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Matching problems

Generally speaking, matching problems deal with families of random M points,
independent and identically distributed in a given d-dimensional domain D.

The problem is then to estimate (since exact computations are basically impos-
sible, except in some 1-d cases) the cost, for M large, of the optimal matching
(optimal transport).

The results depend in a very sensitive way on d and on the power p of the cost
function c = distp. Typical domains: D = [0, 1]d, D = Td.

Our result, based on semigroup techniques, covers also more general domains,
with d = 1, 2.
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Matching problems
• Bipartite problem: M = 2N, with N blue points, N red points, and we want
to match each red point to a blue point, so that the problem is about the rate of
convergence to 0 of

E
(
W2

2 ( 1
N

∑
i

δXi ,
1
N

∑
i

δYi)
)
.

•Monopartite problem: M = 2N, but the points are not coloured (or coloured,
but free to marry another point with the same colour).
• Optimal matching to the common law. If m is the common law of the Xi,
we want to know the rate of convergence to 0 of

E
(
W2

2 ( 1
N

∑
i

δXi ,m)
)
.

• Grid matching problem. Given a deterministic grid of “equally spaced”
points, Y1, . . . ,YN , estimate

E
(
W2

2 ( 1
N

∑
i

δXi ,
1
N

∑
i

δYi)
)
.
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Three level of investigation

(1) Find tight upper and lower bounds:

C−1φp,d(N) ≤ E(Wp
p ) ≤ Cφp,d(N);

(2) Prove the existence of the limit of renormalized expectations, possibly com-
puting/characterizing the limit:

∃`p,d := lim
N→∞

E(Wp
p )

φp,d(N)
;

(3) Find the second term in the expansion:

E(Wp
p ) ∼ `p,dφp,d(N) + φ∗p,d(N) + o

(
φ∗p,d(N)

)
.
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Heuristics

Since we have N points in a d-dimensional domain, say (0, 1)d, we expect an
average distance ∼ N−1/d, and so the naive guess is

E
(
Wp

p (
1
N

N∑
i=1

δXi ,m)
)
∼ 1

Np/d
.

Using the random 1-Lipschitz function φ(z) := mini |z − Xi|, Kantorovich
duality gives indeed

E
(
Wp

p (
1
N

N∑
i=1

δXi ,m)
)
&

1
Np/d

.
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Heuristics

However, this lower bound is tight for d > 2, but not tight for d = 2, where a
logarithmic correction appears:

Theorem. (Ajtai-Komlos-Turnady, Combinatorica, 1984) For D = (0, 1)2 and
all p ≥ 1, there exists cp ∈ (0,∞) such that

c−1
p

(log N)p/2

Np/2 ≤ E
(
Wp

p (
1
N

N∑
i=1

δXi ,m)
)
≤ cp

(log N)p/2

Np/2 .

In physicist’s words, this is due to the fluctuations in the number of points,
in small regions, which imply the necessity of “long distance pairings”.

If d = 1 we have even a larger deviation: NpE(Wp
p ) ∼ Np/2. In the 1-d

case many explicity computations are possible (Bobkov-Ledoux), for instance
E(W2

2 (µN ,m)) = 1
6N for any N if D = (0, 1).
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Convergence of empirical measures
By the law of large numbers, for any nice test function f one has

1
N

∑
i

f (Xi)−
∫

f dm→ 0 almost surely,

which means that 1
N

∑
i δXi → m weakly as N → ∞. Obviously we need a

quantitative version of this fact, for instance the central limit theorem tells that

√
N
( 1

N

∑
i

f (Xi)−
∫

f dm
)

weakly converge to a centered Gaussian.

Another information comes from Sanov’s theorem, which gives

E
(
Wp(

1
N

∑
i

δXi ,m) > ε)
)
∼ e−Nα(ε) α(ε) := inf

{
Entm(ν) : Wp(ν,m) ≥ ε

}
.

However these estimates are valid, for ε > 0 fixed, for N ≥ N(ε), and therefore
useless to estimate E

(
Wp

p ( 1
N

∑
i δXi ,m)

)
.
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Some results
Theorem. (Talagrand, Annals Appl. Prob., 1992) For D = [0, 1]d and d ≥ 3,

lim sup
N→∞

N1/dE
(
W1(

1
N

N∑
i=1

δXi ,m)
)
≤ ω−1/d

d

(
1 + K

log d
d

)
.

Theorem. (Dobric-Yukich, J. Th. Prob., 1995) If d ≥ 3, D = (0, 1)d and
m = ρL d, then

lim
N→∞

N1/d E
(
W1(

1
N

N∑
i=1

δXi ,m)
)

= β(d)

∫
D
ρ1−1/d dx

for some constant β(d).
Theorem. (Barthe-Bordenave, LNM, 2013) If D = [0, 1]d and 2p < d, then

lim
N→∞

Np/d E
(
Wp

p (
1
N

N∑
i=1

δXi ,m)
)

= β̃(d).

These results do not cover the case d = 2, p ≥ 1.
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More probabilistic techniques
This topic is well illustrated in the 2014 monograph “Upper and lower bounds
for stochastic processes” by Talagrand, particularly in the case p = 1.
The general idea, first developed in the Gaussian setting, is to estimate the
expectation of the supremum

V := sup
u∈U

Zu

of a centered stochastic process {Zu}u∈U knowing the law of the random vari-
ables Zu and the “metric” information(

E(|Zu − Zv|2)
)1/2 ≤ ρ(u, v).

This leads to bounds of the form (Dudley)

E
(

sup
v∈Bδ(u)

|Zv − Zu|
)
≤ C

∫ δ

0

√
log n(U, ρ, ε) dε ∀δ > 0,

where n(U, ρ, ε) is the minimum number n of balls with radius ε needed
to cover U, so the geometry of the space of parameters (U, ρ) comes into play.
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to cover U, so the geometry of the space of parameters (U, ρ) comes into play.
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More probabilistic techniques
Using Kantorovich duality, this technique can be applied with U = Lip1(D),
and

Zu(ω) :=

∫
D

u dm−
N∑

i=1

u(Xi(ω))

N
.

This technique is very general and powerful, but it does not seem to provide
more than tight upper and lower bounds. Indeed, Talagrand raises (Research
problem 4.3.3) the question about the existence of the limit

lim
N→∞

√
N

log N
E
(
W1(

N∑
i=1

1
N
δXi ,m)

)
in the 2-d case.
Moreover, when we consider W2, we are forced to consider, as space of pa-
rameters U, the space of d2/2-concave functions, and these arguments do not
seem to be applicable, because the “geometry” of this space is harder.
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The Caracciolo-Parisi ansatz

In a recent work (Scaling hypothesis for the Euclidean bipartite matching prob-
lem, Physical Review E, 2014), Caracciolo-Lucibello-Parisi-Sicuro used a spe-
cific ansatz to make predictions on the expansion of E

(
Wp

p (ρ0, ρ1)
)
, in the case

D = Td.

Predictions:

E
(
Wp

p (ρ0, ρ1)
)

N−p/d
∼


for d = 1, O(Np/2) and N

6 for p = 2;

for d = 2, O((log N)p/2), and 1
2π log N + e2,2 for p = 2;

for d > 2, ep,d + O(N(2−d)/d);

for d > 2 and p = 2, e2,d + ζd(1)
2π2 N(2−d)/d.

The correctedness of the constants in blue, relative to W2 and computed with
the ansatz, has also been validated numerically (ζd is the so-called Epstein
function). However, the method does not predict the constant in the leading
order term with d > 2!
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The Caracciolo-Parisi ansatz
These predictions are obtained by linearizing in C1 topology the Monge-Ampére
equation

det∇2ψ =
ρ0

ρ1 ◦ ∇ψ
(which describes the optimal map from ρ0 to ρ1) around ρ0 = ρ1 = 1, thus
writing ψ = Id +∇φ one obtains

−∆φ = ρ1 − ρ0.

The ansatz says that∇φ should be “close” to the optimal displacement map and
the predictions come from the computation of E(|∇φ|2), in discrete Fourier
variables:

E
(∫
|∇φ|2

)
= E

( ∑
n∈Zd\{0}

|ρ1,n − ρ0,n|2

4π2|n|2

)
.

But, the empirical measures ρ0 and ρ1 do not belong to H−1(Td) as
soon as d > 1, hence this energy is infinite for every ω!

Luigi Ambrosio (SNS) New estimates on the matching problem Brenier’s conference, 2017 14 / 31



The Caracciolo-Parisi ansatz
These predictions are obtained by linearizing in C1 topology the Monge-Ampére
equation

det∇2ψ =
ρ0

ρ1 ◦ ∇ψ
(which describes the optimal map from ρ0 to ρ1) around ρ0 = ρ1 = 1, thus
writing ψ = Id +∇φ one obtains

−∆φ = ρ1 − ρ0.

The ansatz says that∇φ should be “close” to the optimal displacement map and
the predictions come from the computation of E(|∇φ|2), in discrete Fourier
variables:

E
(∫
|∇φ|2

)
= E

( ∑
n∈Zd\{0}

|ρ1,n − ρ0,n|2

4π2|n|2

)
.

But, the empirical measures ρ0 and ρ1 do not belong to H−1(Td) as
soon as d > 1, hence this energy is infinite for every ω!

Luigi Ambrosio (SNS) New estimates on the matching problem Brenier’s conference, 2017 14 / 31



The Caracciolo-Parisi ansatz
These predictions are obtained by linearizing in C1 topology the Monge-Ampére
equation

det∇2ψ =
ρ0

ρ1 ◦ ∇ψ
(which describes the optimal map from ρ0 to ρ1) around ρ0 = ρ1 = 1, thus
writing ψ = Id +∇φ one obtains

−∆φ = ρ1 − ρ0.

The ansatz says that∇φ should be “close” to the optimal displacement map and
the predictions come from the computation of E(|∇φ|2), in discrete Fourier
variables:

E
(∫
|∇φ|2

)
= E

( ∑
n∈Zd\{0}

|ρ1,n − ρ0,n|2

4π2|n|2

)
.

But, the empirical measures ρ0 and ρ1 do not belong to H−1(Td) as
soon as d > 1, hence this energy is infinite for every ω!

Luigi Ambrosio (SNS) New estimates on the matching problem Brenier’s conference, 2017 14 / 31



The Caracciolo-Parisi ansatz

By mathematical standards, the proof of these predictions is not rigorous, first
of all because of the appearence of divergent quantities, but also because in
any case the ansatz does not provide a coupling between ρ0 and ρ1, only an
approximate one, in some sense.

In any case, even if this were an exact coupling, the necessity of lower bounds
(or the necessity to estimate how close it is to being optimal) remains.
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Main result
Theorem. Let D be a smooth, closed, 2-dimensional Riemannian manifold
with finite volume. Then, if m is the normalization of Riemannian volume
measure, one has

lim
N→∞

N
log N

E
(
W2

2 (

N∑
i=1

1
N
δXi ,m)

)
=

m(D)

4π
.

An analogous result is proved in the 1-d case.
The case D = T2 is included, our “PDE” proof use semigroup techniques and
spectral analysis, for this reason it works for general domains. We also cover
the case D = (0, 1)2, with a ad hoc comparison argument.
Standard techniques related to the phenomenon of concentration of measure
(Gaussian concentration due to Ricci lower bounds) then give also that the
random variables

N
log N

W2
2 (

N∑
i=1

1
N
δXi ,m)

converge in law to the constant (4π)−1m(D).
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Main result

We are not yet able to attack Talagrand’s problem, replacing p = 2 by p = 1
(more later). Nevertheless, our method provides a new “PDE” proof of the
AKT result, namely

c−1
p

(log N)p/2

Np/2 ≤ E
(
Wp

p (
1
N

N∑
i=1

δXi ,m)
)
≤ cp

(log N)p/2

Np/2 .

We are unfortunately very far from justifying all the predictions of the paper by
Caracciolo-Lucibello-Parisi-Sicuro, this seems to require a much more refined
analysis.
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Ideas from the proof: upper bound
The heuristic idea is very natural. Since we know that E(W2

2 ) ∼ N−1 log N
exceeds the square N of the “natural” length scale `N ∼ N−1/2, we may hope
to regularize just a bit the random densities ρ 7→ Ptρ, with t = tN = o( log N

N ),
so that one can apply the deterministic estimate (in “nice” domains)

W2
2 (Ptρ, ρ) ≤ Ct = o

( log N
N

)
.

Then, we can try to find an exact coupling between the regularized densities
Ptρ0 and Ptρ1 and use the triangle inequality

W2(ρ0, ρ1) ≤ W2(ρ0,Ptρ0) + W2(Ptρ0,Ptρ1) + W2(Ptρ1, ρ1)

to get a good upper bound on E(W2
2 (ρ0, ρ1)).

In order to provide a good coupling between Ptρ0 and Ptρ1 we use the Da-
corogna-Moser interpolation. The estimates are quite delicate because tN → 0,
so that in the limit the measures are concentrated.
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Dacorogna-Moser interpolation

Given “nice” probability densities ρ0, ρ1, one can find a transport map T from
ρ0 to ρ1 as the solution at t = 1 of the ODE

d
dt

X(t, x) = bt
(
X(t, x)

)
, X(0, x) = x,

where the vector field bt is ρ−1
t ∇φ and φ can be found solving the elliptic PDE

−div
(
∇φ
)

= ρ1 − ρ0 =
d
dt
ρt (with Neumann b.c.) (∗)

with ρt = (1− t)ρ0 + tρ1.

The reason (and the link with Benamou-Brenier) is that, since btρt = −∇φ,
the equation (*) above can be written in the form of continuity equation:

d
dt
ρt + div (btρt) = 0.
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Dacorogna-Moser interpolation

One has then, with simple computations,

W2
2 (ρ0, ρ1) ≤

∫
|T(x)− x|2ρ0(x) dm(x) ≤

∫ 1

0

(∫
|∇φ|2

ρt
dm
)

dt

=

∫ ∫ 1

0

1
(1− t)ρ0 + tρ1

dt |∇φ|2 dm =

∫
|∇φ|2

M(ρ0, ρ1)
dm.

The quantity M(a, b) = (a− b)/(log a− log b) above is the so-called
logarithmic mean of a and b.
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Dacorogna-Moser interpolation

One has then, with simple computations,

W2
2 (ρ0, ρ1) ≤

∫
|T(x)− x|2ρ0(x) dm(x) ≤

∫ 1

0
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|∇φ|2

ρt
dm
)
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Ideas from the proof: upper bound
Eventually, with some computations based on semigroup techniques we find:

N
log N

E(W2
2 (ρ0, ρ1)) .

N
log N

E
(∫ |∇φ|2

M(ρ0, ρ1)
dm
)

∼ N
log N

E
(∫
|∇φ|2 dm

)
∼ 2

log N

∫ ∞
1/N

(∫
p2t(x, x) dm(x)− 1

)
dt.

The crucial quantity in this formula is T(s) :=
∫

ps(x, x) dm(x), which is re-
lated to the spectrum σ(∆) of ∆ by the trace formula

T(s) =
∑

λ∈σ(∆)

eλs

(it is sufficient to write pt(x, y) =
∑

λ eλtfλ(x)fλ(y) with y = x and integrate).
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Ideas from the proof: upper bound
It turns out that the relevant limit is

lim
N

2
log N

∫ ∞
1/N

(∫
p2t(x, x) dm(x)− 1

)
dt = lim

N

2
log N

∫ ∞
1/N

∑
λ∈σ(∆)\{0}

e2λt dt.

One can then use the asymptotic formula (McKean, Brown)

T(s) =
1

4πs

(
m(D)−

√
πs
2

H 1(∂D) + o(
√

s)
)

as s→ 0

to compute the limit (we assume m(D) = 1) to get

lim sup
N→∞

N
log N

E
(
W2

2 (

N∑
i=1

1
N
δXi ,m)

)
≤ 1

4π

and similarly

lim sup
N→∞

N
log N

E
(
W2

2 (

N∑
i=1

1
N
δXi ,

N∑
i=1

1
N
δYi)
)
≤ 1

2π
,

in agreement with the constants found numerically.
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Ideas from the proof: lower bound
In the proof of the lower bound we use that D has no boundary, and let’s assume
that one of the densities, say ρ1, is 1, we set ρ0 = ρ.
For the lower bound it is natural to use Kantorovich duality: for any map φ one
has

1
2

W2
2 (ρ, 1) ≥ −

∫
φρ dm +

∫
Q1φ dm,

where Qtφ is given by the Hopf-Lax formula

Qtφ(y) := inf
x∈D

φ(x) +
1
2t

d2(x, y) solving
d
dt

Qtφ+
1
2
|∇Qtφ|2 = 0.

If we choose φ with the ansatz, namely −∆φ = 1 − ρ, let us try to estimate
the lower bound from below, getting the term we had in the upper bound:

−
∫
φρ dm +

∫
Q1φ dm =

∫
φ(1− ρ) dm +

∫
(Q1φ− φ) dm

=

∫
|∇φ|2 dm− 1

2

∫ 1

0

∫
|∇Qsφ|2 dm ds.

Luigi Ambrosio (SNS) New estimates on the matching problem Brenier’s conference, 2017 23 / 31



Ideas from the proof: lower bound
In the proof of the lower bound we use that D has no boundary, and let’s assume
that one of the densities, say ρ1, is 1, we set ρ0 = ρ.
For the lower bound it is natural to use Kantorovich duality: for any map φ one
has

1
2

W2
2 (ρ, 1) ≥ −

∫
φρ dm +

∫
Q1φ dm,

where Qtφ is given by the Hopf-Lax formula

Qtφ(y) := inf
x∈D

φ(x) +
1
2t

d2(x, y) solving
d
dt

Qtφ+
1
2
|∇Qtφ|2 = 0.

If we choose φ with the ansatz, namely −∆φ = 1 − ρ, let us try to estimate
the lower bound from below, getting the term we had in the upper bound:

−
∫
φρ dm +

∫
Q1φ dm =

∫
φ(1− ρ) dm +

∫
(Q1φ− φ) dm

=

∫
|∇φ|2 dm− 1

2

∫ 1

0

∫
|∇Qsφ|2 dm ds.

Luigi Ambrosio (SNS) New estimates on the matching problem Brenier’s conference, 2017 23 / 31



Ideas from the proof: lower bound
In the proof of the lower bound we use that D has no boundary, and let’s assume
that one of the densities, say ρ1, is 1, we set ρ0 = ρ.
For the lower bound it is natural to use Kantorovich duality: for any map φ one
has

1
2

W2
2 (ρ, 1) ≥ −

∫
φρ dm +

∫
Q1φ dm,

where Qtφ is given by the Hopf-Lax formula

Qtφ(y) := inf
x∈D

φ(x) +
1
2t

d2(x, y) solving
d
dt

Qtφ+
1
2
|∇Qtφ|2 = 0.

If we choose φ with the ansatz, namely −∆φ = 1 − ρ, let us try to estimate
the lower bound from below, getting the term we had in the upper bound:

−
∫
φρ dm +

∫
Q1φ dm =

∫
φ(1− ρ) dm +

∫
(Q1φ− φ) dm

=

∫
|∇φ|2 dm− 1

2

∫ 1

0

∫
|∇Qsφ|2 dm ds.

Luigi Ambrosio (SNS) New estimates on the matching problem Brenier’s conference, 2017 23 / 31



Ideas from the proof: lower bound

−
∫
φρ dm +

∫
Q1φ dm =
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φ(1− ρ) dm +

∫
(Q1φ− φ) dm

=

∫
|∇φ|2 dm− 1

2

∫ 1

0

∫
|∇Qsφ|2 dm ds

&
∫
|∇φ|2 dm− 1

2

∫
|∇φ|2 dm

=
1
2

∫
|∇φ|2 dm,

where the last step is justified by the estimate∫
|∇Qsφ|2 dm ≤ (1 + O(‖∆φ‖∞))

∫
|∇φ|2 dm.

For instance, if D has nonnegative Ricci curvature, it comes from∫
|∇Qsφ|2 dm ≤ es‖∆φ‖∞

∫
|∇φ|2 dm.
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Ideas from the proof: lower bound

Recalling that φ solves the random PDE

−∆φ = 1− ρ,

we need to show that 1− ρ is small in L∞ with high probability.

This is the hardest part of the proof that prevents, for instance, the extension to
Gaussian spaces.
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Ideas from the proof: lower bound

The actual proof is a bit different, because Qtφ is not so smooth. Hence, to
prove the apriori estimates above on

∫
|∇Qsφ|2 we use the regularized HJ

equation
d
dt

ft +
1
2
|∇ft|2 = σ∆ft, f0 = f

whose solution is explicitly given by the Hopf-Cole transform

ft = −σ log
(
Pσte−f/σ),

and let σ → 0+ (here we need that D has no boundary).

Finally we achieve the case D = (0, 1)2 using the fact that the distance on the
torus is smaller than the the distance on (0, 1)2, and that the proof of the upper
bound works also for domains with boundary. Therefore a lower bound for
T2 and an upper bound for (0, 1)2 provide the result for both.
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The bipartite case

In the case of bipartite matching (N blue points, N red points) we expect

E
(
W2

2 ( 1
N

∑
i

δXi ,
1
N

∑
i

δYi)
)
∼ 2E

(
W2

2 ( 1
N

∑
i

δXi ,m)
)
.

The heuristic argument is that on small scales P2(D) is Hilbertian, so that

|a + b|2 ∼ |a|2 + |b|2 + 2|a||b| cos θ

and, since the “vectors” a and b pointing from m to the random measures
1
N

∑
i δXi ,

1
N

∑
i δYi are independent, on average the cosine term should give

a null contribution.

We have been able to turn this heuristic argument into a proof (the inequality
& is the hardest one).
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Open problems: the case p = 1

This is the problem raised in Talagrand’s book. If we want to attack even this
one by PDE methods, we should go back to the PDE formulation of optimal
transport (Evans-Gangbo){

−div(a∇u) = ρ1 − ρ0

|∇u| ≤ 1, a(1− |∇u|) = 0

where a ≥ 0 is the transport density, and to its q-Laplacian approximation,
q→∞: −div(|∇u|q−2∇u) = ρ1 − ρ0

∂u
∂n

= 0.

Can we get sufficiently sharp estimates?

Does independence in the r.h.s. of this random PDE lead to convergence of the
expectations? This is less clear, for the moment.
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More open problems

Even in the case p = 2, D = Td, there many more open (at least for mathemati-
cians) questions, with formal proofs and computations in the physics literature:

• For D = T2 prove

lim
n→∞

(
n

log n
E
[
W2

2 (µn, νn)
]
− 1

2π

)
log n ∈ R.

• For d > 2, prove with this method existence of the limit

lim
N→∞

Nd/2E
(
W2

2 (
1
N

∑
i

δXi ,m)
)
.

In this case we lose the extra room granted in 2-d by the logarithmic correction.
We know from Barthe-Bordenave that the limit exists for d ≥ 5.
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More open problems

•What happens in the Gaussian case, i.e. when m is the standard Gaussian in
Rd? Not yet clear, because of the lack of compactness. For d = 1, one has
N−1 log log N . E(W2

2 ) . N−1 log log N (Bobkov-Ledoux), while numerical
simulations show that still

E
(
W2

2 (
1
N

∑
i

δXi ,m)
)
∼ log N

N

in the case d = 2.
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Thank you for the attention!

Slides available upon request

Luigi Ambrosio (SNS) New estimates on the matching problem Brenier’s conference, 2017 31 / 31


	Matching problems
	Heuristics and probabilistic techniques
	Review of the literature
	The Caracciolo-Parisi ansatz
	Main result
	Ideas from the proof
	Open problems

