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Background 

The governing equation used in weather and 
climate models have solutions that are far too 
complicated to compute. 

Reduced models are needed to describe how 
the governing equations behave in particular 
circumstances, and thus to validate operational 
models. 

This talk is mostly about the semi-geostrophic 
model, which describes the behaviour on scales 
dominated by the Earth’s rotation. These are 
horizontal scales greater than 1000km. 
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The semi-geostrophic model with 
constant rotation 



Euler equations 

The incompressible Euler equations for a 
rotating, stratified, Boussinesq fluid are 
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These are to be solved in a closed region Ω 
with no flow across the boundary. 



Rotation dominated flows 

Dimensionless equations, with ε=U/fL=(H/L)² 
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Semi-geostrophic limit 
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Semi-geostrophic limit in 
dual variables 

 

 

 

0

0,,

,,

2

1

1122

321

2

2

2

1

3

122

211















u

xXXxXD

PXXX

xxpP

X

uxX

uxX

t











© Crown copyright 

Solution procedure 
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Discrete procedure-Cullen 
and Purser (1984,1989) 

Represent data by finite volumes σi with X 
constant on each element. 

Arrange in Ω so that P is convex. Requires 
monotonicity of Xi as function of xi for each i. 

Theorem of Alexandrov shows that  a unique 
convex polyhedron P can be constructed such 
that the volume of each hyperface is σi. 

Then solve evolution equations for Xi. 

Does this converge to a ‘continuous’ solution? 
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Continuous procedure-
Brenier (1991) 

Brenier’s polar factorisation theorem states 

 

where μ is a measure-preserving mapping. So can 
set  
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Start with data 

 

Take a timestep by first updating X. 



Solution using optimal 
transport (Benamou/Brenier) 
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Define mass in dual variables. 

 

Define velocity in dual variables 

 

Solve the mass conservation equation in dual 
variables. 

 

Map solution back to physical space at each time 
using optimal transport to calculate physical 
space velocity.  



Optimal transport problem 
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Find map T minimising energy E where 

 

 

 

Solution satisfies 

 

as required 
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Numerical solution 

Represent σ as a set of Dirac masses σi. 

Solve optimal map and transport masses with 
velocity Ui. 

Proved to converge to correct solution by Cullen, 
Gangbo and Pisante. 

Example shown from 2 dimensional problem 
which has singular solutions corresponding to 
convex but non-differentiable P. 

These solutions are a simple model of 
atmospheric fronts. 



© Crown copyright  

Illustration 

           Element picture                                          ρ field 

Solutions of 2 dimensional SG in vertical cross section after 
singularity has formed. 
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Comments on solution 

Singularities in the solution can be expected. 
Those shown in the example correspond to 
atmospheric fronts. 

These singularities do not invalidate the 
Lagrangian form of the governing equations, or 
the assumptions used to derive them from the 
Euler equations. 

Given that it is impracticable to use fully 
Lagrangian methods in production models, the 
generation of these singularities is an important 
issue. 
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Further developments 
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Issues 

In order to justify the model, need to map the 
solution into physical space to compare with the 
Euler solution. 

The dual space ‘velocity’ U is non-divergent in X. 
Thus the mass density σ is bounded by its initial 
values. In particular if it is absolutely continuous 
wrt Lebesgue, it remains so. 

Ambrosio proved that the transport equation 
generates a Lagrangian flow map Φ. This is 
because U is the rotated gradient of a convex 
function. Cullen and Feldman showed that a 
Lagrangian map in physical space can then be 
generated as F=ToΦoT-1, giving a weak 
Lagrangian solution in physical space. 
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Boundary conditions 

In the atmosphere, SG would naturally be applied 
with periodic boundary conditions in the 
horizontal, pressure (i.e. mass) as the vertical 
coordinate, and a rigid boundary at the top 
(p=0) and a free surface at the bottom (p 
satisfies a prognostic equation). 

In the ocean it is naturally applied with rigid 
boundaries in the horizontal, a free surface at 
the top and a rigid boundary at the bottom. 

If 3d periodic boundaries are assumed, Ambrosio, 
Figalli, de Phillippis and Colombo showed that 
SG solutions remain smooth, no singularities 
form. Thus the boundary is crucial in forming 
atmospheric fronts. 
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Free boundary 

Cullen, Gangbo and Sedjro solved the problem of 
an axisymmetric vortex in an ambient rotating 
fluid at rest. This is done by finding the mass in 
angular momentum and potential temperature 
coordinates (Υ,Z). This is mapped onto a subset 
of a physical domain Ω2x[0,H] where the subset 
is defined as [r≤ρ(z)]x[0,H] and r is a radial 
coordinate. 

The map is found by solving an optimal transport 
problem. For a given ρ(z), the energy density 
takes the form (-sΥ-zZ), where s is a function of 
radius, plus terms independent of the map. This 
is minimised for fixed ρ(z) by choosing 
(s,z)=grad Ψ with Ψ convex.  
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Free boundary II 

Then have to minimise the energy over choices of 
ρ(z). This was achieved. In particular, the 
solution has ρ(z) monotonically increasing in z. 

A similar method shows that the 3d problem 
Ω2x[0,h(x1,x2)] with a  free boundary in pressure 
coordinates can be solved (Cullen, Pelloni, 
Gilbert and Kuna).  

The latter result gives a solution for the physically 
appropriate choice of boundary conditions. 
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Convergence of Euler to SG 
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Convergence of Euler to SG 

Physical applicability requires a proof that 
solutions of the Euler equations converge to 
solutions of SG at the predicted O(ε²) rate. In 
the general 3d case the SG solution depends 
on ε. 

Loeper proved such a  result in the horizontal 
plane where only O(ε) convergence is 
expected. 

Brenier and Cullen proved a result for a simplified 
problem in a vertical cross-section (the Eady 
model). The SG solution does not depend on ε 
in this case. 



Eady model scaled 

With ε=U/fL, ∂/∂x2=0 and u1=εu2. 
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Eady model in new variables 
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SG model 
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Convergence of Eady 
model to SG (Brenier) 
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Define relative entropy 

 

Derive estimate of 

 

of the form 



Remarks 

Gives convergence at O(ε) of |y-yε| for finite time 
interval where solutions are smooth. 

Not optimal. 

Extension to 3d requires control of second time 
derivative of uε, much more difficult. 
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Uniqueness 



Uniqueness 

Loeper proved short time existence of smooth 
solutions in periodic geometry. These solutions 
are unique in the class of smooth solutions. 

Formal arguments show that time of existence 
tends to ∞ as ε tends to zero. Does not hold 
with fixed boundaries. 

Feldman and Tudorascu show that if strong 
solutions exist, they are unique in the class of 
weak Lagrangian renormalised solutions. Their 
method is based on Brenier’s method for 
comparing Euler with SG. 
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Variable rotation 
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Variable rotation 

SG valid in atmosphere on scales >1000km. In 
the ocean the requirement is scales >30km. In 
the atmosphere, SG only useful on scales 
comparable to the earth’s radius, and the 
resulting variation of the vertical component of 
the rotation vector must be included (Rossby 
waves). 

The strongest symmetry in the problem is the 
radial symmetry, the aspect ratio H/L is O(ε²). 
This breaks the symmetry about the rotation 
axis. 

Thus a loss of conservation laws associated with 
rotational symmetry is to be expected. 
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Variable rotation 

The vertical component of the Earth’s rotation vector 
depends on latitude. 
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Variable rotation 

Tropical and extratropical weather are different 



Dimensionless equations 
with variable rotation 
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Remarks 

α is a dimensionless smooth function of position. 
Consider the case α strictly >0 (excludes 
equator where SG will be highly degenerate). 

Optimal transport method calculates a measure-
preserving mapping μ which represents the 
integral of u over a timestep δt.  

However αu is non-integrable, so this method will 
be ill-posed. 

Cheng, Cullen and Feldman proved short-time 
existence of solutions by using the implicit 
function theorem instead of optimal transport. 
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Remarks II 

Can allow the use of optimal transport by 
conformal rescaling of the space by a  factor α, 
(Cullen, Douglas, Roulstone, Sewell 2005). 
Under this αdz, where dz is a line element in 
the original space, becomes dx in the 
transformed space. If the original space is 
Euclidean, the transformed space will be a 
Riemannian manifold. 

Optimal transport can then be used locally to 
construct a  solution. However the non-
integrability remains an issue in constructing a 
global solution-work in progress. 

© Crown copyright  



© Crown copyright 

Questions 


