New estimates on the matching problem ${ }^{1}$

Luigi Ambrosio
Scuola Normale Superiore, Pisa
luigi.ambrosio@sns.it
http://cvgmt.sns.it

Brenier's conference, 2017
${ }^{1}$ Joint work with Federico Stra and Dario Trevisan

Outline

(1) Matching problems
(2) Heuristics and probabilistic techniques
(3) Review of the literature

Luigi Ambrosio (SNS)

Outline

(1) Matching problems
(2) Heuristics and probabilistic techniques

Outline

(1) Matching problems
(2) Heuristics and probabilistic techniques
(3) Review of the literature

Outline

(1) Matching problems
(2) Heuristics and probabilistic techniques
(3) Review of the literature
(4) The Caracciolo-Parisi ansatz

Outline

(1) Matching problems
(2) Heuristics and probabilistic techniques
(3) Review of the literature
4. The Caracciolo-Parisi ansatz
(5) Main result
(6) Ideas from the proof

Outline

(1) Matching problems
(2) Heuristics and probabilistic techniques
(3) Review of the literature
(4) The Caracciolo-Parisi ansatz
(5) Main result
(6) Ideas from the proof

Outline

(1) Matching problems
(2) Heuristics and probabilistic techniques
(3) Review of the literature
(4) The Caracciolo-Parisi ansatz
(5) Main result
(6) Ideas from the proof
(7) Open problems

Matching problems

Generally speaking, matching problems deal with families of random M points, independent and identically distributed in a given d-dimensional domain D.

Matching problems

Generally speaking, matching problems deal with families of random M points, independent and identically distributed in a given d-dimensional domain D.
The problem is then to estimate (since exact computations are basically impossible, except in some 1- d cases) the cost, for M large, of the optimal matching (optimal transport).

Matching problems

Generally speaking, matching problems deal with families of random M points, independent and identically distributed in a given d-dimensional domain D.
The problem is then to estimate (since exact computations are basically impossible, except in some 1- d cases) the cost, for M large, of the optimal matching (optimal transport).
The results depend in a very sensitive way on d and on the power p of the cost function $c=$ dist p.

Matching problems

Generally speaking, matching problems deal with families of random M points, independent and identically distributed in a given d-dimensional domain D.
The problem is then to estimate (since exact computations are basically impossible, except in some 1- d cases) the cost, for M large, of the optimal matching (optimal transport).
The results depend in a very sensitive way on d and on the power p of the cost function $c=$ dist p. Typical domains: $D=[0,1]^{d}, D=\mathbb{T}^{d}$.

Matching problems

Generally speaking, matching problems deal with families of random M points, independent and identically distributed in a given d-dimensional domain D.
The problem is then to estimate (since exact computations are basically impossible, except in some 1- d cases) the cost, for M large, of the optimal matching (optimal transport).
The results depend in a very sensitive way on d and on the power p of the cost function $c=\operatorname{dist}^{p}$. Typical domains: $D=[0,1]^{d}, D=\mathbb{T}^{d}$.
Our result, based on semigroup techniques, covers also more general domains, with $d=1,2$.

Matching problems

- Bipartite problem: $M=2 N$, with N blue points, N red points, and we want to match each red point to a blue point, so that the problem is about the rate of convergence to 0 of

$$
\mathbb{E}\left(W_{2}^{2}\left(\frac{1}{N} \sum_{i} \delta_{X_{i}}, \frac{1}{N} \sum_{i} \delta_{Y_{i}}\right)\right) .
$$

Matching problems

- Bipartite problem: $M=2 N$, with N blue points, N red points, and we want to match each red point to a blue point, so that the problem is about the rate of convergence to 0 of

$$
\mathbb{E}\left(W_{2}^{2}\left(\frac{1}{N} \sum_{i} \delta_{X_{i}}, \frac{1}{N} \sum_{i} \delta_{Y_{i}}\right)\right) .
$$

- Monopartite problem: $M=2 N$, but the points are not coloured (or coloured, but free to marry another point with the same colour).

Matching problems

- Bipartite problem: $M=2 N$, with N blue points, N red points, and we want to match each red point to a blue point, so that the problem is about the rate of convergence to 0 of

$$
\mathbb{E}\left(W_{2}^{2}\left(\frac{1}{N} \sum_{i} \delta_{X_{i}}, \frac{1}{N} \sum_{i} \delta_{Y_{i}}\right)\right) .
$$

- Monopartite problem: $M=2 N$, but the points are not coloured (or coloured, but free to marry another point with the same colour).
- Optimal matching to the common law. If \boldsymbol{m} is the common law of the X_{i}, we want to know the rate of convergence to 0 of

$$
\mathbb{E}\left(W_{2}^{2}\left(\frac{1}{N} \sum_{i} \delta_{X_{i}}, \boldsymbol{m}\right)\right)
$$

Matching problems

- Bipartite problem: $M=2 N$, with N blue points, N red points, and we want to match each red point to a blue point, so that the problem is about the rate of convergence to 0 of

$$
\mathbb{E}\left(W_{2}^{2}\left(\frac{1}{N} \sum_{i} \delta_{X_{i}}, \frac{1}{N} \sum_{i} \delta_{Y_{i}}\right)\right) .
$$

- Monopartite problem: $M=2 N$, but the points are not coloured (or coloured, but free to marry another point with the same colour).
- Optimal matching to the common law. If \boldsymbol{m} is the common law of the X_{i}, we want to know the rate of convergence to 0 of

$$
\mathbb{E}\left(W_{2}^{2}\left(\frac{1}{N} \sum_{i} \delta_{X_{i}}, \boldsymbol{m}\right)\right)
$$

- Grid matching problem. Given a deterministic grid of "equally spaced" points, Y_{1}, \ldots, Y_{N}, estimate

$$
\mathbb{E}\left(W_{2}^{2}\left(\frac{1}{N} \sum_{i} \delta_{X_{i}}, \frac{1}{N} \sum_{i} \delta_{Y_{i}}\right)\right) .
$$

Three level of investigation

(1) Find tight upper and lower bounds:

$$
C^{-1} \phi_{p, d}(N) \leq \mathbb{E}\left(W_{p}^{p}\right) \leq C \phi_{p, d}(N)
$$

(2) Prove the existence of the limit of renormalized expectations, possibly computing/characterizing the limit:

$$
\exists \ell_{p, d}:=\lim _{N \rightarrow \infty} \frac{\mathbb{E}\left(W_{p}^{p}\right)}{\phi_{p, d}(N)} ;
$$

(3) Find the second term in the expansion:

$$
\mathbb{E}\left(W_{p}^{p}\right) \sim \ell_{p, d} \phi_{p, d}(N)+\phi_{p, d}^{*}(N)+o\left(\phi_{p, d}^{*}(N)\right) .
$$

Heuristics

Since we have N points in a d-dimensional domain, say $(0,1)^{d}$, we expect an average distance $\sim N^{-1 / d}$, and so the naive guess is

$$
\mathbb{E}\left(W_{p}^{p}\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}, \boldsymbol{m}\right)\right) \sim \frac{1}{N^{p / d}}
$$

Heuristics

Since we have N points in a d-dimensional domain, say $(0,1)^{d}$, we expect an average distance $\sim N^{-1 / d}$, and so the naive guess is

$$
\mathbb{E}\left(W_{p}^{p}\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}, \boldsymbol{m}\right)\right) \sim \frac{1}{N^{p / d}}
$$

Using the random 1-Lipschitz function $\phi(z):=\min _{i}\left|z-X_{i}\right|$, Kantorovich duality gives indeed

$$
\mathbb{E}\left(W_{p}^{p}\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}, \boldsymbol{m}\right)\right) \gtrsim \frac{1}{N^{p / d}}
$$

Heuristics

However, this lower bound is tight for $d>2$, but not tight for $d=2$, where a logarithmic correction appears:

Heuristics

However, this lower bound is tight for $d>2$, but not tight for $d=2$, where a logarithmic correction appears:
Theorem. (Ajtai-Komlos-Turnady, Combinatorica, 1984) For $D=(0,1)^{2}$ and all $p \geq 1$, there exists $c_{p} \in(0, \infty)$ such that

$$
c_{p}^{-1} \frac{(\log N)^{p / 2}}{N^{p / 2}} \leq \mathbb{E}\left(W_{p}^{p}\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}, \boldsymbol{m}\right)\right) \leq c_{p} \frac{(\log N)^{p / 2}}{N^{p / 2}}
$$

Heuristics

However, this lower bound is tight for $d>2$, but not tight for $d=2$, where a logarithmic correction appears:
Theorem. (Ajtai-Komlos-Turnady, Combinatorica, 1984) For $D=(0,1)^{2}$ and all $p \geq 1$, there exists $c_{p} \in(0, \infty)$ such that

$$
c_{p}^{-1} \frac{(\log N)^{p / 2}}{N^{p / 2}} \leq \mathbb{E}\left(W_{p}^{p}\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}, \boldsymbol{m}\right)\right) \leq c_{p} \frac{(\log N)^{p / 2}}{N^{p / 2}}
$$

In physicist's words, this is due to the fluctuations in the number of points, in small regions, which imply the necessity of "long distance pairings".

Heuristics

However, this lower bound is tight for $d>2$, but not tight for $d=2$, where a logarithmic correction appears:
Theorem. (Ajtai-Komlos-Turnady, Combinatorica, 1984) For $D=(0,1)^{2}$ and all $p \geq 1$, there exists $c_{p} \in(0, \infty)$ such that

$$
c_{p}^{-1} \frac{(\log N)^{p / 2}}{N^{p / 2}} \leq \mathbb{E}\left(W_{p}^{p}\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}, \boldsymbol{m}\right)\right) \leq c_{p} \frac{(\log N)^{p / 2}}{N^{p / 2}}
$$

In physicist's words, this is due to the fluctuations in the number of points, in small regions, which imply the necessity of "long distance pairings". If $d=1$ we have even a larger deviation: $N^{p} \mathbb{E}\left(W_{p}^{p}\right) \sim N^{p / 2}$.

Heuristics

However, this lower bound is tight for $d>2$, but not tight for $d=2$, where a logarithmic correction appears:
Theorem. (Ajtai-Komlos-Turnady, Combinatorica, 1984) For $D=(0,1)^{2}$ and all $p \geq 1$, there exists $c_{p} \in(0, \infty)$ such that

$$
c_{p}^{-1} \frac{(\log N)^{p / 2}}{N^{p / 2}} \leq \mathbb{E}\left(W_{p}^{p}\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}, \boldsymbol{m}\right)\right) \leq c_{p} \frac{(\log N)^{p / 2}}{N^{p / 2}}
$$

In physicist's words, this is due to the fluctuations in the number of points, in small regions, which imply the necessity of "long distance pairings".

If $d=1$ we have even a larger deviation: $N^{p} \mathbb{E}\left(W_{p}^{p}\right) \sim N^{p / 2}$. In the 1 -d case many explicity computations are possible (Bobkov-Ledoux), for instance $\mathbb{E}\left(W_{2}^{2}\left(\mu^{N}, \boldsymbol{m}\right)\right)=\frac{1}{6 N}$ for any N if $D=(0,1)$.

Convergence of empirical measures

By the law of large numbers, for any nice test function f one has

$$
\frac{1}{N} \sum_{i} f\left(X_{i}\right)-\int f d \boldsymbol{m} \rightarrow 0 \quad \text { almost surely }
$$

which means that $\frac{1}{N} \sum_{i} \delta_{X_{i}} \rightarrow \boldsymbol{m}$ weakly as $N \rightarrow \infty$.

Another information comes from Sanov's theorem, which gives

Convergence of empirical measures

By the law of large numbers, for any nice test function f one has

$$
\frac{1}{N} \sum_{i} f\left(X_{i}\right)-\int f d \boldsymbol{m} \rightarrow 0 \quad \text { almost surely }
$$

which means that $\frac{1}{N} \sum_{i} \delta_{X_{i}} \rightarrow \boldsymbol{m}$ weakly as $N \rightarrow \infty$. Obviously we need a quantitative version of this fact, for instance the central limit theorem tells that

$$
\sqrt{N}\left(\frac{1}{N} \sum_{i} f\left(X_{i}\right)-\int f d \boldsymbol{m}\right) \quad \text { weakly converge to a centered Gaussian. }
$$

Convergence of empirical measures

By the law of large numbers, for any nice test function f one has

$$
\frac{1}{N} \sum_{i} f\left(X_{i}\right)-\int f d \boldsymbol{m} \rightarrow 0 \quad \text { almost surely }
$$

which means that $\frac{1}{N} \sum_{i} \delta_{X_{i}} \rightarrow \boldsymbol{m}$ weakly as $N \rightarrow \infty$. Obviously we need a quantitative version of this fact, for instance the central limit theorem tells that

$$
\sqrt{N}\left(\frac{1}{N} \sum_{i} f\left(X_{i}\right)-\int f d \boldsymbol{m}\right) \quad \text { weakly converge to a centered Gaussian. }
$$

Another information comes from Sanov's theorem, which gives
$\left.\mathbb{E}\left(W_{p}\left(\frac{1}{N} \sum_{i} \delta_{X_{i}}, \boldsymbol{m}\right)>\epsilon\right)\right) \sim e^{-N \alpha(\epsilon)} \quad \alpha(\epsilon):=\inf \left\{\operatorname{Ent}_{\boldsymbol{m}}(\nu): W_{p}(\nu, \boldsymbol{m}) \geq \epsilon\right\}$.

Convergence of empirical measures

By the law of large numbers, for any nice test function f one has

$$
\frac{1}{N} \sum_{i} f\left(X_{i}\right)-\int f d \boldsymbol{m} \rightarrow 0 \quad \text { almost surely }
$$

which means that $\frac{1}{N} \sum_{i} \delta_{X_{i}} \rightarrow \boldsymbol{m}$ weakly as $N \rightarrow \infty$. Obviously we need a quantitative version of this fact, for instance the central limit theorem tells that

$$
\sqrt{N}\left(\frac{1}{N} \sum_{i} f\left(X_{i}\right)-\int f d \boldsymbol{m}\right) \quad \text { weakly converge to a centered Gaussian. }
$$

Another information comes from Sanov's theorem, which gives
$\left.\mathbb{E}\left(W_{p}\left(\frac{1}{N} \sum_{i} \delta_{X_{i}}, \boldsymbol{m}\right)>\epsilon\right)\right) \sim e^{-N \alpha(\epsilon)} \quad \alpha(\epsilon):=\inf \left\{\operatorname{Ent}_{\boldsymbol{m}}(\nu): W_{p}(\nu, \boldsymbol{m}) \geq \epsilon\right\}$.

However these estimates are valid, for $\epsilon>0$ fixed, for $N \geq N(\epsilon)$, and therefore useless to estimate $\mathbb{E}\left(W_{p}^{p}\left(\frac{1}{N} \sum_{i} \delta_{X_{i}}, \boldsymbol{m}\right)\right)$.

Some results

Theorem. (Talagrand, Annals Appl. Prob., 1992) For $D=[0,1]^{d}$ and $d \geq 3$,

$$
\limsup _{N \rightarrow \infty} N^{1 / d} \mathbb{E}\left(W_{1}\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}, \boldsymbol{m}\right)\right) \leq \omega_{d}^{-1 / d}\left(1+K \frac{\log d}{d}\right)
$$

Some results

Theorem. (Talagrand, Annals Appl. Prob., 1992) For $D=[0,1]^{d}$ and $d \geq 3$,

$$
\limsup _{N \rightarrow \infty} N^{1 / d} \mathbb{E}\left(W_{1}\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}, \boldsymbol{m}\right)\right) \leq \omega_{d}^{-1 / d}\left(1+K \frac{\log d}{d}\right)
$$

Theorem. (Dobric-Yukich, J. Th. Prob., 1995) If $d \geq 3, D=(0,1)^{d}$ and $\boldsymbol{m}=\rho \mathscr{L}^{d}$, then

$$
\lim _{N \rightarrow \infty} N^{1 / d} \mathbb{E}\left(W_{1}\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}, \boldsymbol{m}\right)\right)=\beta(d) \int_{D} \rho^{1-1 / d} d x
$$

for some constant $\beta(d)$.

Some results

Theorem. (Talagrand, Annals Appl. Prob., 1992) For $D=[0,1]^{d}$ and $d \geq 3$,

$$
\limsup _{N \rightarrow \infty} N^{1 / d} \mathbb{E}\left(W_{1}\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}, \boldsymbol{m}\right)\right) \leq \omega_{d}^{-1 / d}\left(1+K \frac{\log d}{d}\right)
$$

Theorem. (Dobric-Yukich, J. Th. Prob., 1995) If $d \geq 3, D=(0,1)^{d}$ and $\boldsymbol{m}=\rho \mathscr{L}^{d}$, then

$$
\lim _{N \rightarrow \infty} N^{1 / d} \mathbb{E}\left(W_{1}\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}, \boldsymbol{m}\right)\right)=\beta(d) \int_{D} \rho^{1-1 / d} d x
$$

for some constant $\beta(d)$.
Theorem. (Barthe-Bordenave, LNM, 2013) If $D=[0,1]^{d}$ and $2 p<d$, then

$$
\lim _{N \rightarrow \infty} N^{p / d} \mathbb{E}\left(W_{p}^{p}\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}, \boldsymbol{m}\right)\right)=\tilde{\beta}(d)
$$

Some results

Theorem. (Talagrand, Annals Appl. Prob., 1992) For $D=[0,1]^{d}$ and $d \geq 3$,

$$
\limsup _{N \rightarrow \infty} N^{1 / d} \mathbb{E}\left(W_{1}\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}, \boldsymbol{m}\right)\right) \leq \omega_{d}^{-1 / d}\left(1+K \frac{\log d}{d}\right)
$$

Theorem. (Dobric-Yukich, J. Th. Prob., 1995) If $d \geq 3, D=(0,1)^{d}$ and $\boldsymbol{m}=\rho \mathscr{L}^{d}$, then

$$
\lim _{N \rightarrow \infty} N^{1 / d} \mathbb{E}\left(W_{1}\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}, \boldsymbol{m}\right)\right)=\beta(d) \int_{D} \rho^{1-1 / d} d x
$$

for some constant $\beta(d)$.
Theorem. (Barthe-Bordenave, LNM, 2013) If $D=[0,1]^{d}$ and $2 p<d$, then

$$
\lim _{N \rightarrow \infty} N^{p / d} \mathbb{E}\left(W_{p}^{p}\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}, \boldsymbol{m}\right)\right)=\tilde{\beta}(d)
$$

These results do not cover the case $d=2, p \geq 1$.

More probabilistic techniques

This topic is well illustrated in the 2014 monograph "Upper and lower bounds for stochastic processes" by Talagrand, particularly in the case $p=1$.
expectation of the supremum

This leads to bounds of the form (Dudley)

More probabilistic techniques

This topic is well illustrated in the 2014 monograph "Upper and lower bounds for stochastic processes" by Talagrand, particularly in the case $p=1$.
The general idea, first developed in the Gaussian setting, is to estimate the expectation of the supremum

$$
V:=\sup _{u \in U} Z_{u}
$$

of a centered stochastic process $\left\{Z_{u}\right\}_{u \in U}$ knowing the law of the random variables Z_{u} and the "metric" information

$$
\left(\mathbb{E}\left(\left|Z_{u}-Z_{v}\right|^{2}\right)\right)^{1 / 2} \leq \rho(u, v)
$$

More probabilistic techniques

This topic is well illustrated in the 2014 monograph "Upper and lower bounds for stochastic processes" by Talagrand, particularly in the case $p=1$.
The general idea, first developed in the Gaussian setting, is to estimate the expectation of the supremum

$$
V:=\sup _{u \in U} Z_{u}
$$

of a centered stochastic process $\left\{Z_{u}\right\}_{u \in U}$ knowing the law of the random variables Z_{u} and the "metric" information

$$
\left(\mathbb{E}\left(\left|Z_{u}-Z_{v}\right|^{2}\right)\right)^{1 / 2} \leq \rho(u, v)
$$

This leads to bounds of the form (Dudley)

$$
\mathbb{E}\left(\sup _{v \in B_{\delta}(u)}\left|Z_{v}-Z_{u}\right|\right) \leq C \int_{0}^{\delta} \sqrt{\log n(U, \rho, \epsilon)} d \epsilon \quad \forall \delta>0
$$

where $n(U, \rho, \epsilon)$ is the minimum number n of balls with radius ϵ needed to cover U, so the geometry of the space of parameters (U, ρ) comes into play.

More probabilistic techniques

Using Kantorovich duality, this technique can be applied with $U=\operatorname{Lip}_{1}(D)$, and

$$
Z_{u}(\omega):=\int_{D} u d \boldsymbol{m}-\sum_{i=1}^{N} \frac{u\left(X_{i}(\omega)\right)}{N} .
$$

More probabilistic techniques

Using Kantorovich duality, this technique can be applied with $U=\operatorname{Lip}_{1}(D)$, and

$$
Z_{u}(\omega):=\int_{D} u d \boldsymbol{m}-\sum_{i=1}^{N} \frac{u\left(X_{i}(\omega)\right)}{N}
$$

This technique is very general and powerful, but it does not seem to provide more than tight upper and lower bounds.

More probabilistic techniques

Using Kantorovich duality, this technique can be applied with $U=\operatorname{Lip}_{1}(D)$, and

$$
Z_{u}(\omega):=\int_{D} u d \boldsymbol{m}-\sum_{i=1}^{N} \frac{u\left(X_{i}(\omega)\right)}{N} .
$$

This technique is very general and powerful, but it does not seem to provide more than tight upper and lower bounds. Indeed, Talagrand raises (Research problem 4.3.3) the question about the existence of the limit

$$
\lim _{N \rightarrow \infty} \sqrt{\frac{N}{\log N}} \mathbb{E}\left(W_{1}\left(\sum_{i=1}^{N} \frac{1}{N} \delta_{X_{i}}, \boldsymbol{m}\right)\right)
$$

in the 2- d case.

More probabilistic techniques

Using Kantorovich duality, this technique can be applied with $U=\operatorname{Lip}_{1}(D)$, and

$$
Z_{u}(\omega):=\int_{D} u d \boldsymbol{m}-\sum_{i=1}^{N} \frac{u\left(X_{i}(\omega)\right)}{N}
$$

This technique is very general and powerful, but it does not seem to provide more than tight upper and lower bounds. Indeed, Talagrand raises (Research problem 4.3.3) the question about the existence of the limit

$$
\lim _{N \rightarrow \infty} \sqrt{\frac{N}{\log N}} \mathbb{E}\left(W_{1}\left(\sum_{i=1}^{N} \frac{1}{N} \delta_{X_{i}}, \boldsymbol{m}\right)\right)
$$

in the 2- d case.
Moreover, when we consider W_{2}, we are forced to consider, as space of parameters U, the space of $d^{2} / 2$-concave functions, and these arguments do not seem to be applicable, because the "geometry" of this space is harder.

The Caracciolo-Parisi ansatz

In a recent work (Scaling hypothesis for the Euclidean bipartite matching problem, Physical Review E, 2014), Caracciolo-Lucibello-Parisi-Sicuro used a specific ansatz to make predictions on the expansion of $\mathbb{E}\left(W_{p}^{p}\left(\rho_{0}, \rho_{1}\right)\right)$, in the case $D=\mathbb{T}^{d}$.

The Caracciolo-Parisi ansatz

In a recent work (Scaling hypothesis for the Euclidean bipartite matching problem, Physical Review E, 2014), Caracciolo-Lucibello-Parisi-Sicuro used a specific ansatz to make predictions on the expansion of $\mathbb{E}\left(W_{p}^{p}\left(\rho_{0}, \rho_{1}\right)\right)$, in the case $D=\mathbb{T}^{d}$.
Predictions:
$\frac{\mathbb{E}\left(W_{p}^{p}\left(\rho_{0}, \rho_{1}\right)\right)}{N^{-p / d}} \sim\left\{\begin{array}{l}\text { for } d=1, O\left(N^{p / 2}\right) \text { and } \frac{N}{6} \text { for } p=2 ; \\ \text { for } d=2, O\left((\log N)^{p / 2}\right), \text { and } \frac{1}{2 \pi} \log N+e_{2,2} \text { for } p=2 ; \\ \text { for } d>2, e_{p, d}+O\left(N^{(2-d) / d}\right) ; \\ \text { for } d>2 \text { and } p=2, e_{2, d}+\frac{\zeta_{d}(1)}{2 \pi^{2}} N^{(2-d) / d} .\end{array}\right.$

The Caracciolo-Parisi ansatz

In a recent work (Scaling hypothesis for the Euclidean bipartite matching problem, Physical Review E, 2014), Caracciolo-Lucibello-Parisi-Sicuro used a specific ansatz to make predictions on the expansion of $\mathbb{E}\left(W_{p}^{p}\left(\rho_{0}, \rho_{1}\right)\right)$, in the case $D=\mathbb{T}^{d}$.

Predictions:
$\frac{\mathbb{E}\left(W_{p}^{p}\left(\rho_{0}, \rho_{1}\right)\right)}{N^{-p / d}} \sim\left\{\begin{array}{l}\text { for } d=1, O\left(N^{p / 2}\right) \text { and } \frac{N}{6} \text { for } p=2 ; \\ \text { for } d=2, O\left((\log N)^{p / 2}\right), \text { and } \frac{1}{2 \pi} \log N+e_{2,2} \text { for } p=2 ; \\ \text { for } d>2, e_{p, d}+O\left(N^{(2-d) / d}\right) ; \\ \text { for } d>2 \text { and } p=2, e_{2, d}+\frac{\zeta_{d}(1)}{2 \pi^{2}} N^{(2-d) / d} .\end{array}\right.$

The correctedness of the constants in blue, relative to W_{2} and computed with the ansatz, has also been validated numerically (ζ_{d} is the so-called Epstein function).

The Caracciolo-Parisi ansatz

In a recent work (Scaling hypothesis for the Euclidean bipartite matching problem, Physical Review E, 2014), Caracciolo-Lucibello-Parisi-Sicuro used a specific ansatz to make predictions on the expansion of $\mathbb{E}\left(W_{p}^{p}\left(\rho_{0}, \rho_{1}\right)\right)$, in the case $D=\mathbb{T}^{d}$.

Predictions:
$\frac{\mathbb{E}\left(W_{p}^{p}\left(\rho_{0}, \rho_{1}\right)\right)}{N^{-p / d}} \sim\left\{\begin{array}{l}\text { for } d=1, O\left(N^{p / 2}\right) \text { and } \frac{N}{6} \text { for } p=2 ; \\ \text { for } d=2, O\left((\log N)^{p / 2}\right), \text { and } \frac{1}{2 \pi} \log N+e_{2,2} \text { for } p=2 ; \\ \text { for } d>2, e_{p, d}+O\left(N^{(2-d) / d}\right) ; \\ \text { for } d>2 \text { and } p=2, e_{2, d}+\frac{\zeta_{d}(1)}{2 \pi^{2}} N^{(2-d) / d} .\end{array}\right.$

The correctedness of the constants in blue, relative to W_{2} and computed with the ansatz, has also been validated numerically (ζ_{d} is the so-called Epstein function). However, the method does not predict the constant in the leading order term with $d>2$!

The Caracciolo-Parisi ansatz

These predictions are obtained by linearizing in C^{1} topology the Monge-Ampére equation

$$
\operatorname{det} \nabla^{2} \psi=\frac{\rho_{0}}{\rho_{1} \circ \nabla \psi}
$$

(which describes the optimal map from ρ_{0} to ρ_{1}) around $\rho_{0}=\rho_{1}=1$, thus writing $\psi=I d+\nabla \phi$ one obtains

$$
-\Delta \phi=\rho_{1}-\rho_{0}
$$

The Caracciolo-Parisi ansatz

These predictions are obtained by linearizing in C^{1} topology the Monge-Ampére equation

$$
\operatorname{det} \nabla^{2} \psi=\frac{\rho_{0}}{\rho_{1} \circ \nabla \psi}
$$

(which describes the optimal map from ρ_{0} to ρ_{1}) around $\rho_{0}=\rho_{1}=1$, thus writing $\psi=I d+\nabla \phi$ one obtains

$$
-\Delta \phi=\rho_{1}-\rho_{0}
$$

The ansatz says that $\nabla \phi$ should be "close" to the optimal displacement map and the predictions come from the computation of $\mathbb{E}\left(|\nabla \phi|^{2}\right)$, in discrete Fourier variables:

$$
\mathbb{E}\left(\int|\nabla \phi|^{2}\right)=\mathbb{E}\left(\sum_{\mathbf{n} \in \mathbb{Z}^{d} \backslash\{0\}} \frac{\left|\rho_{1, \mathbf{n}}-\rho_{0, \mathbf{n}}\right|^{2}}{4 \pi^{2}|\mathbf{n}|^{2}}\right)
$$

The Caracciolo-Parisi ansatz

These predictions are obtained by linearizing in C^{1} topology the Monge-Ampére equation

$$
\operatorname{det} \nabla^{2} \psi=\frac{\rho_{0}}{\rho_{1} \circ \nabla \psi}
$$

(which describes the optimal map from ρ_{0} to ρ_{1}) around $\rho_{0}=\rho_{1}=1$, thus writing $\psi=I d+\nabla \phi$ one obtains

$$
-\Delta \phi=\rho_{1}-\rho_{0}
$$

The ansatz says that $\nabla \phi$ should be "close" to the optimal displacement map and the predictions come from the computation of $\mathbb{E}\left(|\nabla \phi|^{2}\right)$, in discrete Fourier variables:

$$
\mathbb{E}\left(\int|\nabla \phi|^{2}\right)=\mathbb{E}\left(\sum_{\mathbf{n} \in \mathbb{Z}^{d} \backslash\{0\}} \frac{\left|\rho_{1, \mathbf{n}}-\rho_{0, \mathbf{n}}\right|^{2}}{4 \pi^{2}|\mathbf{n}|^{2}}\right)
$$

But, the empirical measures ρ_{0} and ρ_{1} do not belong to $H^{-1}\left(\mathbb{T}^{d}\right)$ as soon as $d>1$, hence this energy is infinite for every ω !

The Caracciolo-Parisi ansatz

By mathematical standards, the proof of these predictions is not rigorous, first of all because of the appearence of divergent quantities, but also because in any case the ansatz does not provide a coupling between ρ_{0} and ρ_{1}, only an approximate one, in some sense.

The Caracciolo-Parisi ansatz

By mathematical standards, the proof of these predictions is not rigorous, first of all because of the appearence of divergent quantities, but also because in any case the ansatz does not provide a coupling between ρ_{0} and ρ_{1}, only an approximate one, in some sense.
In any case, even if this were an exact coupling, the necessity of lower bounds (or the necessity to estimate how close it is to being optimal) remains.

Main result

Theorem. Let D be a smooth, closed, 2-dimensional Riemannian manifold with finite volume. Then, if \boldsymbol{m} is the normalization of Riemannian volume measure, one has

$$
\lim _{N \rightarrow \infty} \frac{N}{\log N} \mathbb{E}\left(W_{2}^{2}\left(\sum_{i=1}^{N} \frac{1}{N} \delta_{X_{i}}, \boldsymbol{m}\right)\right)=\frac{\boldsymbol{m}(D)}{4 \pi} .
$$

Main result

Theorem. Let D be a smooth, closed, 2-dimensional Riemannian manifold with finite volume. Then, if \boldsymbol{m} is the normalization of Riemannian volume measure, one has

$$
\lim _{N \rightarrow \infty} \frac{N}{\log N} \mathbb{E}\left(W_{2}^{2}\left(\sum_{i=1}^{N} \frac{1}{N} \delta_{X_{i}}, \boldsymbol{m}\right)\right)=\frac{\boldsymbol{m}(D)}{4 \pi} .
$$

An analogous result is proved in the $1-d$ case.

Main result

Theorem. Let D be a smooth, closed, 2-dimensional Riemannian manifold with finite volume. Then, if \boldsymbol{m} is the normalization of Riemannian volume measure, one has

$$
\lim _{N \rightarrow \infty} \frac{N}{\log N} \mathbb{E}\left(W_{2}^{2}\left(\sum_{i=1}^{N} \frac{1}{N} \delta_{X_{i}}, \boldsymbol{m}\right)\right)=\frac{\boldsymbol{m}(D)}{4 \pi} .
$$

An analogous result is proved in the $1-d$ case.
The case $D=\mathbb{T}^{2}$ is included, our "PDE" proof use semigroup techniques and spectral analysis, for this reason it works for general domains.

Main result

Theorem. Let D be a smooth, closed, 2-dimensional Riemannian manifold with finite volume. Then, if \boldsymbol{m} is the normalization of Riemannian volume measure, one has

$$
\lim _{N \rightarrow \infty} \frac{N}{\log N} \mathbb{E}\left(W_{2}^{2}\left(\sum_{i=1}^{N} \frac{1}{N} \delta_{X_{i}}, \boldsymbol{m}\right)\right)=\frac{\boldsymbol{m}(D)}{4 \pi} .
$$

An analogous result is proved in the $1-d$ case.
The case $D=\mathbb{T}^{2}$ is included, our "PDE" proof use semigroup techniques and spectral analysis, for this reason it works for general domains. We also cover the case $D=(0,1)^{2}$, with a ad hoc comparison argument.

Main result

Theorem. Let D be a smooth, closed, 2-dimensional Riemannian manifold with finite volume. Then, if \boldsymbol{m} is the normalization of Riemannian volume measure, one has

$$
\lim _{N \rightarrow \infty} \frac{N}{\log N} \mathbb{E}\left(W_{2}^{2}\left(\sum_{i=1}^{N} \frac{1}{N} \delta_{X_{i}}, \boldsymbol{m}\right)\right)=\frac{\boldsymbol{m}(D)}{4 \pi} .
$$

An analogous result is proved in the $1-d$ case.
The case $D=\mathbb{T}^{2}$ is included, our "PDE" proof use semigroup techniques and spectral analysis, for this reason it works for general domains. We also cover the case $D=(0,1)^{2}$, with a ad hoc comparison argument.
Standard techniques related to the phenomenon of concentration of measure (Gaussian concentration due to Ricci lower bounds) then give also that the random variables

$$
\frac{N}{\log N} W_{2}^{2}\left(\sum_{i=1}^{N} \frac{1}{N} \delta_{X_{i}}, \boldsymbol{m}\right)
$$

converge in law to the constant $(4 \pi)^{-1} \boldsymbol{m}(D)$.

Main result

We are not yet able to attack Talagrand's problem, replacing $p=2$ by $p=1$ (more later).

We are unfortunately very far from justifying all the predictions of the paper by Caracciolo-Lucibello-Parisi-Sicuro, this seems to require a much more refined

Main result

We are not yet able to attack Talagrand's problem, replacing $p=2$ by $p=1$ (more later). Nevertheless, our method provides a new "PDE" proof of the AKT result, namely

$$
c_{p}^{-1} \frac{(\log N)^{p / 2}}{N^{p / 2}} \leq \mathbb{E}\left(W_{p}^{p}\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}, \boldsymbol{m}\right)\right) \leq c_{p} \frac{(\log N)^{p / 2}}{N^{p / 2}}
$$

Main result

We are not yet able to attack Talagrand's problem, replacing $p=2$ by $p=1$ (more later). Nevertheless, our method provides a new "PDE" proof of the AKT result, namely

$$
c_{p}^{-1} \frac{(\log N)^{p / 2}}{N^{p / 2}} \leq \mathbb{E}\left(W_{p}^{p}\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}, \boldsymbol{m}\right)\right) \leq c_{p} \frac{(\log N)^{p / 2}}{N^{p / 2}}
$$

We are unfortunately very far from justifying all the predictions of the paper by Caracciolo-Lucibello-Parisi-Sicuro, this seems to require a much more refined analysis.

Ideas from the proof: upper bound

The heuristic idea is very natural. Since we know that $\mathbb{E}\left(W_{2}^{2}\right) \sim N^{-1} \log N$ exceeds the square N of the "natural" length scale $\ell_{N} \sim N^{-1 / 2}$, we may hope to regularize just a bit the random densities $\rho \mapsto P_{t} \rho$, with $t=t_{N}=o\left(\frac{\log N}{N}\right)$, so that one can apply the deterministic estimate (in "nice" domains)

$$
W_{2}^{2}\left(P_{t} \rho, \rho\right) \leq C t=o\left(\frac{\log N}{N}\right)
$$

Ideas from the proof: upper bound

The heuristic idea is very natural. Since we know that $\mathbb{E}\left(W_{2}^{2}\right) \sim N^{-1} \log N$ exceeds the square N of the "natural" length scale $\ell_{N} \sim N^{-1 / 2}$, we may hope to regularize just a bit the random densities $\rho \mapsto P_{t} \rho$, with $t=t_{N}=o\left(\frac{\log N}{N}\right)$, so that one can apply the deterministic estimate (in "nice" domains)

$$
W_{2}^{2}\left(P_{t} \rho, \rho\right) \leq C t=o\left(\frac{\log N}{N}\right)
$$

Then, we can try to find an exact coupling between the regularized densities $P_{t} \rho_{0}$ and $P_{t} \rho_{1}$ and use the triangle inequality

$$
W_{2}\left(\rho_{0}, \rho_{1}\right) \leq W_{2}\left(\rho_{0}, P_{t} \rho_{0}\right)+W_{2}\left(P_{t} \rho_{0}, P_{t} \rho_{1}\right)+W_{2}\left(P_{t} \rho_{1}, \rho_{1}\right)
$$

to get a good upper bound on $\mathbb{E}\left(W_{2}^{2}\left(\rho_{0}, \rho_{1}\right)\right)$.

Ideas from the proof: upper bound

The heuristic idea is very natural. Since we know that $\mathbb{E}\left(W_{2}^{2}\right) \sim N^{-1} \log N$ exceeds the square N of the "natural" length scale $\ell_{N} \sim N^{-1 / 2}$, we may hope to regularize just a bit the random densities $\rho \mapsto P_{t} \rho$, with $t=t_{N}=o\left(\frac{\log N}{N}\right)$, so that one can apply the deterministic estimate (in "nice" domains)

$$
W_{2}^{2}\left(P_{t} \rho, \rho\right) \leq C t=o\left(\frac{\log N}{N}\right)
$$

Then, we can try to find an exact coupling between the regularized densities $P_{t} \rho_{0}$ and $P_{t} \rho_{1}$ and use the triangle inequality

$$
W_{2}\left(\rho_{0}, \rho_{1}\right) \leq W_{2}\left(\rho_{0}, P_{t} \rho_{0}\right)+W_{2}\left(P_{t} \rho_{0}, P_{t} \rho_{1}\right)+W_{2}\left(P_{t} \rho_{1}, \rho_{1}\right)
$$

to get a good upper bound on $\mathbb{E}\left(W_{2}^{2}\left(\rho_{0}, \rho_{1}\right)\right)$.
In order to provide a good coupling between $P_{t} \rho_{0}$ and $P_{t} \rho_{1}$ we use the Da-corogna-Moser interpolation.

Ideas from the proof: upper bound

The heuristic idea is very natural. Since we know that $\mathbb{E}\left(W_{2}^{2}\right) \sim N^{-1} \log N$ exceeds the square N of the "natural" length scale $\ell_{N} \sim N^{-1 / 2}$, we may hope to regularize just a bit the random densities $\rho \mapsto P_{t} \rho$, with $t=t_{N}=o\left(\frac{\log N}{N}\right)$, so that one can apply the deterministic estimate (in "nice" domains)

$$
W_{2}^{2}\left(P_{t} \rho, \rho\right) \leq C t=o\left(\frac{\log N}{N}\right)
$$

Then, we can try to find an exact coupling between the regularized densities $P_{t} \rho_{0}$ and $P_{t} \rho_{1}$ and use the triangle inequality

$$
W_{2}\left(\rho_{0}, \rho_{1}\right) \leq W_{2}\left(\rho_{0}, P_{t} \rho_{0}\right)+W_{2}\left(P_{t} \rho_{0}, P_{t} \rho_{1}\right)+W_{2}\left(P_{t} \rho_{1}, \rho_{1}\right)
$$

to get a good upper bound on $\mathbb{E}\left(W_{2}^{2}\left(\rho_{0}, \rho_{1}\right)\right)$.
In order to provide a good coupling between $P_{t} \rho_{0}$ and $P_{t} \rho_{1}$ we use the Da-corogna-Moser interpolation. The estimates are quite delicate because $t_{N} \rightarrow 0$, so that in the limit the measures are concentrated.

Dacorogna-Moser interpolation

Given "nice" probability densities ρ_{0}, ρ_{1}, one can find a transport map T from ρ_{0} to ρ_{1} as the solution at $t=1$ of the ODE

$$
\frac{d}{d t} \boldsymbol{X}(t, x)=\boldsymbol{b}_{t}(\boldsymbol{X}(t, x)), \quad \boldsymbol{X}(0, x)=x
$$

where the vector field \boldsymbol{b}_{t} is $\rho_{t}^{-1} \nabla \phi$ and ϕ can be found solving the elliptic PDE

$$
\begin{equation*}
-\operatorname{div}(\nabla \phi)=\rho_{1}-\rho_{0}=\frac{d}{d t} \rho_{t} \quad \text { (with Neumann b.c.) } \tag{*}
\end{equation*}
$$

with $\rho_{t}=(1-t) \rho_{0}+t \rho_{1}$.

Dacorogna-Moser interpolation

Given "nice" probability densities ρ_{0}, ρ_{1}, one can find a transport map T from ρ_{0} to ρ_{1} as the solution at $t=1$ of the ODE

$$
\frac{d}{d t} \boldsymbol{X}(t, x)=\boldsymbol{b}_{t}(\boldsymbol{X}(t, x)), \quad \boldsymbol{X}(0, x)=x
$$

where the vector field \boldsymbol{b}_{t} is $\rho_{t}^{-1} \nabla \phi$ and ϕ can be found solving the elliptic PDE

$$
\begin{equation*}
-\operatorname{div}(\nabla \phi)=\rho_{1}-\rho_{0}=\frac{d}{d t} \rho_{t} \quad \text { (with Neumann b.c.) } \tag{*}
\end{equation*}
$$

with $\rho_{t}=(1-t) \rho_{0}+t \rho_{1}$.
The reason (and the link with Benamou-Brenier) is that, since $\boldsymbol{b}_{t} \rho_{t}=-\nabla \phi$, the equation $\left(^{*}\right)$ above can be written in the form of continuity equation:

$$
\frac{d}{d t} \rho_{t}+\operatorname{div}\left(\boldsymbol{b}_{t} \rho_{t}\right)=0
$$

Dacorogna-Moser interpolation

One has then, with simple computations,

$$
\begin{aligned}
W_{2}^{2}\left(\rho_{0}, \rho_{1}\right) & \leq \int|T(x)-x|^{2} \rho_{0}(x) d \boldsymbol{m}(x) \leq \int_{0}^{1}\left(\int \frac{|\nabla \phi|^{2}}{\rho_{t}} d \boldsymbol{m}\right) d t \\
& =\iint_{0}^{1} \frac{1}{(1-t) \rho_{0}+t \rho_{1}} d t|\nabla \phi|^{2} d \boldsymbol{m}=\int \frac{|\nabla \phi|^{2}}{M\left(\rho_{0}, \rho_{1}\right)} d \boldsymbol{m}
\end{aligned}
$$

Dacorogna-Moser interpolation

One has then, with simple computations,

$$
\begin{aligned}
W_{2}^{2}\left(\rho_{0}, \rho_{1}\right) & \leq \int|T(x)-x|^{2} \rho_{0}(x) d \boldsymbol{m}(x) \leq \int_{0}^{1}\left(\int \frac{|\nabla \phi|^{2}}{\rho_{t}} d \boldsymbol{m}\right) d t \\
& =\iint_{0}^{1} \frac{1}{(1-t) \rho_{0}+t \rho_{1}} d t|\nabla \phi|^{2} d \boldsymbol{m}=\int \frac{|\nabla \phi|^{2}}{M\left(\rho_{0}, \rho_{1}\right)} d \boldsymbol{m}
\end{aligned}
$$

The quantity $M(a, b)=(a-b) /(\log a-\log b)$ above is the so-called logarithmic mean of a and b.

Ideas from the proof: upper bound

Eventually, with some computations based on semigroup techniques we find:

$$
\begin{aligned}
\frac{N}{\log N} \mathbb{E}\left(W_{2}^{2}\left(\rho_{0}, \rho_{1}\right)\right) & \lesssim \frac{N}{\log N} E\left(\int \frac{|\nabla \phi|^{2}}{M\left(\rho_{0}, \rho_{1}\right)} d \boldsymbol{m}\right) \\
& \sim \frac{N}{\log N} E\left(\int|\nabla \phi|^{2} d \boldsymbol{m}\right) \\
& \sim \frac{2}{\log N} \int_{1 / N}^{\infty}\left(\int p_{2 t}(x, x) d \boldsymbol{m}(x)-1\right) d t .
\end{aligned}
$$

Ideas from the proof: upper bound

Eventually, with some computations based on semigroup techniques we find:

$$
\begin{aligned}
\frac{N}{\log N} \mathbb{E}\left(W_{2}^{2}\left(\rho_{0}, \rho_{1}\right)\right) & \lesssim \frac{N}{\log N} E\left(\int \frac{|\nabla \phi|^{2}}{M\left(\rho_{0}, \rho_{1}\right)} d \boldsymbol{m}\right) \\
& \sim \frac{N}{\log N} E\left(\int|\nabla \phi|^{2} d \boldsymbol{m}\right) \\
& \sim \frac{2}{\log N} \int_{1 / N}^{\infty}\left(\int p_{2 t}(x, x) d \boldsymbol{m}(x)-1\right) d t
\end{aligned}
$$

The crucial quantity in this formula is $T(s):=\int p_{s}(x, x) d \boldsymbol{m}(x)$, which is related to the spectrum $\sigma(\Delta)$ of Δ by the trace formula

$$
T(s)=\sum_{\lambda \in \sigma(\Delta)} e^{\lambda s}
$$

(it is sufficient to write $p_{t}(x, y)=\sum_{\lambda} e^{\lambda t} f_{\lambda}(x) f_{\lambda}(y)$ with $y=x$ and integrate).

Ideas from the proof: upper bound

It turns out that the relevant limit is
$\lim _{N} \frac{2}{\log N} \int_{1 / N}^{\infty}\left(\int p_{2 t}(x, x) d \boldsymbol{m}(x)-1\right) d t=\lim _{N} \frac{2}{\log N} \int_{1 / N}^{\infty} \sum_{\lambda \in \sigma(\Delta) \backslash\{0\}} e^{2 \lambda t} d t$.

Ideas from the proof: upper bound

It turns out that the relevant limit is
$\lim _{N} \frac{2}{\log N} \int_{1 / N}^{\infty}\left(\int p_{2 t}(x, x) d \boldsymbol{m}(x)-1\right) d t=\lim _{N} \frac{2}{\log N} \int_{1 / N}^{\infty} \sum_{\lambda \in \sigma(\Delta) \backslash\{0\}} e^{2 \lambda t} d t$.
One can then use the asymptotic formula (McKean, Brown)

$$
T(s)=\frac{1}{4 \pi s}\left(\boldsymbol{m}(D)-\frac{\sqrt{\pi s}}{2} \mathscr{H}^{1}(\partial D)+o(\sqrt{s})\right) \quad \text { as } s \rightarrow 0
$$

to compute the limit (we assume $\boldsymbol{m}(D)=1$) to get

$$
\limsup _{N \rightarrow \infty} \frac{N}{\log N} \mathbb{E}\left(W_{2}^{2}\left(\sum_{i=1}^{N} \frac{1}{N} \delta_{X_{i}}, \boldsymbol{m}\right)\right) \leq \frac{1}{4 \pi}
$$

and similarly

$$
\limsup _{N \rightarrow \infty} \frac{N}{\log N} \mathbb{E}\left(W_{2}^{2}\left(\sum_{i=1}^{N} \frac{1}{N} \delta_{X_{i}}, \sum_{i=1}^{N} \frac{1}{N} \delta_{Y_{i}}\right)\right) \leq \frac{1}{2 \pi}
$$

in agreement with the constants found numerically.

Ideas from the proof: lower bound

In the proof of the lower bound we use that D has no boundary, and let's assume that one of the densities, say ρ_{1}, is 1 , we set $\rho_{0}=\rho$.

For the lower bound it is natural to use Kantorovich duality: for any map ϕ one

where $Q_{t} \phi$ is given by the Hopf-Lax formula

the lower bound from below, getting the term we had in the upper bound:

Ideas from the proof: lower bound

In the proof of the lower bound we use that D has no boundary, and let's assume that one of the densities, say ρ_{1}, is 1 , we set $\rho_{0}=\rho$.
For the lower bound it is natural to use Kantorovich duality: for any map ϕ one has

$$
\frac{1}{2} W_{2}^{2}(\rho, 1) \geq-\int \phi \rho d \boldsymbol{m}+\int Q_{1} \phi d \boldsymbol{m}
$$

where $Q_{t} \phi$ is given by the Hopf-Lax formula

$$
Q_{t} \phi(y):=\inf _{x \in D} \phi(x)+\frac{1}{2 t} d^{2}(x, y) \quad \text { solving } \quad \frac{d}{d t} Q_{t} \phi+\frac{1}{2}\left|\nabla Q_{t} \phi\right|^{2}=0
$$

Ideas from the proof: lower bound

In the proof of the lower bound we use that D has no boundary, and let's assume that one of the densities, say ρ_{1}, is 1 , we set $\rho_{0}=\rho$.
For the lower bound it is natural to use Kantorovich duality: for any map ϕ one has

$$
\frac{1}{2} W_{2}^{2}(\rho, 1) \geq-\int \phi \rho d \boldsymbol{m}+\int Q_{1} \phi d \boldsymbol{m}
$$

where $Q_{t} \phi$ is given by the Hopf-Lax formula

$$
Q_{t} \phi(y):=\inf _{x \in D} \phi(x)+\frac{1}{2 t} d^{2}(x, y) \quad \text { solving } \quad \frac{d}{d t} Q_{t} \phi+\frac{1}{2}\left|\nabla Q_{t} \phi\right|^{2}=0 .
$$

If we choose ϕ with the ansatz, namely $-\Delta \phi=1-\rho$, let us try to estimate the lower bound from below, getting the term we had in the upper bound:

$$
\begin{aligned}
-\int \phi \rho d \boldsymbol{m}+\int Q_{1} \phi d \boldsymbol{m} & =\int \phi(1-\rho) d \boldsymbol{m}+\int\left(Q_{1} \phi-\phi\right) d \boldsymbol{m} \\
& =\int|\nabla \phi|^{2} d \boldsymbol{m}-\frac{1}{2} \int_{0}^{1} \int\left|\nabla Q_{s} \phi\right|^{2} d \boldsymbol{m} d s
\end{aligned}
$$

Ideas from the proof: lower bound

$$
\begin{aligned}
-\int \phi \rho d \boldsymbol{m}+\int Q_{1} \phi d \boldsymbol{m} & =\int \phi(1-\rho) d \boldsymbol{m}+\int\left(Q_{1} \phi-\phi\right) d \boldsymbol{m} \\
& =\int|\nabla \phi|^{2} d \boldsymbol{m}-\frac{1}{2} \int_{0}^{1} \int\left|\nabla Q_{s} \phi\right|^{2} d \boldsymbol{m} d s \\
& \gtrsim \int|\nabla \phi|^{2} d \boldsymbol{m}-\frac{1}{2} \int|\nabla \phi|^{2} d \boldsymbol{m} \\
& =\frac{1}{2} \int|\nabla \phi|^{2} d \boldsymbol{m},
\end{aligned}
$$

where the last step is justified by the estimate

$$
\int\left|\nabla Q_{s} \phi\right|^{2} d \boldsymbol{m} \leq\left(1+O\left(\|\Delta \phi\|_{\infty}\right)\right) \int|\nabla \phi|^{2} d \boldsymbol{m} .
$$

Ideas from the proof: lower bound

$$
\begin{aligned}
-\int \phi \rho d \boldsymbol{m}+\int Q_{1} \phi d \boldsymbol{m} & =\int \phi(1-\rho) d \boldsymbol{m}+\int\left(Q_{1} \phi-\phi\right) d \boldsymbol{m} \\
& =\int|\nabla \phi|^{2} d \boldsymbol{m}-\frac{1}{2} \int_{0}^{1} \int\left|\nabla Q_{s} \phi\right|^{2} d \boldsymbol{m} d s \\
& \gtrsim \int|\nabla \phi|^{2} d \boldsymbol{m}-\frac{1}{2} \int|\nabla \phi|^{2} d \boldsymbol{m} \\
& =\frac{1}{2} \int|\nabla \phi|^{2} d \boldsymbol{m},
\end{aligned}
$$

where the last step is justified by the estimate

$$
\int\left|\nabla Q_{s} \phi\right|^{2} d \boldsymbol{m} \leq\left(1+O\left(\|\Delta \phi\|_{\infty}\right)\right) \int|\nabla \phi|^{2} d \boldsymbol{m} .
$$

For instance, if D has nonnegative Ricci curvature, it comes from

$$
\int\left|\nabla Q_{s} \phi\right|^{2} d \boldsymbol{m} \leq e^{s\|\Delta \phi\|_{\infty}} \int|\nabla \phi|^{2} d \boldsymbol{m}
$$

Ideas from the proof: lower bound

Recalling that ϕ solves the random PDE

$$
-\Delta \phi=1-\rho,
$$

we need to show that $1-\rho$ is small in L^{∞} with high probability.
This is the hardest part of the proof that prevents, for instance, the extension to

Ideas from the proof: lower bound

Recalling that ϕ solves the random PDE

$$
-\Delta \phi=1-\rho,
$$

we need to show that $1-\rho$ is small in L^{∞} with high probability.
This is the hardest part of the proof that prevents, for instance, the extension to Gaussian spaces.

Ideas from the proof: lower bound

The actual proof is a bit different, because $Q_{t} \phi$ is not so smooth. Hence, to prove the apriori estimates above on $\int\left|\nabla Q_{s} \phi\right|^{2}$ we use the regularized HJ equation

$$
\frac{d}{d t} f_{t}+\frac{1}{2}\left|\nabla f_{t}\right|^{2}=\sigma \Delta f_{t}, \quad f_{0}=f
$$

whose solution is explicitly given by the Hopf-Cole transform

$$
f_{t}=-\sigma \log \left(P_{\sigma t} e^{-f / \sigma}\right)
$$

and let $\sigma \rightarrow 0^{+}$(here we need that D has no boundary).

Ideas from the proof: lower bound

The actual proof is a bit different, because $Q_{t} \phi$ is not so smooth. Hence, to prove the apriori estimates above on $\int\left|\nabla Q_{s} \phi\right|^{2}$ we use the regularized HJ equation

$$
\frac{d}{d t} f_{t}+\frac{1}{2}\left|\nabla f_{t}\right|^{2}=\sigma \Delta f_{t}, \quad f_{0}=f
$$

whose solution is explicitly given by the Hopf-Cole transform

$$
f_{t}=-\sigma \log \left(P_{\sigma t} e^{-f / \sigma}\right)
$$

and let $\sigma \rightarrow 0^{+}$(here we need that D has no boundary).
Finally we achieve the case $D=(0,1)^{2}$ using the fact that the distance on the torus is smaller than the the distance on $(0,1)^{2}$, and that the proof of the upper bound works also for domains with boundary.

Ideas from the proof: lower bound

The actual proof is a bit different, because $Q_{t} \phi$ is not so smooth. Hence, to prove the apriori estimates above on $\int\left|\nabla Q_{s} \phi\right|^{2}$ we use the regularized HJ equation

$$
\frac{d}{d t} f_{t}+\frac{1}{2}\left|\nabla f_{t}\right|^{2}=\sigma \Delta f_{t}, \quad f_{0}=f
$$

whose solution is explicitly given by the Hopf-Cole transform

$$
f_{t}=-\sigma \log \left(P_{\sigma t} e^{-f / \sigma}\right)
$$

and let $\sigma \rightarrow 0^{+}$(here we need that D has no boundary).
Finally we achieve the case $D=(0,1)^{2}$ using the fact that the distance on the torus is smaller than the the distance on $(0,1)^{2}$, and that the proof of the upper bound works also for domains with boundary. Therefore a lower bound for \mathbb{T}^{2} and an upper bound for $(0,1)^{2}$ provide the result for both.

The bipartite case

In the case of bipartite matching (N blue points, N red points) we expect

$$
\mathbb{E}\left(W_{2}^{2}\left(\frac{1}{N} \sum_{i} \delta_{X_{i}}, \frac{1}{N} \sum_{i} \delta_{Y_{i}}\right)\right) \sim 2 \mathbb{E}\left(W_{2}^{2}\left(\frac{1}{N} \sum_{i} \delta_{X_{i}}, \boldsymbol{m}\right)\right) .
$$

and, since the "vectors" a and b pointing from \boldsymbol{m} to the random measures

 are indenendent on average the cosine term shomld oive
The bipartite case

In the case of bipartite matching (N blue points, N red points) we expect

$$
\mathbb{E}\left(W_{2}^{2}\left(\frac{1}{N} \sum_{i} \delta_{X_{i}}, \frac{1}{N} \sum_{i} \delta_{Y_{i}}\right)\right) \sim 2 \mathbb{E}\left(W_{2}^{2}\left(\frac{1}{N} \sum_{i} \delta_{X_{i}}, \boldsymbol{m}\right)\right)
$$

The heuristic argument is that on small scales $\mathscr{P}_{2}(D)$ is Hilbertian, so that

$$
|a+b|^{2} \sim|a|^{2}+|b|^{2}+2|a||b| \cos \theta
$$

and, since the "vectors" a and b pointing from \boldsymbol{m} to the random measures $\frac{1}{N} \sum_{i} \delta_{X_{i}}, \frac{1}{N} \sum_{i} \delta_{Y_{i}}$ are independent, on average the cosine term should give a null contribution.

The bipartite case

In the case of bipartite matching (N blue points, N red points) we expect

$$
\mathbb{E}\left(W_{2}^{2}\left(\frac{1}{N} \sum_{i} \delta_{X_{i}}, \frac{1}{N} \sum_{i} \delta_{Y_{i}}\right)\right) \sim 2 \mathbb{E}\left(W_{2}^{2}\left(\frac{1}{N} \sum_{i} \delta_{X_{i}}, \boldsymbol{m}\right)\right)
$$

The heuristic argument is that on small scales $\mathscr{P}_{2}(D)$ is Hilbertian, so that

$$
|a+b|^{2} \sim|a|^{2}+|b|^{2}+2|a||b| \cos \theta
$$

and, since the "vectors" a and b pointing from \boldsymbol{m} to the random measures $\frac{1}{N} \sum_{i} \delta_{X_{i}}, \frac{1}{N} \sum_{i} \delta_{Y_{i}}$ are independent, on average the cosine term should give a null contribution.
We have been able to turn this heuristic argument into a proof (the inequality \gtrsim is the hardest one).

Open problems: the case $p=1$

This is the problem raised in Talagrand's book.

transport (Evans-Gangbo)

where $a \geq 0$ is the transport density, and to its q-Laplacian approximation,

Open problems: the case $p=1$

This is the problem raised in Talagrand's book. If we want to attack even this one by PDE methods, we should go back to the PDE formulation of optimal transport (Evans-Gangbo)

$$
\left\{\begin{array}{l}
-\operatorname{div}(a \nabla u)=\rho_{1}-\rho_{0} \\
|\nabla u| \leq 1, a(1-|\nabla u|)=0
\end{array}\right.
$$

where $a \geq 0$ is the transport density, and to its q-Laplacian approximation, $q \rightarrow \infty$:

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(|\nabla u|^{q-2} \nabla u\right)=\rho_{1}-\rho_{0} \\
\frac{\partial u}{\partial n}=0
\end{array}\right.
$$

Open problems: the case $p=1$

This is the problem raised in Talagrand's book. If we want to attack even this one by PDE methods, we should go back to the PDE formulation of optimal transport (Evans-Gangbo)

$$
\left\{\begin{array}{l}
-\operatorname{div}(a \nabla u)=\rho_{1}-\rho_{0} \\
|\nabla u| \leq 1, a(1-|\nabla u|)=0
\end{array}\right.
$$

where $a \geq 0$ is the transport density, and to its q-Laplacian approximation, $q \rightarrow \infty$:

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(|\nabla u|^{q-2} \nabla u\right)=\rho_{1}-\rho_{0} \\
\frac{\partial u}{\partial n}=0
\end{array}\right.
$$

Can we get sufficiently sharp estimates?

Open problems: the case $p=1$

This is the problem raised in Talagrand's book. If we want to attack even this one by PDE methods, we should go back to the PDE formulation of optimal transport (Evans-Gangbo)

$$
\left\{\begin{array}{l}
-\operatorname{div}(a \nabla u)=\rho_{1}-\rho_{0} \\
|\nabla u| \leq 1, a(1-|\nabla u|)=0
\end{array}\right.
$$

where $a \geq 0$ is the transport density, and to its q-Laplacian approximation, $q \rightarrow \infty$:

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(|\nabla u|^{q-2} \nabla u\right)=\rho_{1}-\rho_{0} \\
\frac{\partial u}{\partial n}=0
\end{array}\right.
$$

Can we get sufficiently sharp estimates?
Does independence in the r.h.s. of this random PDE lead to convergence of the expectations?

Open problems: the case $p=1$

This is the problem raised in Talagrand's book. If we want to attack even this one by PDE methods, we should go back to the PDE formulation of optimal transport (Evans-Gangbo)

$$
\left\{\begin{array}{l}
-\operatorname{div}(a \nabla u)=\rho_{1}-\rho_{0} \\
|\nabla u| \leq 1, a(1-|\nabla u|)=0
\end{array}\right.
$$

where $a \geq 0$ is the transport density, and to its q-Laplacian approximation, $q \rightarrow \infty$:

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(|\nabla u|^{q-2} \nabla u\right)=\rho_{1}-\rho_{0} \\
\frac{\partial u}{\partial n}=0
\end{array}\right.
$$

Can we get sufficiently sharp estimates?
Does independence in the r.h.s. of this random PDE lead to convergence of the expectations? This is less clear, for the moment.

More open problems

Even in the case $p=2, D=\mathbb{T}^{d}$, there many more open (at least for mathematicians) questions, with formal proofs and computations in the physics literature:

- For $d>2$, prove with this method existence of the limit

More open problems

Even in the case $p=2, D=\mathbb{T}^{d}$, there many more open (at least for mathematicians) questions, with formal proofs and computations in the physics literature:

- For $D=\mathbb{T}^{2}$ prove

$$
\lim _{n \rightarrow \infty}\left(\frac{n}{\log n} \mathbb{E}\left[W_{2}^{2}\left(\mu^{n}, \nu^{n}\right)\right]-\frac{1}{2 \pi}\right) \log n \in \mathbb{R} .
$$

- For $d>2$, prove with this method existence of the limit

More open problems

Even in the case $p=2, D=\mathbb{T}^{d}$, there many more open (at least for mathematicians) questions, with formal proofs and computations in the physics literature:

- For $D=\mathbb{T}^{2}$ prove

$$
\lim _{n \rightarrow \infty}\left(\frac{n}{\log n} \mathbb{E}\left[W_{2}^{2}\left(\mu^{n}, \nu^{n}\right)\right]-\frac{1}{2 \pi}\right) \log n \in \mathbb{R} .
$$

- For $d>2$, prove with this method existence of the limit

$$
\lim _{N \rightarrow \infty} N^{d / 2} \mathbb{E}\left(W_{2}^{2}\left(\frac{1}{N} \sum_{i} \delta_{X_{i}}, \boldsymbol{m}\right)\right)
$$

In this case we lose the extra room granted in 2- d by the logarithmic correction.

More open problems

Even in the case $p=2, D=\mathbb{T}^{d}$, there many more open (at least for mathematicians) questions, with formal proofs and computations in the physics literature:

- For $D=\mathbb{T}^{2}$ prove

$$
\lim _{n \rightarrow \infty}\left(\frac{n}{\log n} \mathbb{E}\left[W_{2}^{2}\left(\mu^{n}, \nu^{n}\right)\right]-\frac{1}{2 \pi}\right) \log n \in \mathbb{R} .
$$

- For $d>2$, prove with this method existence of the limit

$$
\lim _{N \rightarrow \infty} N^{d / 2} \mathbb{E}\left(W_{2}^{2}\left(\frac{1}{N} \sum_{i} \delta_{X_{i}}, \boldsymbol{m}\right)\right)
$$

In this case we lose the extra room granted in 2- d by the logarithmic correction. We know from Barthe-Bordenave that the limit exists for $d \geq 5$.

More open problems

- What happens in the Gaussian case, i.e. when \boldsymbol{m} is the standard Gaussian in \mathbb{R}^{d} ?

simulations show that still

More open problems

- What happens in the Gaussian case, i.e. when \boldsymbol{m} is the standard Gaussian in \mathbb{R}^{d} ? Not yet clear, because of the lack of compactness.

More open problems

- What happens in the Gaussian case, i.e. when \boldsymbol{m} is the standard Gaussian in \mathbb{R}^{d} ? Not yet clear, because of the lack of compactness. For $d=1$, one has $N^{-1} \log \log N \lesssim \mathbb{E}\left(W_{2}^{2}\right) \lesssim N^{-1} \log \log N$ (Bobkov-Ledoux), while numerical simulations show that still

$$
\mathbb{E}\left(W_{2}^{2}\left(\frac{1}{N} \sum_{i} \delta_{X_{i}}, \boldsymbol{m}\right)\right) \sim \frac{\log N}{N}
$$

in the case $d=2$.

Thank you for the attention!

Slides available upon request

