seislet or Ricker wavelet 



Wasserstein distance vs L2 

•  Note that “shift” and also “dilation” are natural effects of 
difference in velocity c. 

•  Shift as a function of t, dilation 
     as a function of x 
•  Natural effect of mismatch in 
     velocity 
 

ptt = c
2pxx, x > 0, t > 0

p(0, t) = s(t)→ p = s(t − x / c)



Wasserstein distance vs L2 

•  Fidelity measure 

L2
2 Function of displacement 

“Cycle skipping”  
Local minima 



Wasserstein distance vs L2 

•  Fidelity measure 

L2
2 W2

2 



Wasserstein distance vs L2 

•  Fidelity measure 

L2
2 W2

2 

This is the basic motivation for  
suggesting Wasserstein metric 

to measure the misfit 
Local min are well known problems 



Wasserstein distance vs L2 

•  Fidelity measure 

L2
2 W2

2 

We will see that there are  
hidden difficulties in 

making this work in practice 



Analysis 

•  Theorem 1: W2
2 is convex with respect to translation, s and 

dilation, a, 

 
•  Theorem 2: W2

2 is convex with respect to local amplitude 
change, λ 

 
•  (L2 only satisfies 2nd theorem) 

W2
2 ( f ,g)[α, s], f (x) = g(αx − s)α d, α > 0, x, s ∈ Rd

W2
2 ( f ,g)[β], f (x) =

g(x)λ, x ∈Ω1

βg(x)λ, x ∈Ω2

#
$
%

&%
β ∈ R, Ω =Ω1∪Ω2

λ = gdx
Ω∫ / gdx

Ω1
∫ +β gdx

Ω2
∫( )



Remarks 

•  The scalar dilation ax can be generalized to Ax where A is a 
positive definite matrix. Convexity is then in terms of the 
eigenvalues 

•  The proof of theorem 1 is based on c-cyclic monotonicity 

•  The proof of theorem two is based on the inequality 

x j, x j( ){ }∈ Γ→ c x j, x j( )
j
∑ ≤ c x j, xσ ( j )( )

j
∑

W2
2 (sf1 + (1− s) f2,g) ≤ sW2

2 ( f1,g)+ (1− s)W2
2 ( f2,g)



Illustration: discrete proof (theorem 1) 

•  Equal point masses then weak limit 
•  Brenier: back of the envelope for laymen at Banff 



Illustration: discrete proof 

W2
2 =min

σ
xο j − (x j − sξ )

j=1

J

∑
2

= σ : permutation( )

min
σ

xο j − x j
j=1

J

∑
2

− 2s xο j − x j( )
j=1

J

∑ ⋅ξ + J sξ 2
$

%
&
&

'

(
)
)=

min
σ

xο j − x j
j=1

J

∑
2

+ J sξ 2
$

%
&
&

'

(
)
), from xο j

j=1

J

∑ = x j
j=1

J

∑

→ xο j = x j →σ j = j



Noise 

•  W2
2 less sensitive to noise than L2 

•  Theorem 3: f = g + δ, δ uniformly distributed uncorrelated 
random noise, (f > 0), discrete i.e. piecewise constant: N 
intervals 

 
•  Proof by “domain decomposition”  
     dimension by dimension and standard  
     deviation estimates using closed  
     1D formula 

f − g
L2

2
=O (1), W2

2 f − g( ) =O(N −1)

f = f1, f2,.., fJ( )



3. Monge-Ampère equation and its 
numerical approximation 

•  In 1D, optimal transport is equivalent to sorting with efficient 
numerical algorithms O(Nlog(N)) complexity, N data points 

•  In higher dimensions such combinatorial methods as the 
Hungarian algorithm are very costly O(N3), Alternatives: linear 
programming, sliced Wasserstein, ADMM 

•  Fortunately the optimal transport related to W2 can be solved via 
a Monge-Ampère equation [Brenier,..] 

W2 ( f ,g) = x −∇u(x)
2

2 f (x)dx
X
∫

$

%
&

'

(
)

1/2

det D2 (u)( ) = f (x) / g(∇u(x))



Monge-Ampère equation  

•  Viscosity solution u if u is both a sub and super solution 

•  Sub solution (super analogous) 

•  1D 

 
  

det D2 (u)( )− f (x) = 0, u convex, f ∈C0 (Ω)

x
0
∈Ω, if local max of u−φ, then

det D2φ( ) ≤ f (x0 )

uxx = f , φ(x0 ) = u(x0 ), φ(x0 ) = u(x0 ),
φ(x) ≤ u(x)→φxx ≤ f



Numerical approximation 

•  Consistent, stable and monotone finite difference 
approximations will converge to Monge-Ampère viscosity 
solutions [Barles, Souganidis, 1991] 



Numerical approximation 

•  Example, monotone scheme following [Benamou, Froese, 
Oberman, 2014], discrete maximum principle 

uxx ≈ uj+1,k − 2uj,k +uj−1,k( ) /Δx2 monotone

uxv ≈ uj+1,k+1 +uj−1,k−1 −uj+1,k−1 −uj−1,k+1( ) / 4ΔxΔy not monotone



Monotone approximation 

det D2u( ) = uvjvj( )
j=1

d

∏
+

, vj{ } : set of eigenvectors of D2u

Dvv ≈ u(x + vh)− 2u(x)+u(x − vh( ) / vh 2

•  Compare upwind or ENO 
     adaptive stencils and limiters 
     for nonlinear conservation laws 
•  WENO style smooth 

superposition improves Newton 
convergence 

•  MG improves linear solver  



Numerical approximation 

•  Final algorithm with filter, almost monotone for higher accuracy 
(still converging) 

•  Newton’s method for discretized nonlinear problem – added 
regularization in choice of stencil and limiters  



4. Applications to waveform inversion and 
registration 

•  Two natural seismic applications for optimal transport and 
Monge-Ampère  
–  Measure of mismatch in the inverse problem of finding 

velocity: full waveform inversion 
–  Registration: comparing different datasets 

•  Convexity relevant property 



Reflections and inversion example 

•  Problem with reflection from two 
layers – dependence on 
parameters 

Offset = R-S 

t 

R S 



Reflections and inversion example 

W2 

L2 



Gradient for optimization 

•  For large scale optimization, gradient of J(f) = W2
2(f,g) with 

respect to wave velocity is required in a quasi Newton method in 
the PDE constrained optimization step 

•  Based on linearization of J and Monge-Ampère equation 
resulting in linear elliptic PDE (adjoint source) 

J +δJ = ( f +δ f ) x −∇(uf +δu)∫
2
dx

f +δ f = g(∇(uf +δu))det(D
2 (uf +δu))

L(v) = g(∇uf )tr((D
2uf )

•D2 (v))+det(D2uf )g(∇uf )⋅∇v = δ f



Remarks 

+ Captures important features of distance in both travel time and L2  
+ There exists fast algorithms 
+ Robust vs. noise 
-  Constraints that are not natural for seismology 

•  Consider positive and negative parts of f and g separately and 
(regularize) – not appropriate for adjoin field gradient technique  

•  Normalize  and regularize: add small constant where g = 0 
•  Alternative W2: W1 trace by trace W2 (1D) 

f (x)dx =
X
∫ g(y)dy

Y
∫ , f , g ≥ 0

g > 0, convex domain



Applications Seismic test cases 

•  Marmousi model (velocity field) 
•  Original model and initial velocity field to start optimization 



Marmousi model 

•  Original and FWI reconstruction with different initializations:  
     W2-1D, W2-2D, L2 



Remark 

•  Robustness to noise: good for data but allows for oscillations in 
“optimal” computed velocity 

•  Remedy: trace by trace, TV - regularization 



Remark 

•  Robustness to noise: good for data but allows for oscillations in 
“optimal” computed velocity 

•  Remedy: trace by trace, TV - regularization 

W2 

W1 



BP 2004 model 

•  High contrast salt deposit, W2-1D, W2-2D, L2 



Camembert 



Additional information from Monge-Ampère   
solution: T=grad(u) for registration 

 
•  Seismic applications 

–  Matching different measurements (well log – seismic) 
–  Monitor reservoir year by year 

•  Common in image processing (often 1D) 

Source Target grad(u)-x 



Other related work 

•  Example below: W1 measure and Marmousi p-velocity model   
[Metivier etr. Al, 2016] 

•  Current optimal transport based development: Schlumberger, 
Total  



Registration 

f 

g 



Registration 

f 

g 



Registration 

f 

g 

Optimal transport requirements may have  
unwanted effect on seismic registration 

 



Registration 

f 

g 

Need to modify algorithm 



Iteration on truncated signals and maps 



Using map based on Monge-Ampère 
solution for registration 

T(x) = grad(u) - x Ta(x) ≈ grad(u) – x 
smooth, weighted L2 



Using map based on Monge-Ampère 
solution for registration 

•  The full algorithms based on  
     cropping data and iterate over 
     updated registered maps 
•  Applications commonly requires 
     modification to the basic 
     theory 



5. Conclusions 

•  Improved seismic exploration requires progress in 
computational mathematics  

•  Optimal transport and the Wasserstein metric are promising 
tools in seismic imaging 

•  Theory and  basic algorithms need to be substantially modified 
to handle realistic seismic data:  

–  B. Engquist and B. Froese, Application of the Wasserstein metric to seismic 
signals, Comm. in Math. Sciences, 12. 979-988, 2014 

–  B. Engquist, B. Froese and Y. Yang, Optimal transport for Seismic full 
waveform inversion, to appear 

–  Y. Yang, B. Engquist and J. Sun, Convexity of the quadratic Wasserstein 
metric as a misfit function for full waveform inversion, SEG 2016, subm.  
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