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Motivation

•The Hartree equation with bounded interaction potential has been
derived from the N-body linear Schrödinger equation in the large N,
small coupling constant limit (Spohn 80, Bardos-FG-Mauser 2000,
Rodnianski-Schlein 09); extension to singular interaction potentials
(including Coulomb) by Erdös-Yau 2001, Pickl 2009. The conver-
gence rate obtained in these works is not uniform as ~→ 0. . .

•. . . and yet the Vlasov equation with C 1,1 interaction potential has
been derived from the N-body problem of classical mechanics in
the same limit (Neunzert-Wick 1973, Braun-Hepp 1977, Dobrushin
1979)

Problem: to find a uniform in ~ convergence rate for the quan-
tum mean-field limit (Graffi-Martinez-Pulvirenti M3AS03, Pezzotti-
Pulvirenti AnnHP09, G-Mouhot-Paul CMP2016)
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The diagram

Schrödinger N→∞−→ Hartree

↓ ↓

~→ 0 ~→ 0

↓ ↓

Liouville N→∞−→ Vlasov
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THE QUANTUM N-BODY PROBLEM
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Hartree equation

= a nonlinear, nonlocal Schrödinger equation on the 1-particle space
H = L2(Rd) for the “typical” particle interacting with a large number
of other identical particles

Mean-field interaction potential and Hamiltonian:

Vρ(t)(x) :=

∫
Rd

V (x − y)ρ(t, y , y)dy , Hρ(t) := −1
2~

2∆ + Vρ(t)

•The 1-body wave function ψ≡ψ(t, x) satisfies Hartree’s equation

i~∂tψ = H|ψ〉〈ψ|(t)ψ , ψ
∣∣
t=0 = ψin

Density formulation the 1-body density operator ρ ≡ ρ(t) satisfies

i~∂tρ(t) = [Hρ(t), ρ(t)] , ρ
∣∣
t=0 = ρin
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N-Body Schrödinger

Notation for a N-tuple of positions is XN := (x1, . . . , xN) ∈ (Rd)N

•The N-body wave function ΨN ≡ ΨN(t, x1, . . . , xN) ∈ C satisfies
the N-body Schrödinger equation

i~∂tΨN = HNΨN , HN :=
N∑
j=1

−1
2~

2∆xj +
1
N

∑
1≤j<k≤N

V (xj − xk)

Action of the symmetric group: for each permutation σ ∈ SN

UσΨN(XN) :=ΨN(σ·XN) where σ·XN := (xσ−1(1), . . . , xσ−1(N))
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N-Body Heisenberg

•The N-body density operator ρN(t) := |ΨN(t, ·)〉〈ΨN(t, ·)| satisfies
the N-body Heisenberg equation

i~∂tρN = [HN , ρN ] , ρN
∣∣
t=0 = ρinN

Density operators: set H := L2(Rd) and HN = H⊗N ' L2((Rd)N)

D(HN) := {ρ ∈ L(HN) s.t. ρ = ρ∗ ≥ 0 and tr(ρ) = 1}

Indistinguishable particles ⇔ symmetric density operators

Ds(HN) := {ρ ∈ D(HN) s.t. ρ = UσρU
∗
σ for each σ ∈ SN}

•Propagation of symmetry by the N-body Heisenberg equation:

ρinN ∈ Ds(HN)⇒ ρN(t) ∈ Ds(HN) for all t ≥ 0
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THE BBGKY HIERARCHY FORMALISM
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Marginals

k-particle marginal of a density operator: for ρN ∈ Ds(HN), and
for 1 ≤ k ≤ N, define ρk

N ∈ Ds(Hk) by the identity

trHk
(ρk

NA) = trHN
(ρN(A⊗ IHN−k

)) for each A ∈ L(Hk)

•The integral kernel of ρk
N is defined in terms of the integral kernel

of ρN by the formula

ρk
N(Xk ,Yk) =

∫
(Rd )N−k

ρN(Xk ,ZN−k ,Yk ,ZN−k)dZN−k
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BBGKY hierarchy

Pbm: to find an equation for ρk
N knowing that ρN is a solution to

the Heisenberg equation, where k = 1, . . . ,N

i~∂tρk
N = [−1

2~
2∆k, ρk

N ]

+
N − k

N

k∑
j=1

[
Vj ,k+1, ρ

k+1
N

]k
︸ ︷︷ ︸

interaction with the N − k other particles

+
1
N

∑
1≤m<n≤k

[Vm,n, ρ
k
N ]︸ ︷︷ ︸

recollision

Notation:

Vm,n := multiplication by V (xm − xn) , ∆k :=
k∑

j=1

∆xj
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The Hartree hierarchy

If ρ ≡ ρ(t) is a solution to the Hartree equation, the sequence
ρk(t) := ρ(t)⊗k satisfies the infinite hierarchy of equations

i~∂tρk = [−1
2~

2∆k, ρk ] +
k∑

j=1

[Vj ,k+1, ρk+1]k︸ ︷︷ ︸
=[Vρ(t)(xj ),ρk (t)]

Setting EN,k(t) := ρk(t)− ρk
N(t), one finds that

i~∂tEN,k = [−1
2~

2∆k,EN,k ] +
k∑

j=1

[Vj ,k+1,EN,k+1]k

+
k

N

k∑
j=1

[
Vj ,k+1, ρ

k
N

]k
︸ ︷︷ ︸

O(k2/N)

− 1
N

∑
1≤m<n≤k

[Vm,n, ρ
k
N ]︸ ︷︷ ︸

O(k2/N)
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A nonuniform convergence rate in trace norm

Thm I Assume that V ∈ L∞(Rd) is even and real-valued. Assume
that the initial data for the N-body Heisenberg equation is factorized

ρN
∣∣
t=0 = (ρin)⊗N

where ρin is the initial data for the Hartree equation. Then

tr(|ρk
N(t)− ρ(t)⊗k |) ≤ 2k

21+16Wt/~

N ln 2/21+16Wt/~

for all t ≥ 0, all k ≥ 1 and all N ≥ max
(
N0(k), exp

(
21+16Wt/~k

))
,

where

N0(k) := inf{N > e4 s.t. n ≥ N ⇒ 2ln n/2(k + 1
2 ln n)2 < 2n}

and
W := ‖V ‖L∞(Rd )
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THE OPTIMAL TRANSPORT FORMALISM
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Monge-Kantorovich-(Vasershtein-Rubinshtein) distances

Let µ, ν be two Borel probability measures on Rd .
Coupling of µ, ν: a Borel measure π ≥ 0 on Rd × Rd such that∫∫

Rd×Rd

(φ(x)+ψ(y))π(dxdy)=

∫
Rd

φ(x)µ(dx)+

∫
Rd

ψ(y)ν(dy)

for all φ, ψ ∈ Cb(Rd).
Set of couplings of µ, ν denoted Π(µ, ν)

Monge-Kantorovich distance (exponent p ≥ 1):

distMK ,p(µ, ν) =

(
inf

π∈Π(µ,ν)

∫∫
Rd×Rd

|x − y |pπ(dxdy)

)1/p
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Quantum couplings and pseudo-distance

•Density operators on a Hilbert space H:

ρ ∈ D(H)⇔ ρ = ρ∗ ≥ 0 , tr(ρ) = 1

•Couplings between two density operators ρ1, ρ2 ∈ D(H):

ρ ∈ D(H⊗ H) s.t.
{

trH⊗H((A⊗ I )ρ) = trH(Aρ1)
trH⊗H((I ⊗ A)ρ) = trH(Aρ2)

for all A ∈ L(H); the set of all such ρ will be denoted Q(ρ1, ρ2)
•For ρ1, ρ2 ∈ D(L2(Rd)), define

MK ~
2 (ρ1, ρ2)= inf

ρ∈Q(ρ1,ρ2)
tr

 d∑
j=1

((xj − yj)
2−~2(∂xj − ∂yj )

2)ρ

1/2
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The quantum estimate

Thm II [FG - C. Mouhot - T. Paul, CMP2016]
Let the potential V be even, real-valued and s.t. ∇V ∈ Lip(Rd).
Let ρ~(t) be the solution of Hartree’s equation with initial data ρin~ ,
and let ρN,~(t) be the solution of Heisenberg’s equation with initial
data ρinN,~ ∈ Ds(HN).
Then, for each t ≥ 0

MK ~
2 (ρ~(t), ρ1

N,~(t))2 ≤ 1
N
MK ~

2 ((ρin~ )⊗N , ρinN,~)2eLt

+
8
N
‖∇V ‖2L∞

eLt − 1
L

with
L := 3 + 4 Lip(∇V )2
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Dynamics of quantum couplings

Let R in
N ∈ Q((ρin)⊗N , ρinN) and let t 7→ RN(t) be the solution of

i~∂tRN =

[
N∑

k=1

Hk
ρ(t) ⊗ I + I ⊗HN ,RN

]
, RN

∣∣
t=0 = R in

N

Then RN(t) ∈ Q((ρ(t))⊗N , ρN(t)) for each t ≥ 0. Define

DN(t) = tr

 1
N

N∑
j=1

(Q∗j Qj + P∗j Pj)RN(t)


with

Qj =xj−yj , Pj := ~
i (∇xj−∇yj ) , P∗j := ~

i (divxj−divyj )
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Ideas from the proof

Need to control the operator[
N∑

k=1

Hk
ρ(t) ⊗ I + I ⊗HN ,Q

∗
1Q1 + P∗1P1

]

in terms of
1
N

N∑
j=1

(Q∗j Qj + P∗j Pj)

and

tr

∣∣∣∣∣Vρ(t) −
1
N

N∑
k=1

V (· − xk)

∣∣∣∣∣
2

ρ~(t)⊗N

 = O(1/N)

Both steps use the Lipschitz continuity of ∇V
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PROPERTIES OF MK ~
2
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Wigner and Husimi transforms

•Wigner transform at scale ~ of an operator ρ ∈ D(L2(Rd)):

W~[ρ](x , ξ) = 1
(2π)d

∫
Rd

e−iξ·yρ(x + 1
2~y , x −

1
2~y)dy

•Husimi transform at scale ~:

W̃~[ρ](x , ξ) = e~∆x,ξ/4W~[ρ] ≥ 0

One has ∫
Rd×Rd

W̃~[ρ](x , ξ)dxdξ = tr(ρ) = 1
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Töplitz quantization

•Coherent state with q, p ∈ Rd :

|q + ip, ~〉 = (π~)−d/4e−|x−q|
2/2~e ip·x/~

•With the identification z = q + ip ∈ Cd

OPT (µ) := 1
(2π~)d

∫
Cd

|z , ~〉〈z , ~|µ(dz) , OPT (1) = I

•Fundamental properties:

µ ≥ 0⇒ OPT (µ) ≥ 0 , tr(OPT (µ)) = 1
(2π~)d

∫
Cd

µ(dz)

•Important formulas:

W~[OPT(µ)]= 1
(2π~)d

e~∆q,p/4µ , W̃~[OPT(µ)]= 1
(2π~)d

e~∆q,p/2µ
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Figure: With ~ = 8 · 10−5, Z =real part of coherent state centered at
q = (0, 0) with momentum p = (1, 0) with space variable (X ,Y ) ∈ R2
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Figure: Oscillating structure of a Gaussian coherent state.
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Comparing MK ~
2 with distMK,2

Thm III [FG - C. Mouhot - T. Paul, CMP2016]
(a) MK ~

2 is not a distance: for all ρ1, ρ2 ∈ D(L2(Rd)), one has

MK ~
2 (ρ1, ρ2)2 ≥ max(2d~, distMK,2(W̃~[ρ1], W̃~[ρ2])2 − 2d~)

(b) Let ρj be the Töplitz operators at scale ~ with symbol (2π~)dµj ,
with µj ∈ P2(Cd) for j = 1, 2; then

MK ~
2 (ρ1, ρ2)2 ≤ distMK,2(µ1, µ2)2 + 2d~

Notation: P(Rd) = set of Borel probability measures on Rd , and

Pn(Rd) :=

{
µ ∈ P(Rd) s.t.

∫
Rd

|x |nµ(dx) <∞
}
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Consequence of Thm II+III

Corollary
Let the potential V be even, real-valued and s.t. ∇V ∈W 1,∞(Rd).
Let ρ~(t) be the solution of the Hartree equation with initial data
ρin, assumed to be a Töplitz density operator. Let ρN,~(t) be the
solution of the N-body Heisenberg equation with initial data (ρin)⊗N .
Then

distMK,2(W̃~[ρ1
N,~(t)], W̃~[ρ~(t)])2

≤ 2d~(eLt + 1) +
8
N
‖∇V ‖2L∞

eLt − 1
L

•Convergence rate as N →∞ that is uniform as ~→ 0...
•... but this estimate says nothing for ~ fixed
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THE INTERPOLATION ARGUMENT
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Interpolating between distMK,2 and the trace norm

Lemma:
(1) Let ρ1, ρ2 ∈ D(H); then∥∥∥W̃~[ρ1]− W̃~[ρ2]

∥∥∥
TV
≤ tr(|ρ1 − ρ2|)

(2) Let µ, ν ∈ P(Rd) and Π(µ, ν) be the set of couplings of µ, ν.
Define

dist1(µ, ν) = inf
π∈Π(µ,ν)

∫∫
Rd×Rd

min(1, |x − y |)π(dxdy)

Then
dist1(µ, ν) ≤ min(‖µ− ν‖TV , distMK,2(µ, ν))
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The ~-uniform convergence rate

Thm IV
Let the potential V ∈ C 1,1(Rd) be even and real-valued.
Let ρ~(t) be the solution of the Hartree equation with Töplitz initial
data ρin~ ∈ D(H), and let ρN,~(t) be the solution of Heisenberg’s
equation with initial data (ρin~ )⊗N .
Then, for each t∗ ≥ 0, one has

sup
0≤t≤t∗

dist1(W̃~[ρ~(t)], W̃~[ρ1
N,~(t)])2 . 64dW ln 2

t∗(1 + eLt
∗
)

ln lnN

where

W := ‖V ‖L∞(Rd ) and L := 3 + 4 Lip(∇V )2
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Key idea

•Use the BBGKY estimate (Theorem I) for ~ > O(1/ ln lnN)

•Use the optimal transport estimate (Theorem II+III) otherwise
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Conclusion

•Uniform in ~ convergence rate for the mean-field limit of the N-body
quantum problem with factorized initial data
•Formulated in terms of the Dobrushin weak convergence distance
on Husimi transforms of the Hartree solution and of the 1st marginal
of the N-body density operator
•Decay of order O(1/

√
ln lnN) most likely non optimal, due to the

finite time (Cauchy-Kowalevski) limitation in the stability of the
BBGKY hierarchy

Other approaches avoiding BBGKY hierarchies?
•2nd quantization (Rodnianski-Schlein CMP2007, error of order eKt/N
in trace norm, K not explicit...)
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Open questions

•In classical mechanics, the N-particle phase space empirical measure
is a weak solution of the mean-field (Vlasov) equation. Is there
a quantum analogue of this property? (work in progress on that
question with T. Paul...)
•Is there a Benamou-Brenier type variational formulation for the
pseudo-distance MK ~

2 ?
•Can one replace MK ~

2 with a true distance? (for instance, Connes’
distance in NC geometry, which is the analogue for operator algebras
of the MK distance with exponent 1)
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Two of Yann’s interests: Switzerland and locomotives

Figure: A. Honegger and a Pacific 231 steam locomotive

"I have always loved locomotives passionately. For me they are living
creatures and I love them as others love women or horses."

A. Honegger
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Finally, the most important slide in this talk

HAPPY BIRTHDAY, YANN !
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