Seismic imaging and optimal transport

Bjorn Engquist

In collaboration with Brittany Froese, Sergey Fomel and Yunan Yang

Brenier60, Calculus of Variations and Optimal Transportation, Paris, January 10-13, 2017

Curriculum vitae of Yann Brenier, 2012

Born January 1st 1957, Saint-Chamond, France, French citizen and resident.

Centre de mathématiques Laurent Schwartz, Ecole Polytechnique, FR-91128 Palaiseau, France (new address, since sept. 1, 2012)

> brenieratmath.polytechnique.fr website : http : //www.math.polytechnique.fr/ brenier/

Education and positions

2012– Senior researcher (Directeur de recherches) CNRS, Centre de mathématiques Laurent Schwartz, Ecole Polytechnique, FR-91128 Palaiseau, France

2000-2012 Senior researcher (Directeur de recherches) CNRS, Université de Nice (permanent member of CNRS since 2005, formerly on leave from U. Paris 6).

1990-2005 Professor, Université Paris 6 (including 7 years as full-time professor at Ecole Normale Supérieure, rue d'Ulm, Paris, 1990-1997).

1986-1990, Senior researcher (Directeur de recherches), INRIA, Rocquencourt.

1985-1986 J.R. Hedrick Assistant Professor, University of California (UCLA).

Doctorat ès Sciences, 1986, Université Paris-Dauphine, thesis committee: P.-A. Raviart, C. Bardos, G. Chavent, B. Engquist, J.-M. Lasry, M. Schatzman, L. Tartar.

1979-1985, junior researcher (chercheur), INRIA, Rocquencourt (including 15 months of national service, as researcher at the IIMAS-Universidad Nacional Autonoma de México, Mexico city)

Doctorat de 3ème cycle (PhD), Paris-Dauphine, 1982, advisor : Guy Chavent.

Curriculum vitae of Yann Brenier, 2012

Born January 1st 1957, Saint-Chamond, France, French citizen and resident.

Centre de mathématiques Laurent Schwartz, Ecole Polytechnique, FR-91128 Palaiseau, France (new address, since sept. 1, 2012)

> brenieratmath.polytechnique.fr website : http : //www.math.polytechnique.fr/ brenier/

Education and positions

2012– Senior researcher (Directeur de recherches) CNRS, Centre de mathématiques Laurent Schwartz, Ecole Polytechnique, FR-91128 Palaiseau, France

2000-2012 Senior researcher (Directeur de recherches) CNRS, Université de Nice (permanent member of CNRS since 2005, formerly on leave from U. Paris 6).

¹⁹⁹⁰⁻²⁰⁰ _{fessor at} 1985-1986 J.R. Hedrick Assistant Professor, University of California (UCLA).

1986-1990, Senior researcher (Directeur de recherches), INKIA, Rocquencourt.

1985-1986 J.R. Hedrick Assistant Professor, University of California (UCLA).

Doctorat ès Sciences, 1986, Université Paris-Dauphine, thesis committee: P.-A. Raviart, C. Bardos, G. Chavent, B. Engquist, J.-M. Lasry, M. Schatzman, L. Tartar.

^{1979-1985, d} Doctorat ès Sciences, 1986, Université Paris-Dauphine, thesis committee: ^{cional Auton} P.-A. Raviart, C. Bardos, G. Chavent, B. Engquist, J.-M. Lasry, M. Schatz-^{Doctorat de 3} man, L. Tartar.

Abel Prize 2016 Andrew J Wiles

 Δ PRISEN

 $M(H^{\circ}) = \pi \left(\frac{1}{137}\right)^{8} \sqrt{\frac{h_{c}}{c}}$ $M(H^{\circ}) = \pi \left(\frac{1}{137}\right)^{8} \sqrt{\frac{hc}{G}}$ $3987^{12} + 4365^{12} = 4472^{12}$ Ω(t.)>1 $C \rightarrow$ (s, 0 (→

Outline

- 1. Remarks on seismic imaging
- 2. Measure of mismatch: optimal transport and the Wasserstein metric
- 3. Monge-Ampère equation and its numerical approximation
- 4. Application to full waveform inversion and registration
- 5. Conclusions

1. Remarks on seismic imaging

Seismic imaging

Compare tomography

 In seismic imaging no explicit formula of inverse Radon transform type (computed tomography or CT scan)

Seismic imaging

- Find seismic wave velocity and reflecting interfaces (or low and high frequency part of velocity field) separately
 - First velocity estimation
 - Then reflectivity (details too small for velocity estimation): determined by "migration"
- We will focus on the first step velocity estimation

Mathematical and computational challenges

- Velocity estimation is typically done by PDE constrained optimization (classical inverse problem compare Calderon)
 - Measured and processed data is compared to a computed wave field based on wave velocity to be determined
 - Important steps
 - Relevant measure of mismatch
 - Fast wave field solver
 - Optimization

Velocity estimation

- Velocity estimation is typically done by PDE constrained optimization.
 - Measured and processed data is compared to a computed wave field based on wave velocity to be determined
 - Important steps
 - Relevant measure of mismatch (✔)
 - Fast wave field solver
 - Optimization
- Example of forward problem: p waves

$$p_{tt} = c(x)^2 \Delta p,$$

2. Measure of mismatch proposal: optimal transport and the Wasserstein metric

- Compare measured data to computed wave field in full waveform inversion
- In PDE-constrained optimization process: find parameters (velocity) that minimizes the mismatch

$$\min_{c(x)} \left(\left\| p_{data} - p_{comp}(c) \right\|_{A} + \lambda \left\| Lc \right\|_{B} \right)$$

- c(x): velocity, u_{data} measured signal, u_{comp} computed signal based on velocity c(x)
- $\| . \|_A$ measure of mismatch: L_2 the standard choice
- $|| Lc ||_B$ potential regularization term (we will ignore this term, which is not common in exploration seismology

Optimal transport and Wasserstein metric

 Wasserstein metric measures the "cost" for optimally transport one measure (signal) *f* to the other, *g* – Monge-Kantorivich optimal transport measure

$$f(x) \rightarrow g$$

Compare travel time distance Classic in seismology

Optimal transport and Wasserstein metric

- For some signals the "work" needed to optimally transport one distribution to the other is similar to L^p distance
- *L*² historically the standard in full waveform inversion

$$W_{p}(f,g) = \left(\inf_{\gamma} \int_{X \times Y} d(x,y)^{p} d\gamma(x,y)\right)^{1/p}$$

$$\gamma \in \Gamma \subset X \times Y, \text{ the set of product measure : } f \text{ and } g$$

$$\int_{X} f(x) dx = \int_{Y} g(y) dy, \quad f, g \ge 0$$

$$W_{2}(f,g) = \left(\inf_{T} \int_{X} \left\|x - T(x)\right\|_{2}^{2} f(x) dx\right)^{1/2}$$

• Here *T* is the optimal transport map from *f* to *g*

 In this model example W₂ and L₂ is equal (modulo a constant) to leading order when separation distance s is small. Recall L₂ is the standard measure

 When s is large W₂ = s = travel distance (time), ("higher frequency"), L₂ independent of s

• Fidelity measure, single seislet or Ricker wavelet

• Note that "shift" and also "dilation" are natural effects of difference in velocity c.

$$p_{tt} = c^2 p_{xx}, \quad x > 0, t > 0$$
$$p(0,t) = s(t) \rightarrow p = s(t - x / c)$$

- Shift as a function of *t*, dilation as a function of *x*
- Natural effect of mismatch in velocity

Analysis

• Theorem 1: W_2^2 is convex with respect to translation, *s* and dilation, *a*,

 $W_2^2(f,g)[\alpha,s], f(x) = g(\alpha x - s)\alpha^d, \alpha > 0, x, s \in \mathbb{R}^d$

• Theorem 2: W_2^2 is convex with respect to local amplitude change, λ

$$W_{2}^{2}(f,g)[\beta], f(x) = \begin{cases} g(x)\lambda, x \in \Omega_{1} \\ \beta g(x)\lambda, x \in \Omega_{2} \end{cases} \beta \in R, \ \Omega = \Omega_{1} \cup \Omega_{2} \\ \lambda = \int_{\Omega} g \, dx \, / \left(\int_{\Omega_{1}} g \, dx + \beta \int_{\Omega_{2}} g \, dx \right) \end{cases}$$

• (L₂ only satisfies 2nd theorem)

Remarks

- The scalar dilation *ax* can be generalized to *Ax* where *A* is a positive definite matrix. Convexity is then in terms of the eigenvalues
- The proof of theorem 1 is based on c-cyclic monotonicity

$$\left\{ \left(x_{j}, x_{j} \right) \right\} \in \Gamma \twoheadrightarrow \sum_{j} c\left(x_{j}, x_{j} \right) \leq \sum_{j} c\left(x_{j}, x_{\sigma(j)} \right)$$

• The proof of theorem two is based on the inequality

$$W_2^2(sf_1 + (1-s)f_2, g) \le sW_2^2(f_1, g) + (1-s)W_2^2(f_2, g)$$

Illustration: discrete proof (theorem 1)

- Equal point masses then weak limit
- Brenier: back of the envelope for laymen at Banff

Illustration: discrete proof

$$W_{2}^{2} = \min_{\sigma} \sum_{j=1}^{J} \left| x_{o_{j}} - (x_{j} - s\xi) \right|^{2} = \left(\sigma : permutation \right)$$
$$\min_{\sigma} \left(\sum_{j=1}^{J} \left| x_{o_{j}} - x_{j} \right|^{2} - 2s \sum_{j=1}^{J} \left(x_{o_{j}} - x_{j} \right) \cdot \xi + J \left| s\xi \right|^{2} \right) =$$
$$\min_{\sigma} \left(\sum_{j=1}^{J} \left| x_{o_{j}} - x_{j} \right|^{2} + J \left| s\xi \right|^{2} \right), \quad from \quad \sum_{j=1}^{J} x_{o_{j}} = \sum_{j=1}^{J} x_{j}$$
$$\rightarrow x_{o_{j}} = x_{j} \rightarrow \sigma_{j} = j$$

Noise

- W₂² less sensitive to noise than L₂
- Theorem 3: $f = g + \delta$, δ uniformly distributed uncorrelated random noise, (f > 0), discrete i.e. piecewise constant: N intervals

$$\|f - g\|_{L_2}^2 = O(1), \quad W_2^2(f - g) = O(N^{-1})$$

$$f = (f_1, f_2, ..., f_J)$$

 Proof by "domain decomposition" dimension by dimension and standard deviation estimates using closed
 1D formula

3. Monge-Ampère equation and its numerical approximation

- In 1D, optimal transport is equivalent to sorting with efficient numerical algorithms O(Nlog(N)) complexity, N data points
- In higher dimensions such combinatorial methods as the Hungarian algorithm are very costly O(N³), Alternatives: linear programming, sliced Wasserstein, ADMM
- Fortunately the optimal transport related to W₂ can be solved via a Monge-Ampère equation [Brenier,..]

$$W_2(f,g) = \left(\int_X \left\|x - \nabla u(x)\right\|_2^2 f(x) dx\right)^{1/2}$$
$$\det\left(D^2(u)\right) = f(x) / g(\nabla u(x))$$

Monge-Ampère equation

- Viscosity solution *u* if *u* is both a sub and super solution $det(D^{2}(u)) - f(x) = 0, \ u \ convex, \ f \in C^{0}(\Omega)$
- Sub solution (super analogous)

 $x_{_{0}} \in \Omega, \text{ if local max of } u - \phi, \text{ then}$ $\det(D^{2}\phi) \leq f(x_{_{0}})$ 1D $u_{_{xx}} = f, \ \phi(x_{_{0}}) = u(x_{_{0}}), \ \phi(x_{_{0}}) = u(x_{_{0}}),$

$$\begin{aligned} u_{xx} &= f, \ \varphi(x_0) = u(x_0), \ \varphi(x_0) = u(x_0), \\ \phi(x) &\le u(x) \to \phi_{xx} \le f \end{aligned}$$

۲

Numerical approximation

 Consistent, stable and monotone finite difference approximations will converge to Monge-Ampère viscosity solutions [Barles, Souganidis, 1991]

Numerical approximation

• Example, monotone scheme following [Benamou, Froese, Oberman, 2014], discrete maximum principle

$$u_{xx} \approx \left(u_{j+1,k} - 2u_{j,k} + u_{j-1,k}\right) / \Delta x^2 \quad monotone$$
$$u_{xv} \approx \left(u_{j+1,k+1} + u_{j-1,k-1} - u_{j+1,k-1} - u_{j-1,k+1}\right) / 4\Delta x \Delta y \quad not \ monotone$$

Monotone approximation

$$\det\left(D^{2}u\right) = \prod_{j=1}^{d} \left(u_{v_{j}v_{j}}\right)^{+}, \left\{v_{j}\right\} : set of eigenvectors of D^{2}u$$
$$D_{vv} \approx \left(u(x+vh) - 2u(x) + u(x-vh) / |vh|^{2}$$

- Compare upwind or ENO adaptive stencils and limiters for nonlinear conservation laws
- WENO style smooth
 superposition improves Newton
 convergence
- MG improves linear solver

Numerical approximation

- Final algorithm with filter, almost monotone for higher accuracy (still converging)
- Newton's method for discretized nonlinear problem added regularization in choice of stencil and limiters

4. Applications to waveform inversion and registration

- Two natural seismic applications for optimal transport and Monge-Ampère
 - Measure of mismatch in the inverse problem of finding velocity: full waveform inversion
 - Registration: comparing different datasets
- Convexity relevant property

Reflections and inversion example

 Problem with reflection from two layers – dependence on parameters

Reflections and inversion example

Gradient for optimization

- For large scale optimization, gradient of J(f) = W₂²(f,g) with respect to wave velocity is required in a quasi Newton method in the PDE constrained optimization step
- Based on linearization of J and Monge-Ampère equation resulting in linear elliptic PDE (adjoint source)

$$J + \delta J = \int (f + \delta f) \|x - \nabla (u_f + \delta u)\|^2 dx$$

$$f + \delta f = g(\nabla (u_f + \delta u)) \det(D^2 (u_f + \delta u))$$

$$L(v) = g(\nabla u_f) tr((D^2 u_f) \cdot D^2 (v)) + \det(D^2 u_f) g(\nabla u_f) \cdot \nabla v = \delta f$$

Remarks

- + Captures important features of distance in both travel time and L₂
- + There exists fast algorithms
- + Robust vs. noise
- Constraints that are not natural for seismology

$$\int_{X} f(x) dx = \int_{Y} g(y) dy, \quad f, g \ge 0$$
$$g > 0, \text{ convex domain}$$

- Consider positive and negative parts of *f* and *g* separately and (regularize) – not appropriate for adjoin field gradient technique
- Normalize and regularize: add small constant where g = 0
- Alternative W_2 : W_1 trace by trace W_2 (1D)

Applications Seismic test cases

- Marmousi model (velocity field)
- Original model and initial velocity field to start optimization

Marmousi model

 Original and FWI reconstruction with different initializations: W₂-1D, W₂-2D, L₂

Remark

- Robustness to noise: good for data but allows for oscillations in "optimal" computed velocity
- Remedy: trace by trace, TV regularization

Remark

- Robustness to noise: good for data but allows for oscillations in "optimal" computed velocity
- Remedy: trace by trace, TV regularization

BP 2004 model

• High contrast salt deposit, W₂-1D, W₂-2D, L²

Camembert

Additional information from Monge-Ampère solution: T=grad(u) for registration

- Seismic applications
 - Matching different measurements (well log seismic)
 - Monitor reservoir year by year
- Common in image processing (often 1D)

Other related work

- Example below: W₁ measure and Marmousi p-velocity model [Metivier etr. Al, 2016]
- Current optimal transport based development: Schlumberger, Total

Optimal transport requirements may have unwanted effect on seismic registration

Iteration on truncated signals and maps

Using map based on Monge-Ampère solution for registration

Using map based on Monge-Ampère solution for registration

- The full algorithms based on cropping data and iterate over updated registered maps
- Applications commonly requires modification to the basic theory

5. Conclusions

- Improved seismic exploration requires progress in computational mathematics
- Optimal transport and the Wasserstein metric are promising tools in seismic imaging
- Theory and basic algorithms need to be substantially modified to handle realistic seismic data:
 - B. Engquist and B. Froese, Application of the Wasserstein metric to seismic signals, Comm. in Math. Sciences, 12. 979-988, 2014
 - B. Engquist, B. Froese and Y. Yang, Optimal transport for Seismic full waveform inversion, to appear
 - Y. Yang, B. Engquist and J. Sun, Convexity of the quadratic Wasserstein metric as a misfit function for full waveform inversion, SEG 2016, subm.

Happy Birthday Yann