Dynamic and Stochastic Brenier Transport via Hopf-Lax formulae on Wasserstein Space

Nassif Ghoussoub, University of British Columbia

With many discussions with Yann Brenier and Wilfrid Gangbo

Brenierfest, IHP, January 9-13, 2017

Nassif Ghoussoub, University of British Columbia
Dynamic and Stochastic Brenier Transport via Hopf-Lax formulae on Was

Nassif Ghoussoub, University of British Columbia
Dynamic and Stochastic Brenier Transport via Hopf-Lax formulae on Was

Optimal transport problem for the "ballistic cost function", which is defined on phase space $M^{*} \times M$ by,
$b_{T}(v, x):=\inf \left\{\langle v, \gamma(0)\rangle+\int_{0}^{T} L(t, \gamma(t), \dot{\gamma}(t)) d t ; \gamma \in C^{1}([0, T), M) ; \gamma(T)=x\right\}$,
where $L:[0, T] \times M \times M^{*} \rightarrow \mathbf{R} \cup\{+\infty\}$ is a suitable Lagrangian.

- Why this as opposed to the "fixed-state space cost"?
- Existence of Optimal maps
- Duality and Hamilton-Jacobi equations
- Corresponding Benamou-Brenier type formulas
- Hopf-Lax Type formulae on Wasserstein space
- Hamilton-Jacobi equations on Wasserstein space
- Connection to mean field games
- Stochastic mass transport with ballistic cost.

Why the ballistic cost?

For a given function g, the value function

$$
\begin{aligned}
V_{g}(t, x) & =\inf \left\{g(\gamma(0))+\int_{0}^{t} L(s, \gamma(s), \dot{\gamma}(s)) d s ; \gamma \in C^{1}([0, T), M) ; \gamma(t)=x\right\}, \\
V(0, x) & =g(x),
\end{aligned}
$$

is formally a solution of the Hamilton-Jacobi equation,

$$
(H J) \quad \partial_{t} V+H\left(t, x, \nabla_{x} V\right)=0 \quad \text { on }[0, T] \times M,
$$

where H is the associated Hamiltonian on $[0, T] \times T^{*} M$, i.e.,

$$
H(t, y, x)=\sup _{v \in T M}\{\langle v, x\rangle-L(t, y, v)\} .
$$

Both the ballistic cost,

$$
b_{T}(v, x):=\inf \left\{\langle v, \gamma(0)\rangle+\int_{0}^{T} L(t, \gamma(t), \dot{\gamma}(t)) d t ; \gamma \in C^{1}([0, T), M) ; \gamma(T)=x\right\},
$$

and the fixed-end cost

$$
c_{T}(y, x):=\inf \left\{\int_{0}^{T} L(t, \gamma(t), \dot{\gamma}(t)) d t ; \gamma \in C^{1}([0, T), M) ; \gamma(0)=x, \gamma(T)=y\right\}
$$

are formally solutions to (HJ).

Hopf-Lax and Dual Hopf-Lax formula

Both costs can be seen as "Kernels" that can be used to generate general solutions for (HJ).

- General Hopf-Lax-Lower kernel:

$$
V_{g}(t, x)=\inf \{g(y)+c(t, y, x) ; y \in M\}
$$

- General Dual Hopf-Lax formula-Upper kernel:

$$
V_{g}(t, x)=\sup \left\{b(t, v, x)-g^{*}(v) ; v \in M^{*}\right\}
$$

provided the Lagrangian L is jointly convex and the initial function g is convex.

and

$$
V_{g}(t, x)=\inf \left\{g(y)+t L_{0}\left(\frac{1}{t}|x-y|\right) ; y \in M\right\}=\left(g^{*}+t H_{0}\right)^{*}
$$

Hopf-Lax and Dual Hopf-Lax formula

Both costs can be seen as "Kernels" that can be used to generate general solutions for (HJ).

- General Hopf-Lax-Lower kernel:

$$
V_{g}(t, x)=\inf \{g(y)+c(t, y, x) ; y \in M\}
$$

- General Dual Hopf-Lax formula-Upper kernel:

$$
V_{g}(t, x)=\sup \left\{b(t, v, x)-g^{*}(v) ; v \in M^{*}\right\}
$$

provided the Lagrangian L is jointly convex and the initial function g is convex.

- Classical Hopf-Lax and Dual Hopf-Lax formulae If $L(x, v)=L_{0}(v)$ and L_{0} convex, then

$$
c_{t}(y, x)=t L_{0}\left(\frac{1}{t}|x-y|\right) \quad \text { and } \quad b_{t}(v, x)=\langle v, x\rangle-t H_{0}(v)
$$

and

$$
V_{g}(t, x)=\inf \left\{g(y)+t L_{0}\left(\frac{1}{t}|x-y|\right) ; y \in M\right\}=\left(g^{*}+t H_{0}\right)^{*}
$$

When defined, the upper kernel is much better than the lower kernel.

Another example

If $L(x, v)=L_{0}(v-A x)$, where L_{0} is convex, Isc and A a matrix, then

$$
b(t, v, x)=\left\langle e^{-t A} x, v\right\rangle-\psi(t, v),
$$

where $\Psi(t, v)=\int_{0}^{t} H_{0}\left(e^{-s A^{*}} v\right) d s$. While

$$
c(t, y, x)=\psi^{*}\left(t, e^{-t A} y-x\right) .
$$

The value function is then, using the fundamental kernel

$$
V_{g}(t, x)=\inf _{y}\left\{g(y)+\psi^{*}\left(t, e^{-t A} y-x\right)\right\} .
$$

While by using the dualizing kernel

$$
V_{g}(t, x)=\left(g^{*}+\Psi(t, \cdot)^{*}\left(e^{-t A} x\right) .\right.
$$

A dual cost function

- Introduce another cost functional

$$
\tilde{c}_{T}(u, v):=\inf \left\{\int_{0}^{T} \tilde{L}(t, \gamma(t), \dot{\gamma}(t)) d t ; \gamma \in C^{1}([0, T), M) ; \gamma(0)=u, \gamma(T)=v\right\}
$$

The new Lagrangian \tilde{L} is defined on $M \times M^{*}$ by
$\tilde{L}(t, x, p):=L^{*}(t, p, x)=\sup \left\{\langle p, y\rangle+\langle x, q\rangle-L(t, y, q) ;(y, q) \in M \times M^{*}\right\}$.
The corresponding Hamiltonian is $H_{\tilde{L}}$ is then given by

$$
H_{\tilde{L}}(x, y)=-H(y, x)
$$

- Recall Bolza's duality: $(\mathcal{P})=-(\tilde{\mathcal{P}})$, where
$(\mathcal{P}) \quad \inf \left\{\int_{0}^{T} L(\gamma(s), \dot{\gamma}(s)) d s+\ell(\gamma(0), \gamma(T))\right.$ over all $\left.\gamma \in C^{1}([0, T), M)\right\}$
and its dual
$(\tilde{\mathcal{P}}) \quad \inf \left\{\int_{0}^{T} \tilde{L}(\gamma(s), \dot{\gamma}(s)) d s+\ell^{*}(\gamma(0),-\gamma(T))\right.$ over all $\left.\gamma \in C^{1}([0, T), M).\right\}$
This has several consequences

Ballistic cost satisfies two H-J equations

- One consequence is that the Legendre transform of the value functional $x \rightarrow V_{g}(t, x):=\inf \{g(y)+c(t, y, x) ; y \in M\}$ is another value functional

$$
\tilde{v}_{g^{*}}(t, w)=\inf \left\{g^{*}(v)+\tilde{c}(t, v, w) ; v \in M^{*}\right\},
$$

which yields that
$b(t, v, x)=\inf \{\langle v, y\rangle+c(t, y, x) ; y \in M\}=\sup \left\{\langle w, x\rangle-\tilde{c}(t, v, w) ; w \in M^{*}\right\}$.

- So, $x \rightarrow b(v, x)$ was a "solution" of the HJ equation

$$
\begin{aligned}
\partial_{t} b+H\left(t, x, \nabla_{x} b\right) & =0 \text { on }[0, T] \times M, \\
b_{0}(x) & =\langle v, x\rangle .
\end{aligned}
$$

- Now $v \rightarrow b(v, x)$ is also a solution for another H-J equation:

$$
\begin{aligned}
\partial_{t} b-H\left(t, \nabla_{v} b, v\right) & =0 \text { on }[0, T] \times M, \\
b_{T}(v) & =\langle v, x\rangle .
\end{aligned}
$$

The Ballistic Optimal Transport Problem

The associated transport problems will be

$$
\begin{aligned}
& \bar{B}_{T}\left(\mu_{0}, \nu_{T}\right):=\sup \left\{\int_{M^{*} \times M} b_{T}(v, x) d \pi ; \pi \in \mathcal{K}\left(\mu_{0}, \nu_{T}\right)\right\}, \\
& \underline{B}_{T}\left(\mu_{0}, \nu_{T}\right):=\inf \left\{\int_{M^{*} \times M} b_{T}(v, x) d \pi ; \pi \in \mathcal{K}\left(\mu_{0}, \nu_{T}\right)\right\},
\end{aligned}
$$

where μ_{0} (resp., ν_{T}) is a probability measure on \boldsymbol{M}^{*} (resp., \boldsymbol{M}), and $\mathcal{K}\left(\mu_{0}, \nu_{T}\right)$ is the set of probability measures π on $M^{*} \times M$ whose marginal on M^{*} (resp. on M) is μ_{0} (resp., ν_{T}) (the transport plans).
considered by Brenier, that is

This is the dynamic version of the Wasserstein distance.

The Ballistic Optimal Transport Problem

The associated transport problems will be

$$
\begin{aligned}
& \bar{B}_{T}\left(\mu_{0}, \nu_{T}\right):=\sup \left\{\int_{M^{*} \times M} b_{T}(v, x) d \pi ; \pi \in \mathcal{K}\left(\mu_{0}, \nu_{T}\right)\right\}, \\
& \underline{B}_{T}\left(\mu_{0}, \nu_{T}\right):=\inf \left\{\int_{M^{*} \times M} b_{T}(v, x) d \pi ; \pi \in \mathcal{K}\left(\mu_{0}, \nu_{T}\right)\right\},
\end{aligned}
$$

where μ_{0} (resp., ν_{T}) is a probability measure on \boldsymbol{M}^{*} (resp., \boldsymbol{M}), and $\mathcal{K}\left(\mu_{0}, \nu_{T}\right)$ is the set of probability measures π on $M^{*} \times M$ whose marginal on M^{*} (resp. on M) is μ_{0} (resp., ν_{T}) (the transport plans).
Note that when $T=0$, we have $b_{0}(x, v)=\langle v, x\rangle$, which is exactly the case considered by Brenier, that is

$$
\begin{aligned}
& \bar{W}\left(\mu_{0}, \nu_{0}\right):=\sup \left\{\int_{M^{*} \times M}\langle v, x\rangle d \pi ; \pi \in \mathcal{K}\left(\mu_{0}, \nu_{0}\right)\right\}, \\
& \underline{W}\left(\mu_{0}, \nu_{0}\right):=\inf \left\{\int_{M^{*} \times M}\langle v, x\rangle d \pi ; \pi \in \mathcal{K}\left(\mu_{0}, \nu_{0}\right)\right\},
\end{aligned}
$$

This is the dynamic version of the Wasserstein distance.

One of the Kantorovich Potentials is nice

By standard Kantorovich duality,

$$
\begin{aligned}
\underline{B}_{T}\left(\mu_{0}, \nu_{0}\right): & \left.=\inf \left\{\int_{M^{*} \times M} b(v, x)\right) d \pi ; \pi \in \mathcal{K}\left(\mu_{0}, \nu_{T}\right)\right\} \\
& =\sup \left\{\int_{M} \phi_{1}(x) d \nu_{T}(x)-\int_{M^{*}} \phi_{0}(v) d \mu_{0}(v) ; \phi_{1}, \phi_{0} \in \mathcal{K}(b)\right\},
\end{aligned}
$$

where $\mathcal{K}(b)$ is the set of functions $\phi_{1} \in L^{1}\left(M, \nu_{T}\right), \phi_{0} \in L^{1}\left(M^{*}, \mu_{0}\right)$ such that

$$
\phi_{1}(x)-\phi_{0}(v) \leq b(v, x) \quad \text { for all }(v, x) \in M^{*} \times M .
$$

Kantorovich functions in $\mathcal{K}(c)$ can be assumed to satisfy

$$
\phi_{1}(x)=\inf _{v \in M^{*}} b(v, x)+\phi_{0}(v) \quad \text { and } \quad \phi_{0}(v)=\sup _{x \in M} \phi_{1}(x)-b(v, x)
$$

Say that ϕ_{0} (resp., ϕ_{1}) is an initial (resp., final) Kantorovich potential.

Main advantages of the ballistic cost

- $b_{T}(v, x)$ is concave in v and convex in x. It is also Lipschitz continuous.
- In the case of $\underline{B}_{T}\left(\mu_{0}, \nu_{T}\right)$, the initial Kantorovich potential ϕ_{0} is convex, though nothing can be said about ϕ_{1}.
- For $\bar{B}_{T}\left(\mu_{0}, \nu_{T}\right)$, the final potential is convex and nothing can be said about ϕ_{1}.
- Even though $c(y, x)$ is jointly convex, nothing can be said about the Kantorovich potentials of

$$
C_{T}\left(\mu_{0}, \mu_{T}\right):=\inf \left\{\int_{M \times M} c_{T}(y, x) d \pi ; \pi \in \mathcal{K}\left(\mu_{0}, \mu_{T}\right)\right\}
$$

including the case where $L(x, v)=|v|^{p}(p \geq 1)$, that is when $c_{1}(y, x)=|x-y|^{p}$.
Gangbo-McCann worked with c-convexity in order to deal with the regularity of Kantorovich potentials.

Minimizing Map for Ballistic Cost

Theorem (A): Under suitable assumptions on the Lagrangian L. Let μ_{0}, ν_{T} be probabilities on M^{*}, M such that μ_{0} is absolutely continuous with respect to Lebesgue measure. Then,

1. The following duality holds:

$$
\begin{array}{r}
\underline{B}_{T}\left(\mu_{0}, \nu_{T}\right)=\sup \left\{\int_{M} \phi_{T}(x) d \nu_{T}(x)+\int_{M} \tilde{\phi}_{0}(v) d \mu_{0}(v) ;\right. \\
\left.\phi_{0} \text { concave \& } \phi_{t} \text { solution of }(\mathrm{HJ})\right\} .
\end{array}
$$

$$
\left\{\begin{aligned}
\partial_{t} \phi+H\left(t, x, \nabla_{x} \phi\right) & =0 \text { on }[0, T] \times M, \\
\phi(0, x) & =\phi_{0}(x),
\end{aligned}\right.
$$

2. There exists a concave function $\phi_{0}: M \rightarrow \mathbf{R}$ and a bounded locally Lipschitz vector field $X(x, t): M \times] 0, T[\longrightarrow M)$ such that, if
$\left.\phi_{s}^{t},(s, t) \in\right] 0, T T^{2}$ is the flow of X from time s to time t, then $\underline{B}_{T}\left(\mu_{0}, \nu_{T}\right)=\int_{M^{*}} b_{T}\left(v, \phi_{0}^{T} \circ \nabla \tilde{\phi}_{0}(v) d \mu_{0}(v)\right.$.

Minimizing Map for Ballistic Cost

Theorem (A): Under suitable assumptions on the Lagrangian L. Let μ_{0}, ν_{T} be probabilities on M^{*}, M such that μ_{0} is absolutely continuous with respect to Lebesgue measure. Then,

1. The following duality holds:

$$
\begin{aligned}
& \underline{B}_{T}\left(\mu_{0}, \nu_{T}\right)=\sup \left\{\int_{M} \phi_{T}(x) d \nu_{T}(x)+\int_{M} \tilde{\phi}_{0}(v) d \mu_{0}(v) ;\right. \\
& \phi_{0}\text { concave \& } \left.\phi_{t} \text { solution of }(H J)\right\} . \\
&\left\{\begin{array}{cl}
\partial_{t} \phi+H\left(t, x, \nabla_{x} \phi\right) & =0 \text { on }[0, T] \times M, \\
\phi(0, x) & =\phi_{0}(x),
\end{array}\right.
\end{aligned}
$$

2. There exists a concave function $\phi_{0}: M \rightarrow \mathbf{R}$ and a bounded locally Lipschitz vector field $X(x, t): M \times] 0, T[\longrightarrow M)$ such that, if $\left.\Phi_{s}^{t},(s, t) \in\right] 0, T\left[^{2}\right.$ is the flow of X from time s to time t, then

$$
\underline{B}_{T}\left(\mu_{0}, \nu_{T}\right)=\int_{M^{*}} b_{T}\left(v, \Phi_{0}^{T} \circ \nabla \tilde{\phi}_{0}(v) d \mu_{0}(v) .\right.
$$

Maximizing Map for Ballistic Cost

Theorem (B): Under suitable assumptions on the Lagrangian L. Let μ_{0}, ν_{T} be probabilities on M^{*}, M such that ν_{T} is absolutely continuous with respect to Lebesgue measure. Then,

1. The following duality holds:

$$
\left.\begin{array}{l}
\bar{B}_{T}\left(\mu_{0}, \nu_{T}\right)=\inf \left\{\int_{M} \psi_{T}^{*}(x) d \nu_{T}(x)+\int_{M} \psi_{0}(v) d \mu_{0}(v)\right. \\
\psi_{T}
\end{array}\right)
$$

2. There exists a convex function $\psi: M \rightarrow \mathbf{R}$ and a bounded locally Lipschitz vector field $Y(x, t): M \times] 0, T[\longrightarrow M)$ such that, if
$\left.\psi_{s}^{t},(s, t) \in\right] 0, T\left[^{2}\right.$ is the flow of Y from time s to time t, then $\bar{B}_{T}\left(\mu_{0}, \nu_{T}\right)=\int_{M^{*}} b_{T}\left(v, \nabla \psi^{*} \circ \psi_{0}^{T}(v)\right) d \mu_{0}(v)$.

Maximizing Map for Ballistic Cost

Theorem (B): Under suitable assumptions on the Lagrangian L. Let μ_{0}, ν_{T} be probabilities on M^{*}, M such that ν_{T} is absolutely continuous with respect to Lebesgue measure. Then,

1. The following duality holds:

$$
\left.\begin{array}{c}
\bar{B}_{T}\left(\mu_{0}, \nu_{T}\right)=\inf \left\{\int_{M} \psi_{T}^{*}(x) d \nu_{T}(x)+\int_{M} \psi_{0}(v) d \mu_{0}(v) ;\right. \\
\psi_{T}
\end{array}\right)=\begin{array}{cl}
& \text { onvex \& } \left.\psi_{t} \text { solution of (dual-HJ) }\right\} . \\
\left\{\begin{array}{cl}
\partial_{t} \psi-H\left(\nabla_{v} \psi, v\right) & =0 \text { on }[0, T] \times M, \\
\psi(T, v) & =\psi_{T}(v),
\end{array}\right.
\end{array}
$$

2. There exists a convex function $\psi: M \rightarrow \mathbf{R}$ and a bounded locally Lipschitz vector field $Y(x, t): M \times] 0, T[\longrightarrow M)$ such that, if $\left.\psi_{s}^{t},(s, t) \in\right] 0, T\left[^{2}\right.$ is the flow of Y from time s to time t, then

$$
\bar{B}_{T}\left(\mu_{0}, \nu_{T}\right)=\int_{M^{*}} b_{T}\left(v, \nabla \psi^{*} \circ \Psi_{0}^{T}(v)\right) d \mu_{0}(v) .
$$

Our assumptions on the Lagrangian

- (A1) $L: M \times M^{*} \rightarrow \mathbf{R}$ is convex, proper and lower semi-continuous.
- (A2) The set $F(x):=\{v ; L(x, v)<\infty\}$ is non-empty for all $x \in M$, and for some $\rho>0$, we have for all $x \in M$,

$$
\operatorname{dist}(0, F(x)) \leq \rho(1+|x|)
$$

- (A3) For all $(x, v) \in M \times M^{*}$, we have

$$
L(x, v) \geq \theta(\max \{0,|v|-\alpha|x|\})-\beta|x|
$$

where α, β are constants, and θ is coercive, non-decreasing on $[0, \infty)$.

Equivalently, for the corresponding Hamiltonian H,

- (A1) $H(x, y)$ is finite and concave in x convex in y.
- (A2) $H(x, y) \leq \phi(y)+(\alpha|y|+\beta)|x|$, where α, β constants and ϕ convex.
- (A3) $H(x, y) \geq \psi(y)-(\gamma|x|+\delta)|y|$, where γ, δ constants and ψ concave.

Hopf-Lax Formula for the minimal cost

Theorem (B): Assume $M=\mathbf{R}^{d}$ and that L satisfies hypothesis (A1), (A2) and (A3), and let μ_{0} (resp. ν_{T}) be a probability measure on \boldsymbol{M}^{*} (resp., M). If μ_{0} is absolutely continuous with respect to Lebesgue measure, then

1. The following Hopf-Lax formula holds:

$$
\underline{B}_{T}\left(\mu_{0}, \nu_{T}\right)=\inf \left\{\underline{W}\left(\mu_{0}, \nu\right)+C_{T}\left(\nu, \nu_{T}\right) ; \nu \in \mathcal{P}(M)\right\} .
$$

2. The infimum is attained at some probability measure ν_{0} on M.
3. The initial Kantorovich potential for $C_{T}\left(\nu_{0}, \nu_{T}\right)$ is concave.

- Worth noting: If $L(x, v)=\frac{1}{2}|v|^{2}$ (i.e., $c(y, x)=\frac{1}{2}|x-y|^{2}$), the initial Kantorovich potential for $C_{T}\left(\nu_{0}, \nu_{T}\right)$ is then of the form

$$
\phi_{0}(y)=g(y)-\frac{1}{2}|y|^{2} \quad \text { where } g \text { is a convex function. }
$$

But ϕ_{0} can still be concave if $0 \leq D^{2} g \leq I$, which is what occurs above in (3).

A consequence of Hopf-Lax formula

By the Hopf-Lax inequality, there is ν_{0} on M such that

$$
\underline{B}_{T}\left(\mu_{0}, \nu_{T}\right)=C_{T}\left(\nu_{0}, \nu_{T}\right)+\underline{W}\left(\mu_{0}, \nu_{0}\right)
$$

Let g be the concave function on M^{*} such that $(\nabla g)_{\#} \mu_{0}=\nu_{0}$ and

$$
\underline{W}\left(\mu_{0}, \nu_{0}\right)=\int_{M}\langle\nabla g(v), v\rangle d \mu_{0}(v)
$$

Let Φ_{0}^{T} be the flow such that

$$
C_{T}\left(\nu_{0}, \nu_{T}\right)=\int_{M} C_{T}\left(y, \Phi_{0}^{T} y\right) d \nu_{0}(y)
$$

Since

$$
\begin{aligned}
& b_{T}(v, x) \leq c_{T}(\nabla g(v), x)+\langle\nabla g(v), v\rangle \text { for all } v \in M^{*} \\
& \underline{B}_{T}\left(\mu_{0}, \nu_{T}\right) \leq \int_{M} b_{T}\left(v, \Phi_{0}^{T} \circ \nabla g(v)\right) d \mu_{0}(v) \\
& \leq \int_{M^{*} \times M}\left\{c_{T}\left(\nabla g(v), \Phi_{0}^{T} \circ \nabla g(v)\right)+\langle\nabla g(v), v\rangle\right\} d \mu_{0}(v) \\
&=\int_{M} c_{T}\left(y, \Phi_{0}^{T} y\right) d \nu_{0}(y)+\int_{M}\langle\nabla g(v), v\rangle d \mu_{0}(v) \\
&=C_{T}\left(\nu_{0}, \nu_{T}\right)+\underline{W}\left(\mu_{0}, \nu\right)=\underline{B}_{T}\left(\mu_{0}, \nu_{T}\right)
\end{aligned}
$$

Reverse Hopf-Lax Formula

However this formula doesn't lift:

$$
c(t, y, x)=\sup \left\{b(t, v, x)-\langle v, y\rangle ; v \in M^{*}\right\}
$$

Theorem (D): Assume ν_{0} and ν_{T} are probability measures on M such that ν_{0} is absolutely continuous with respect to Lebesgue measure. Then, TFAE:

1. The initial Kantorovich potential of $C_{T}\left(\nu_{0}, \nu_{T}\right)$ is concave.
2. The following holds:

$$
C_{T}\left(\nu_{0}, \nu_{T}\right)=\sup \left\{\underline{B}_{T}\left(\mu, \nu_{T}\right)-\underline{W}\left(\nu_{0}, \mu\right) ; \mu \in \mathcal{P}\left(M^{*}\right)\right\} .
$$

and the sup is attained at some probability measure μ_{0} on M^{*}.
Corollary: Consider the cost $c(y, x)=c(x-y)$, where c is a convex function on M and let ν_{0}, ν_{1} be probability measures on M such that the initial Kantorovich potential associated to $C_{T}\left(\nu_{0}, \nu_{T}\right)$ is concave. Then, there exist concave functions $\phi_{0}: M \rightarrow \mathbf{R}$ and $\phi_{1}: M^{*} \rightarrow \mathbf{R}$ such that

$$
C_{1}\left(\nu_{0}, \nu_{1}\right)-K=\int_{M} c\left(\nabla \phi_{1} \circ \nabla \phi_{0}(y)-y\right) d \nu_{0}(y)=\int_{M}\left\langle\nabla \tilde{\phi}_{1}(y)-\nabla \phi_{0}(y), y\right\rangle d \nu_{0}(y)
$$

where $K=K(c)$ is a constant and $\tilde{\phi}$ is the concave Legendre transform of ϕ.

Brenier-Benamou Type formula

Theorem (E): For fixed probability measures μ_{0} on M^{*} and ν_{T} on M,

- As a function of the end measure:
$\underline{B}_{T}\left(\mu_{0}, \nu_{T}\right)=\inf \left\{\underline{W}\left(\mu_{0}, \rho_{0}\right)+\int_{0}^{T} \int_{M} L\left(x, w_{t}(x)\right) d \varrho_{t}(x) d t ;(\varrho, w) \in P\left(0, T ; \nu_{T}\right)\right\}$
where $P\left(0, T ; \nu_{T}\right)$ is the set of pairs (ϱ, w) such that $t \rightarrow \varrho_{t} \in \mathcal{P}(M)$, $t \rightarrow w_{t} \in \mathbf{R}^{n}$ are paths of Borel vector fields such that

$$
\left\{\begin{array}{cl}
\partial_{t} \varrho+\nabla \cdot(\varrho w) & =0 \quad \text { in } \mathcal{D}^{\prime}((0, T) \times M) \\
\varrho_{T} & =\nu_{T} .
\end{array}\right.
$$

- As a function of the initial measure:

$$
\bar{B}_{T}\left(\mu_{0}, \nu_{T}\right)=\sup \left\{\bar{W}\left(\nu_{T}, \rho_{T}\right)-\int_{0}^{T} \int_{M} \tilde{L}\left(x, w_{t}(x)\right) d \varrho_{t}(x) d t ;(\varrho, w) \in P\left(0, T ; \mu_{0}\right)\right.
$$

where $P\left(0, T ; \mu_{0}\right)$ is the set of pairs (ϱ, w) such that

$$
\left\{\begin{array}{cll}
\partial_{t} \varrho+\nabla \cdot(\varrho w) & = & 0 \quad \text { in } \mathcal{D}^{\prime}((0, T) \times M) \\
\varrho_{0} & =\mu_{0} .
\end{array}\right.
$$

Lifting a value function to a value function on Wasserstein space

Started with $\phi_{0}(y)=\langle v, y\rangle$ and defined $b_{v}(t, x)$ as a Value functional

$$
\begin{aligned}
b_{v}(t, x) & =\inf \left\{\phi_{0}(\gamma(0))+\int_{0}^{t} L(s, \gamma(s), \dot{\gamma}(s)) d s ; \gamma \in C^{1}([0, T), M) ; \gamma(t)=x\right\} \\
& =\inf \left\{\phi_{0}(y)+c_{t}(y, x) ; y \in M\right\} \quad \text { (Hopf - Lax formula) } .
\end{aligned}
$$

It satisfies the Hamilton-Jacobi equation on M.

$$
\partial_{t} b+H\left(t, x, \nabla_{x} b\right)=0 \quad \text { on }[0, T] \times M,
$$

We then lifted b_{v} to Wasserstein space by defining $B_{\mu_{0}}(t, \nu)=\underline{B}_{t}\left(\mu_{0}, \nu\right)$.

$$
\begin{aligned}
B_{\mu_{0}}(t, \nu) & =\inf \left\{\underline{W}\left(\mu_{0}, \tilde{\nu}\right)+C_{t}(\tilde{\nu}, \nu) ; \nu \in \mathcal{P}(M)\right\}(\text { Hopf }- \text { Lax formula }) \\
& =\inf \left\{\mathcal{U}_{\mu_{0}}\left(\varrho_{0}\right)+\int_{0}^{t} \mathcal{L}(\varrho, w) d t ;(\varrho, w) \in P(0, t ; \nu)\right\}(\text { Value functional })
\end{aligned}
$$

1. Do they satisfy a Hamilton-Jacobi equation on Wasserstein space?
2. Do they provide solutions to mean field games?

Under technical conditions

(Ambrosio-Feng) (at least in a particular case): Value functionals on Wasserstein space yield a unique metric viscosity solution for

$$
\left\{\begin{array}{l}
\partial_{t} B+\mathcal{H}\left(t, \nu, \nabla_{\nu} B(t, \mu)\right)=0 \\
B(0, \nu)=\underline{W}\left(\mu_{0}, \nu\right)
\end{array}\right.
$$

Here the Hamiltonian on Wasserstein space is defined as

$$
\mathcal{H}(\nu, \zeta)=\sup \left\{\int\langle\zeta, \xi\rangle d \nu-\mathcal{L}(\nu, \xi) ; \xi \in T_{\nu}^{*}(\mathcal{P}(M))\right\}
$$

(Gangbo-Swiech) Value functions on Wasserstein space with suitable initial data yield solutions to the so-called Master equation for mean field games without diffusion and without potential term.
Theorem (Gangbo-Swiech) Assume $\mathcal{U}_{0}: \mathcal{P}(M) \rightarrow \mathbb{R}, U_{0}: M \times \mathcal{P}(M) \rightarrow \mathbb{R}$ are such that $\nabla_{q} U_{0}(q, \mu) \equiv \nabla_{\mu} \mathcal{U}_{0}(\mu)(q) \quad \forall q \in M \mu \in \mathcal{P}(M)$, and consider the value functional,

$$
\mathcal{U}(t, \nu)=\inf _{(\varrho, w) \in P(0, t ; \nu)} \int_{0}^{t} \mathcal{L}(\varrho, w) d t+\mathcal{U}_{0}\left(\varrho_{0}\right)
$$

Then, there exists $U:[0, T] \times M \times \mathcal{P}(M) \rightarrow \mathbb{R}$ such that

$$
\nabla_{q} U_{t}(q, \mu) \equiv \nabla_{\mu} \mathcal{U}_{t}(\mu)(q) \quad \forall q \in M \mu \in \mathcal{P}(M)
$$

and U satisfies the Master equation (but without diffusion)

Mean Field Equation

This yields the existence for any probabilities μ_{0}, ν_{T}, a function $\beta:[0, T] \times M \times \mathcal{P}(M) \rightarrow \mathbb{R}$ such that

$$
\nabla_{x} \beta(t, x, \mu) \equiv \nabla_{\mu} B_{\mu_{0}}(t, \mu)(x) \quad \forall x \in M \mu \in \mathcal{P}(M) .
$$

There exists $\rho \in A C^{2}((0, T) \times \mathcal{P}(M))$ such that

$$
\left\{\begin{array}{l}
\partial_{t} \beta+\int\left\langle\nabla_{\mu} \beta(t, x, \mu) \cdot \nabla H\left(x, \nabla_{x} \beta\right)\right\rangle d \mu+H\left(x, \nabla_{x} \beta(t, x, \mu)\right)=0, \\
\partial_{t} \rho+\nabla\left(\rho \nabla H\left(x, \nabla_{x} \beta\right)\right)=0, \\
\beta(0, \cdot, \cdot)=\beta_{0}, \quad \rho(T, \cdot)=\nu_{T},
\end{array}\right.
$$

where $\beta_{0}(x, \rho)=\phi_{\rho}(x)$, where ϕ_{ρ} is the convex function such that $\nabla \phi_{\rho}$ pushes μ_{0} into ρ.
What about solutions to mean field games that include diffusions?

Stochastically dynamic mass transport

$$
\underline{B}_{T}^{s}\left(\mu_{0}, \nu_{T}\right):=\inf _{V \sim \mu_{0}} \inf _{X \in \mathcal{A}, X_{T} \sim \nu_{T}} \mathbf{E}_{P}\left\{\left\langle V, X_{0}\right\rangle+\int_{0}^{T} L(t, X(t), \beta(t, X)) d t\right\},
$$

where \mathcal{A} is the class of all \mathbf{R}^{d}-valued continuous semimartingales $\left(X_{t}\right)_{0 \leq t \leq T}$ on a complete filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right), P\right)$ such that there exists a Borel measurable $\beta_{X}:[0, T] \times C([0, T]) \rightarrow \mathbf{R}^{d}$ satisfying

1. $w \rightarrow \beta_{X}(t, w)$ is $\mathcal{B}(C([0, t]))_{+}-$measurable for all t , where $\mathcal{B}(C([0, t])$ denotes the Borel σ-field on $C([0, t])$.
2. $X(t)=X(0)+\int_{0}^{t} \beta_{X}(s, X) d s+W_{X}(t)$, where $W_{X}(t)$ is a $\sigma[X(s) ; 0 \leq s \leq t]$-Brownian motion.
The fixed end measures cost has been studied by Mikami, Thieulin, Leonard.

$$
C_{T}^{s}\left(\nu_{0}, \nu_{T}\right):=\inf \mathbf{E}_{P}\left\{\int_{0}^{T} L(t, X(t), \beta(t, X)) d t ; X \in \mathcal{A}, X(0) \sim \nu_{0}, X(T) \sim \nu_{T}\right\},
$$

Theorem (F): Under suitable conditions on L

1. Duality:

$$
\begin{aligned}
& \underline{B}_{T}^{s}\left(\mu_{0}, \nu_{T}\right)=\sup \left\{\int_{M} \phi_{T}(x) d \nu_{T}(x)+\int_{M} \tilde{\phi}_{0}(v) d \mu_{0}(v) ;\right. \\
& \left.\phi_{0} \text { concave \& } \phi_{t} \text { solution of (HJB) }\right\} . \\
& \left\{\begin{aligned}
\partial_{t} \phi+\frac{1}{2} \Delta \phi+H\left(t, x, \nabla_{x} \phi\right) & =0 \text { on }[0, T] \times M, \\
\phi(0, x) & =\phi_{0}(x),
\end{aligned}\right.
\end{aligned}
$$

2. For any probability measure ν on M, we have

$$
\underline{B}_{T}^{s}\left(\mu_{0}, \nu\right)=\inf \left\{\underline{W}\left(\mu_{0}, \rho_{0}\right)+\int_{0}^{T} \int_{M} L\left(t, x, b_{t}(x)\right) d \varrho_{t}(x) d t ;(\varrho, b) \in P(0, T ; \nu)\right\}
$$

where $P\left(0, T ; \nu_{T}\right)$ is the set of pairs (ϱ, b) such that $t \rightarrow \varrho_{t} \in \mathcal{P}(M)$, $t \rightarrow b_{t} \in \mathbf{R}^{n}$ are paths of Borel vector fields such that

$$
\left\{\begin{array}{cl}
\partial_{t} \varrho-\frac{1}{2} \Delta \rho+\nabla \cdot(\varrho b) & =0 \quad \text { in } \mathcal{D}^{\prime}((0, T) \times M) \\
\varrho_{T} & =\nu
\end{array}\right.
$$

Diffusive Mean Field Games

There exists $\beta:[0, T] \times M \times \mathcal{P}(M) \rightarrow \mathbb{R}$ and $\rho \in A C^{2}((0, T) \times \mathcal{P}(M))$ such that

$$
\left\{\begin{array}{l}
\partial_{t} \beta-\frac{1}{2} \Delta \beta+\int\left\langle\nabla_{\mu} \beta(t, x, \mu) \cdot \nabla H\left(x, \nabla_{x} \beta\right)\right\rangle d \mu+H\left(t, x, \nabla_{x} \beta(t, x, \mu)\right)=0 \\
\partial_{t} \rho-\frac{1}{2} \Delta \rho+\nabla\left(\rho \nabla H\left(t, x, \nabla_{x} \beta\right)\right)=0 \\
\beta(0, \cdot, \cdot)=\beta_{0}, \quad \rho(T, \cdot)=\nu_{T}
\end{array}\right.
$$

where $\beta_{0}(x, \rho)=\phi_{\rho}(x)$, where ϕ_{ρ} is the convex function such that $\nabla \phi_{\rho}$ pushes μ_{0} into ρ.

Many Happy Returns Yann Brenier

