Dynamic and Stochastic Brenier Transport via Hopf-Lax formulae on Wasserstein Space

Nassif Ghoussoub, University of British Columbia

With many discussions with Yann Brenier and Wilfrid Gangbo

Brenierfest, IHP, January 9-13, 2017

Optimal transport problem for *the "ballistic cost function"*, which is defined on phase space $M^* \times M$ by,

$$b_{\mathcal{T}}(\boldsymbol{v},\boldsymbol{x}) := \inf\{\langle \boldsymbol{v},\gamma(\boldsymbol{0})\rangle + \int_{\boldsymbol{0}}^{\mathcal{T}} L(t,\gamma(t),\dot{\gamma}(t)) dt; \gamma \in C^{1}([\boldsymbol{0},\mathcal{T}),\mathcal{M}); \gamma(\mathcal{T}) = \boldsymbol{x}\},$$

where $L : [0, T] \times M \times M^* \rightarrow \mathbf{R} \cup \{+\infty\}$ is a suitable Lagrangian.

- Why this as opposed to the "fixed-state space cost"?
- Existence of Optimal maps
- Duality and Hamilton-Jacobi equations
- Corresponding Benamou-Brenier type formulas
- Hopf-Lax Type formulae on Wasserstein space
- Hamilton-Jacobi equations on Wasserstein space
- Connection to mean field games
- Stochastic mass transport with ballistic cost.

4 周 2 4 3 2 4 3 2 5 1

Why the ballistic cost?

For a given function g, the value function

$$V_g(t,x) = \inf \Big\{ g(\gamma(0)) + \int_0^t L(s,\gamma(s),\dot{\gamma}(s)) \, ds; \gamma \in C^1([0,T),M); \gamma(t) = x \Big\},$$

$$V(0,x) = g(x),$$

is formally a solution of the Hamilton-Jacobi equation,

$$(HJ) \qquad \partial_t V + H(t, x, \nabla_x V) = 0 \quad \text{ on } [0, T] \times M,$$

where *H* is the associated Hamiltonian on $[0, T] \times T^*M$, i.e.,

$$H(t, y, x) = \sup_{v \in TM} \{ \langle v, x \rangle - L(t, y, v) \}.$$

Both the ballistic cost,

$$b_{\mathcal{T}}(\boldsymbol{v},\boldsymbol{x}) := \inf\{\langle \boldsymbol{v},\gamma(\boldsymbol{0})\rangle + \int_{\boldsymbol{0}}^{\mathcal{T}} L(t,\gamma(t),\dot{\gamma}(t)) \, dt; \gamma \in C^{1}([\boldsymbol{0},\mathcal{T}),\mathcal{M}); \gamma(\mathcal{T}) = \boldsymbol{x}\},$$

and the fixed-end cost

$$c_{\mathcal{T}}(y,x) := \inf\{\int_0^{\mathcal{T}} L(t,\gamma(t),\dot{\gamma}(t)) dt; \gamma \in C^1([0,T),M); \gamma(0) = x, \gamma(T) = y\}$$

are formally solutions to (HJ).

伺 ト イヨ ト イヨ ト

Hopf-Lax and Dual Hopf-Lax formula

Both costs can be seen as "Kernels" that can be used to generate general solutions for (HJ).

General Hopf-Lax–Lower kernel:

$$V_g(t,x) = \inf\{g(y) + c(t,y,x); y \in M\}$$

General Dual Hopf-Lax formula–Upper kernel:

$$V_g(t, x) = \sup\{b(t, v, x) - g^*(v); v \in M^*\}$$

provided the Lagrangian L is jointly convex and the initial function g is convex.

• Classical Hopf-Lax and Dual Hopf-Lax formulae If $L(x, v) = L_0(v)$ and L_0 convex, then

$$c_t(y,x) = tL_0(\frac{1}{t}|x-y|)$$
 and $b_t(v,x) = \langle v,x \rangle - tH_0(v).$

and

$$V_g(t,x) = \inf\{g(y) + tL_0(\frac{1}{t}|x-y|); y \in M\} = (g^* + tH_0)^*.$$

When defined, the upper kernel is much better than the lower kernel.

Nassif Ghoussoub, University of British Columbia

Dynamic and Stochastic Brenier Transport via Hopf-Lax formulae on Was

Hopf-Lax and Dual Hopf-Lax formula

Both costs can be seen as "Kernels" that can be used to generate general solutions for (HJ).

General Hopf-Lax–Lower kernel:

$$V_g(t,x) = \inf\{g(y) + c(t,y,x); y \in M\}$$

General Dual Hopf-Lax formula–Upper kernel:

$$V_g(t, x) = \sup\{b(t, v, x) - g^*(v); v \in M^*\}$$

provided the Lagrangian L is jointly convex and the initial function g is convex.

• Classical Hopf-Lax and Dual Hopf-Lax formulae If $L(x, v) = L_0(v)$ and L_0 convex, then

$$c_t(y,x) = tL_0(rac{1}{t}|x-y|)$$
 and $b_t(v,x) = \langle v,x \rangle - tH_0(v).$

and

$$V_g(t,x) = \inf\{g(y) + tL_0(\frac{1}{t}|x-y|); y \in M\} = (g^* + tH_0)^*.$$

When defined, the upper kernel is much better than the lower kernel.

If $L(x, v) = L_0(v - Ax)$, where L_0 is convex, lsc and A a matrix, then

$$b(t, \mathbf{v}, \mathbf{x}) = \langle e^{-tA}\mathbf{x}, \mathbf{v} \rangle - \psi(t, \mathbf{v}) \rangle$$

where $\Psi(t, v) = \int_0^t H_0(e^{-sA^*}v) ds$. While

$$c(t,y,x)=\Psi^*(t,e^{-tA}y-x).$$

The value function is then, using the fundamental kernel

$$V_g(t,x) = \inf_{y} \{g(y) + \Psi^*(t, e^{-tA}y - x)\}.$$

While by using the dualizing kernel

$$V_g(t,x) = (g^* + \Psi(t,\cdot)^*(e^{-tA}x)).$$

A dual cost function

Introduce another cost functional

$$\tilde{c}_{\mathcal{T}}(u,v) := \inf\{\int_0^T \tilde{L}(t,\gamma(t),\dot{\gamma}(t)) dt; \gamma \in C^1([0,T),M); \gamma(0) = u, \gamma(T) = v\},$$

The new Lagrangian \tilde{L} is defined on $M \times M^*$ by

 $\tilde{L}(t, x, p) := L^*(t, p, x) = \sup\{\langle p, y \rangle + \langle x, q \rangle - L(t, y, q); (y, q) \in M \times M^*\}.$

The corresponding Hamiltonian is $H_{\tilde{L}}$ is then given by

 $H_{\tilde{L}}(x,y)=-H(y,x).$

• Recall Bolza's duality: $(\mathcal{P}) = -(\tilde{\mathcal{P}})$, where

 $(\mathcal{P}) \qquad \inf\{\int_0^T L(\gamma(s), \dot{\gamma}(s)) \, ds + \ell(\gamma(0), \gamma(T)) \text{ over all } \gamma \in C^1([0, T), M)\}$ and its dual

 $(\tilde{\mathcal{P}}) \quad \inf\{\int_0^T \tilde{\mathcal{L}}(\gamma(s), \dot{\gamma}(s)) \, ds + \ell^*(\gamma(0), -\gamma(T)) \text{ over all } \gamma \in C^1([0, T), M).\}$

This has several consequences

One consequence is that the Legendre transform of the value functional x → V_g(t, x) := inf{g(y) + c(t, y, x); y ∈ M} is another value functional

$$ilde{V}_{g^*}(t,w) = \inf\{g^*(v) + ilde{c}(t,v,w); v \in M^*\},$$

which yields that

 $b(t, v, x) = \inf\{\langle v, y \rangle + c(t, y, x); y \in M\} = \sup\{\langle w, x \rangle - \tilde{c}(t, v, w); w \in M^*\}.$

So, $x \rightarrow b(v, x)$ was a "solution" of the HJ equation

$$\partial_t b + H(t, x, \nabla_x b) = 0 \text{ on } [0, T] \times M,$$

 $b_0(x) = \langle v, x \rangle.$

Now $v \rightarrow b(v, x)$ is also a solution for another H-J equation:

$$\partial_t b - H(t, \nabla_v b, v) = 0$$
 on $[0, T] \times M$,
 $b_T(v) = \langle v, x \rangle$.

同 ト イヨ ト イヨ ト ・ ヨ ・ の へ ()

The associated transport problems will be

$$\overline{B}_{\mathcal{T}}(\mu_0,
u_{\mathcal{T}}):= \sup\{\int_{M^* imes M} b_{\mathcal{T}}(oldsymbol{v},oldsymbol{x})\,d\pi;\ \pi\in\mathcal{K}(\mu_0,
u_{\mathcal{T}})\},$$

$$\underline{B}_{\mathcal{T}}(\mu_0,\nu_{\mathcal{T}}):=\inf\{\int_{M^*\times M}b_{\mathcal{T}}(v,x)\,d\pi;\,\pi\in\mathcal{K}(\mu_0,\nu_{\mathcal{T}})\},$$

where μ_0 (resp., ν_T) is a probability measure on M^* (resp., M), and $\mathcal{K}(\mu_0, \nu_T)$ is the set of probability measures π on $M^* \times M$ whose marginal on M^* (resp. on M) is μ_0 (resp., ν_T) (the transport plans).

Note that when T = 0, we have $b_0(x, v) = \langle v, x \rangle$, which is exactly the case considered by Brenier, that is

$$\overline{W}(\mu_0,\nu_0):=\sup\{\int_{M^*\times M} \langle v,x\rangle\,d\pi;\,\pi\in\mathcal{K}(\mu_0,\nu_0)\},$$

$$\underline{W}(\mu_0,\nu_0) := \inf\{\int_{M^* \times M} \langle v, x \rangle \ d\pi; \ \pi \in \mathcal{K}(\mu_0,\nu_0)\},\$$

This is the dynamic version of the Wasserstein distance.

・ 同 ト ・ ヨ ト ・ ヨ ト

The associated transport problems will be

$$\overline{B}_{\mathcal{T}}(\mu_0,\nu_{\mathcal{T}}) := \sup\{\int_{M^*\times M} b_{\mathcal{T}}(\boldsymbol{v},\boldsymbol{x}) \, d\pi; \ \pi \in \mathcal{K}(\mu_0,\nu_{\mathcal{T}})\},$$

$$\underline{B}_{\mathcal{T}}(\mu_0,\nu_{\mathcal{T}}) := \inf\{\int_{M^* \times M} b_{\mathcal{T}}(v,x) \, d\pi; \, \pi \in \mathcal{K}(\mu_0,\nu_{\mathcal{T}})\},$$

where μ_0 (resp., ν_T) is a probability measure on M^* (resp., M), and $\mathcal{K}(\mu_0, \nu_T)$ is the set of probability measures π on $M^* \times M$ whose marginal on M^* (resp. on M) is μ_0 (resp., ν_T) (the transport plans).

Note that when T = 0, we have $b_0(x, v) = \langle v, x \rangle$, which is exactly the case considered by Brenier, that is

$$\overline{W}(\mu_0,
u_0):= \sup\{\int_{M^* imes M} \langle m{v},m{x}
angle\, m{d}\pi;\,\pi\in\mathcal{K}(\mu_0,
u_0)\},$$

$$\underline{W}(\mu_0,\nu_0):=\inf\{\int_{M^*\times M} \langle \boldsymbol{v},\boldsymbol{x}\rangle\,\boldsymbol{d}\pi;\,\pi\in\mathcal{K}(\mu_0,\nu_0)\},$$

This is the dynamic version of the Wasserstein distance.

By standard Kantorovich duality,

$$\begin{split} \underline{B}_{T}(\mu_{0},\nu_{0}) : &= \inf \big\{ \int_{M^{*} \times M} b(v,x) \big) \, d\pi; \pi \in \mathcal{K}(\mu_{0},\nu_{T}) \big\} \\ &= \sup \big\{ \int_{M} \phi_{1}(x) \, d\nu_{T}(x) - \int_{M^{*}} \phi_{0}(v) \, d\mu_{0}(v); \, \phi_{1}, \phi_{0} \in \mathcal{K}(b) \big\}, \end{split}$$

where $\mathcal{K}(b)$ is the set of functions $\phi_1 \in L^1(M, \nu_T), \phi_0 \in L^1(M^*, \mu_0)$ such that

$$\phi_1(x) - \phi_0(v) \le b(v, x) \quad \text{for all } (v, x) \in M^* \times M.$$

Kantorovich functions in $\mathcal{K}(c)$ can be assumed to satisfy

$$\phi_1(x) = \inf_{v \in M^*} b(v, x) + \phi_0(v) \text{ and } \phi_0(v) = \sup_{x \in M} \phi_1(x) - b(v, x).$$

Say that ϕ_0 (resp., ϕ_1) is an initial (resp., final) Kantorovich potential.

伺 ト イ ヨ ト イ ヨ ト

- ▶ $b_T(v, x)$ is concave in v and convex in x. It is also Lipschitz continuous.
- ► In the case of $\underline{B}_{\mathcal{T}}(\mu_0, \nu_{\mathcal{T}})$, the initial Kantorovich potential ϕ_0 is convex, though nothing can be said about ϕ_1 .
- For $\overline{B}_{T}(\mu_{0}, \nu_{T})$, the final potential is convex and nothing can be said about ϕ_{1} .
- Even though c(y, x) is jointly convex, nothing can be said about the Kantorovich potentials of

$$\mathcal{C}_{\mathcal{T}}(\mu_0,\mu_{\mathcal{T}}):=\inf\{\int_{M imes M} \mathcal{C}_{\mathcal{T}}(y,x)\,\mathcal{d}\pi;\,\pi\in\mathcal{K}(\mu_0,\mu_{\mathcal{T}})\},$$

including the case where $L(x, v) = |v|^{p}$ ($p \ge 1$), that is when $c_{1}(y, x) = |x - y|^{p}$.

Gangbo-McCann worked with *c*-convexity in order to deal with the regularity of Kantorovich potentials.

◆ロ ▶ ◆掃 ▶ ◆ ヨ ▶ ◆ ヨ ◆ 今 ♀ や

Theorem (A): Under suitable assumptions on the Lagrangian *L*. Let μ_0 , ν_T be probabilities on M^* , *M* such that μ_0 is absolutely continuous with respect to Lebesgue measure. Then,

1. The following duality holds:

$$\underline{B}_{T}(\mu_{0},\nu_{T}) = \sup \left\{ \int_{M} \phi_{T}(x) \, d\nu_{T}(x) + \int_{M} \tilde{\phi}_{0}(v) \, d\mu_{0}(v); \phi_{0} \text{ concave } \& \phi_{t} \text{ solution of (HJ)} \right\}.$$

$$\begin{cases} \partial_t \phi + H(t, x, \nabla_x \phi) &= 0 \text{ on } [0, T] \times M, \\ \phi(0, x) &= \phi_0(x), \end{cases}$$

2. There exists a concave function $\phi_0 : M \to \mathbf{R}$ and a bounded locally Lipschitz vector field $X(x, t) : M \times]0, T[\longrightarrow M)$ such that, if $\Phi_s^t, (s, t) \in]0, T[^2$ is the flow of X from time s to time t, then

$$\underline{B}_{\mathcal{T}}(\mu_0,\nu_{\mathcal{T}}) = \int_{M^*} b_{\mathcal{T}}(v,\Phi_0^{\mathcal{T}} \circ \nabla \widetilde{\phi}_0(v) d\mu_0(v).$$

伺 ト イヨ ト イヨ ト

Theorem (A): Under suitable assumptions on the Lagrangian *L*. Let μ_0 , ν_T be probabilities on M^* , *M* such that μ_0 is absolutely continuous with respect to Lebesgue measure. Then,

1. The following duality holds:

$$\underline{B}_{T}(\mu_{0},\nu_{T}) = \sup \left\{ \int_{M} \phi_{T}(x) \, d\nu_{T}(x) + \int_{M} \tilde{\phi}_{0}(v) \, d\mu_{0}(v); \\ \phi_{0} \text{ concave } \& \phi_{t} \text{ solution of (HJ)} \right\}.$$

$$\begin{cases} \partial_t \phi + H(t, x, \nabla_x \phi) &= 0 \text{ on } [0, T] \times M, \\ \phi(0, x) &= \phi_0(x), \end{cases}$$

2. There exists a concave function $\phi_0 : M \to \mathbf{R}$ and a bounded locally Lipschitz vector field $X(x, t) : M \times]0, T[\longrightarrow M)$ such that, if $\Phi_s^t, (s, t) \in]0, T[^2$ is the flow of X from time s to time t, then

$$\underline{B}_{\mathcal{T}}(\mu_0,\nu_{\mathcal{T}}) = \int_{M^*} b_{\mathcal{T}}(\boldsymbol{v},\Phi_0^{\mathcal{T}} \circ \nabla \tilde{\phi}_0(\boldsymbol{v}) d\mu_0(\boldsymbol{v}).$$

伺 ト イ ヨ ト イ ヨ ト

Theorem (B): Under suitable assumptions on the Lagrangian *L*. Let μ_0 , ν_T be probabilities on M^* , *M* such that ν_T is absolutely continuous with respect to Lebesgue measure. Then,

1. The following duality holds:

$$\overline{B}_{T}(\mu_{0}, \nu_{T}) = \inf \left\{ \int_{M} \psi_{T}^{*}(x) \, d\nu_{T}(x) + \int_{M} \psi_{0}(v) \, d\mu_{0}(v); \\ \psi_{T} \text{ convex \& } \psi_{t} \text{ solution of (dual-HJ)} \right\}.$$

$$\begin{cases} \partial_t \psi - H(\nabla_v \psi, v) = 0 \text{ on } [0, T] \times M, \\ \psi(T, v) = \psi_T(v), \end{cases}$$

2. There exists a convex function $\psi : M \to \mathbf{R}$ and a bounded locally Lipschitz vector field $Y(x, t) : M \times]0, T[\longrightarrow M)$ such that, if $\Psi_s^t, (s, t) \in]0, T[^2$ is the flow of Y from time s to time t, then

$$\overline{B}_{\mathcal{T}}(\mu_0,
u_{\mathcal{T}}) = \int_{M^*} b_{\mathcal{T}}(v,
abla \psi^* \circ \Psi_0^{\mathcal{T}}(v)) d\mu_0(v).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (B): Under suitable assumptions on the Lagrangian *L*. Let μ_0 , ν_T be probabilities on M^* , *M* such that ν_T is absolutely continuous with respect to Lebesgue measure. Then,

1. The following duality holds:

$$\overline{B}_{T}(\mu_{0}, \nu_{T}) = \inf \left\{ \int_{M} \psi_{T}^{*}(x) \, d\nu_{T}(x) + \int_{M} \psi_{0}(v) \, d\mu_{0}(v); \\ \psi_{T} \text{ convex \& } \psi_{t} \text{ solution of (dual-HJ)} \right\}.$$

$$\begin{cases} \partial_t \psi - H(\nabla_v \psi, v) = 0 \text{ on } [0, T] \times M, \\ \psi(T, v) = \psi_T(v), \end{cases}$$

2. There exists a convex function $\psi : M \to \mathbf{R}$ and a bounded locally Lipschitz vector field $Y(x, t) : M \times]0, T[\longrightarrow M)$ such that, if $\Psi_{s}^{t}, (s, t) \in]0, T[^{2}$ is the flow of *Y* from time *s* to time *t*, then

$$\overline{B}_{T}(\mu_{0},
u_{T}) = \int_{M^{*}} b_{T}(\mathbf{v},
abla \psi^{*} \circ \Psi^{T}_{0}(\mathbf{v})) d\mu_{0}(\mathbf{v}).$$

周 ト イ ヨ ト イ ヨ ト

Our assumptions on the Lagrangian

- (A1) $L: M \times M^* \to \mathbf{R}$ is convex, proper and lower semi-continuous.
- ▶ (A2) The set $F(x) := \{v; L(x, v) < \infty\}$ is non-empty for all $x \in M$, and for some $\rho > 0$, we have for all $x \in M$,

```
dist(0, F(x)) \le \rho(1 + |x|).
```

• (A3) For all
$$(x, v) \in M \times M^*$$
, we have

$$L(x, v) \geq \theta(\max\{0, |v| - \alpha |x|\}) - \beta |x|,$$

where α, β are constants, and θ is coercive, non-decreasing on $[0, \infty)$.

Equivalently, for the corresponding Hamiltonian H,

- (A1) H(x, y) is finite and concave in x convex in y.
- (A2) $H(x, y) \le \phi(y) + (\alpha |y| + \beta)|x|$, where α, β constants and ϕ convex.
- (A3) $H(x, y) \ge \psi(y) (\gamma |x| + \delta)|y|$, where γ, δ constants and ψ concave.

Theorem (B): Assume $M = \mathbf{R}^d$ and that *L* satisfies hypothesis (A1), (A2) and (A3), and let μ_0 (resp. ν_T) be a probability measure on M^* (resp., *M*). If μ_0 is absolutely continuous with respect to Lebesgue measure, then

1. The following Hopf-Lax formula holds:

 $\underline{B}_{T}(\mu_{0},\nu_{T}) = \inf\{\underline{W}(\mu_{0},\nu) + C_{T}(\nu,\nu_{T}); \nu \in \mathcal{P}(M)\}.$

- 2. The infimum is attained at some probability measure ν_0 on *M*.
- 3. The initial Kantorovich potential for $C_T(\nu_0, \nu_T)$ is concave.

• Worth noting: If $L(x, v) = \frac{1}{2}|v|^2$ (i.e., $c(y, x) = \frac{1}{2}|x - y|^2$), the initial Kantorovich potential for $C_T(\nu_0, \nu_T)$ is then of the form

$$\phi_0(y) = g(y) - \frac{1}{2}|y|^2$$
 where g is a convex function.

But ϕ_0 can still be concave if $0 \le D^2 g \le I$, which is what occurs above in (3).

イロト イポト イラト イラト ニラー

A consequence of Hopf-Lax formula

By the Hopf-Lax inequality, there is ν_0 on M such that

 $\underline{B}_{\mathcal{T}}(\mu_0,\nu_{\mathcal{T}}) = C_{\mathcal{T}}(\nu_0,\nu_{\mathcal{T}}) + \underline{W}(\mu_0,\nu_0).$

Let g be the concave function on M^* such that $(
abla g)_{\#} \mu_0 =
u_0$ and

$$\underline{W}(\mu_0,\nu_0)=\int_M \langle \nabla g(v),v\rangle d\mu_0(v).$$

Let Φ_0^T be the flow such that

$$\mathcal{C}_{\mathcal{T}}(
u_0,
u_{\mathcal{T}}) = \int_M \mathcal{c}_{\mathcal{T}}(y,\Phi_0^{\mathcal{T}}y) d
u_0(y).$$

Since

$$b_{\mathcal{T}}(v,x) \leq c_{\mathcal{T}}(
abla g(v),x) + \langle
abla g(v),v
angle$$
 for all $v \in M^*$

$$egin{array}{lll} \underline{B}_{T}(\mu_{0},
u_{T}) &\leq & \displaystyle \int_{M} b_{T}(v,\Phi_{0}^{T}\circ
abla g(v))d\mu_{0}(v) \ &\leq & \displaystyle \int_{M^{*} imes M} \{c_{T}(
abla g(v),\Phi_{0}^{T}\circ
abla g(v))+\langle
abla g(v),v
angle \}d\mu_{0}(v) \ &= & \displaystyle \int_{M} c_{T}(y,\Phi_{0}^{T}y)d
u_{0}(y)+\int_{M} \langle
abla g(v),v
angle d\mu_{0}(v) \ &= & \displaystyle C_{T}(
u_{0},
u_{T})+\underline{W}(\mu_{0},
u)=\underline{B}_{T}(\mu_{0},
u_{T}). \end{array}$$

However this formula doesn't lift:

 $c(t, y, x) = \sup\{b(t, v, x) - \langle v, y \rangle; v \in M^*\}.$

Theorem (D): Assume ν_0 and ν_T are probability measures on *M* such that ν_0 is absolutely continuous with respect to Lebesgue measure. Then, TFAE:

- 1. The initial Kantorovich potential of $C_T(\nu_0, \nu_T)$ is concave.
- 2. The following holds:

$$C_{T}(\nu_{0},\nu_{T}) = \sup\{\underline{B}_{T}(\mu,\nu_{T}) - \underline{W}(\nu_{0},\mu); \ \mu \in \mathcal{P}(M^{*})\}.$$

and the sup is attained at some probability measure μ_0 on M^* .

Corollary: Consider the cost c(y, x) = c(x - y), where *c* is a convex function on *M* and let ν_0, ν_1 be probability measures on *M* such that the initial Kantorovich potential associated to $C_T(\nu_0, \nu_T)$ is concave. Then, there exist concave functions $\phi_0 : M \to \mathbf{R}$ and $\phi_1 : M^* \to \mathbf{R}$ such that

$$C_1(\nu_0,\nu_1)-\mathcal{K}=\int_M c(\nabla\phi_1\circ\nabla\phi_0(y)-y)d\nu_0(y)=\int_M \langle\nabla\tilde\phi_1(y)-\nabla\phi_0(y),y\rangle\,d\nu_0(y),$$

where K = K(c) is a constant and $\tilde{\phi}$ is the concave Legendre transform of ϕ .

Brenier-Benamou Type formula

Theorem (E): For fixed probability measures μ_0 on M^* and ν_T on M, • As a function of the end measure:

$$\underline{B}_{\mathcal{T}}(\mu_0,\nu_{\mathcal{T}}) = \inf\left\{\underline{W}(\mu_0,\rho_0) + \int_0^{\mathcal{T}}\int_M L(x,w_t(x))d\varrho_t(x)dt; \ (\varrho,w) \in P(0,\mathcal{T};\nu_{\mathcal{T}})\right\}$$

where $P(0, T; \nu_T)$ is the set of pairs (ϱ, w) such that $t \to \varrho_t \in \mathcal{P}(M)$, $t \to w_t \in \mathbf{R}^n$ are paths of Borel vector fields such that

$$\begin{cases} \partial_t \varrho + \nabla \cdot (\varrho w) = 0 \quad \text{in } \mathcal{D}' ((0, T) \times M) \\ \varrho_T = \nu_T. \end{cases}$$

As a function of the initial measure:

$$\overline{B}_{\mathcal{T}}(\mu_0,\nu_{\mathcal{T}}) = \sup \left\{ \overline{W}(\nu_{\mathcal{T}},\rho_{\mathcal{T}}) - \int_0^{\mathcal{T}} \int_M \tilde{L}(x,w_t(x)) d\varrho_t(x) dt; \ (\varrho,w) \in \mathcal{P}(0,\mathcal{T};\mu_0) \right\}$$

where $P(0, T; \mu_0)$ is the set of pairs (ϱ, w) such that

$$\begin{cases} \partial_t \varrho + \nabla \cdot (\varrho w) = 0 \quad \text{in } \mathcal{D}' ((0, T) \times M) \\ \varrho_0 = \mu_0. \end{cases}$$

- 4 B b 4 B b

Lifting a value function to a value function on Wasserstein space

Started with $\phi_0(y) = \langle v, y \rangle$ and defined $b_v(t, x)$ as a Value functional

$$b_{\nu}(t,x) = \inf \left\{ \phi_0(\gamma(0)) + \int_0^t L(s,\gamma(s),\dot{\gamma}(s)) \, ds; \gamma \in C^1([0,T),M); \gamma(t) = x \right\}$$

=
$$\inf \left\{ \phi_0(y) + c_t(y,x); y \in M \right\} \quad (Hopf - Lax formula).$$

It satisfies the Hamilton-Jacobi equation on M.

$$\partial_t b + H(t, x, \nabla_x b) = 0$$
 on $[0, T] \times M$,

We then lifted b_{ν} to Wasserstein space by defining $B_{\mu_0}(t,\nu) = \underline{B}_t(\mu_0,\nu)$.

$$\begin{split} B_{\mu_0}(t,\nu) &= \inf\{\underline{W}(\mu_0,\tilde{\nu}) + C_t(\tilde{\nu},\nu); \ \nu \in \mathcal{P}(M)\} \ (\textit{Hopf} - \textit{Lax formula}) \\ &= \inf\{\mathcal{U}_{\mu_0}(\varrho_0) + \int_0^t \mathcal{L}(\varrho,w) dt; (\varrho,w) \in P(0,t;\nu)\} \ (\textit{Value functional}) \end{split}$$

- 1. Do they satisfy a Hamilton-Jacobi equation on Wasserstein space?
- 2. Do they provide solutions to mean field games?

伺 ト イ ヨ ト イ ヨ ト

Under technical conditions

(Ambrosio-Feng) (at least in a particular case): Value functionals on Wasserstein space yield a unique metric viscosity solution for

$$\partial_t B + \mathcal{H}(t, \nu, \nabla_{\nu} B(t, \mu)) = 0,$$

 $B(0, \nu) = \underline{W}(\mu_0, \nu)$

Here the Hamiltonian on Wasserstein space is defined as

$$\mathcal{H}(\nu,\zeta) = \sup\{\int \langle \zeta,\xi \rangle d\nu - \mathcal{L}(\nu,\xi); \xi \in T^*_{\nu}(\mathcal{P}(M))\}$$

(Gangbo-Swiech) Value functions on Wasserstein space with suitable initial data yield solutions to the so-called Master equation for mean field games without diffusion and without potential term.

Theorem (Gangbo-Swiech) Assume $\mathcal{U}_0 : \mathcal{P}(M) \to \mathbb{R}$, $U_0 : M \times \mathcal{P}(M) \to \mathbb{R}$ are such that $\nabla_q U_0(q, \mu) \equiv \nabla_\mu \mathcal{U}_0(\mu)(q) \quad \forall q \in M \ \mu \in \mathcal{P}(M)$, and consider the value functional,

$$\mathcal{U}(t,\nu) = \inf_{(\varrho,w)\in P(0,t;\nu)} \int_0^t \mathcal{L}(\varrho,w) dt + \mathcal{U}_0(\varrho_0)$$

Then, there exists $U : [0, T] \times M \times \mathcal{P}(M) \rightarrow \mathbb{R}$ such that

$$abla_q U_t(q,\mu) \equiv
abla_\mu \mathcal{U}_t(\mu)(q) \quad orall q \in M \ \mu \in \mathcal{P}(M).$$

and U satisfies the Master equation (but without diffusion) (D) (E) (E) (E)

This yields the existence for any probabilities μ_0, ν_T , a function $\beta : [0, T] \times M \times \mathcal{P}(M) \to \mathbb{R}$ such that

$$abla_{\mathbf{x}}eta(t,\mathbf{x},\mu)\equiv
abla_{\mu}B_{\mu_0}(t,\mu)(\mathbf{x}) \quad \forall \mathbf{x}\in M\ \mu\in\mathcal{P}(M).$$

There exists $\rho \in AC^2((0, T) \times \mathcal{P}(M))$ such that

$$\begin{cases} \partial_t \beta + \int \langle \nabla_\mu \beta(t, x, \mu) \cdot \nabla H(x, \nabla_x \beta) \rangle \, d\mu + H(x, \nabla_x \beta(t, x, \mu)) = 0, \\ \partial_t \rho + \nabla(\rho \nabla H(x, \nabla_x \beta)) = 0, \\ \beta(0, \cdot, \cdot) = \beta_0, \quad \rho(T, \cdot) = \nu_T, \end{cases}$$

where $\beta_0(x, \rho) = \phi_\rho(x)$, where ϕ_ρ is the convex function such that $\nabla \phi_\rho$ pushes μ_0 into ρ .

What about solutions to mean field games that include diffusions?

・同・・ヨ・・ヨ・ ヨ

$$\underline{B}^{s}_{T}(\mu_{0},\nu_{T}) := \inf_{V \sim \mu_{0}} \inf_{X \in \mathcal{A}, X_{T} \sim \nu_{T}} \mathbf{E}_{P} \left\{ \langle V, X_{0} \rangle + \int_{0}^{T} L(t, X(t), \beta(t, X)) dt \right\},$$

where \mathcal{A} is the class of all \mathbf{R}^d -valued continuous semimartingales $(X_t)_{0 \le t \le T}$ on a complete filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$ such that there exists a Borel measurable $\beta_X : [0, T] \times C([0, T]) \to \mathbf{R}^d$ satisfying

- 1. $w \to \beta_X(t, w)$ is $\mathcal{B}(C([0, t]))_+$ -measurable for all t, where $\mathcal{B}(C([0, t]))$ denotes the Borel σ -field on C([0, t]).
- 2. $X(t) = X(0) + \int_0^t \beta_X(s, X) ds + W_X(t)$, where $W_X(t)$ is a $\sigma[X(s); 0 \le s \le t]$ -Brownian motion.

The fixed end measures cost has been studied by Mikami, Thieulin, Leonard.

$$\mathcal{C}^{s}_{T}(\nu_{0},\nu_{T}):=\inf \mathbf{E}_{P}\left\{\int_{0}^{T}L(t,X(t),\beta(t,X))\,dt;\,X\in\mathcal{A},\,X(0)\sim\nu_{0},X(T)\sim\nu_{T}\right\},$$

伺 ト イ ヨ ト イ ヨ ト

Theorem (F): Under suitable conditions on L

1. Duality:

$$\underline{B}^{s}_{T}(\mu_{0},\nu_{T}) = \sup \left\{ \int_{M} \phi_{T}(x) d\nu_{T}(x) + \int_{M} \tilde{\phi}_{0}(v) d\mu_{0}(v); \\ \phi_{0} \text{ concave } \& \phi_{t} \text{ solution of (HJB)} \right\}$$

$$\begin{cases} \partial_t \phi + \frac{1}{2} \Delta \phi + H(t, x, \nabla_x \phi) &= 0 \text{ on } [0, T] \times M, \\ \phi(0, x) &= \phi_0(x), \end{cases}$$

2. For any probability measure ν on M, we have

$$\underline{B}^{s}_{T}(\mu_{0},\nu) = \inf\left\{\underline{W}(\mu_{0},\rho_{0}) + \int_{0}^{T}\int_{M}L(t,x,b_{t}(x))d\varrho_{t}(x)dt; (\varrho,b) \in P(0,T;\nu)\right\}$$

where $P(0, T; \nu_T)$ is the set of pairs (ϱ, b) such that $t \to \varrho_t \in \mathcal{P}(M)$, $t \to b_t \in \mathbf{R}^n$ are paths of Borel vector fields such that

$$\begin{cases} \partial_t \varrho - \frac{1}{2} \Delta \rho + \nabla \cdot (\varrho b) = 0 \quad \text{in } \mathcal{D}' ((0, T) \times M) \\ \varrho_T = \nu. \end{cases}$$

There exists $\beta : [0, T] \times M \times \mathcal{P}(M) \to \mathbb{R}$ and $\rho \in AC^2((0, T) \times \mathcal{P}(M))$ such that

$$\begin{aligned} \partial_t \beta &- \frac{1}{2} \Delta \beta + \int \langle \nabla_\mu \beta(t, x, \mu) \cdot \nabla H(x, \nabla_x \beta) \rangle \, d\mu + H(t, x, \nabla_x \beta(t, x, \mu)) = 0, \\ \partial_t \rho &- \frac{1}{2} \Delta \rho + \nabla (\rho \nabla H(t, x, \nabla_x \beta)) = 0, \\ \beta(\mathbf{0}, \cdot, \cdot) &= \beta_0, \quad \rho(T, \cdot) = \nu_T, \end{aligned}$$

where $\beta_0(x, \rho) = \phi_{\rho}(x)$, where ϕ_{ρ} is the convex function such that $\nabla \phi_{\rho}$ pushes μ_0 into ρ .

Many Happy Returns Yann Brenier

Nassif Ghoussoub, University of British Columbia Dynamic and Stochastic Brenier Transport via Hopf-Lax formulae on Was