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The Ginzburg-Landau equations

u:QcR2 > C

—Au = E%(l —|ul*)| Ginzburg-Landau equation (GL)

Oru = Au —|— (1 — |u|?)| parabolic GL equation (PGL)

i0ru = Au + (1 — |u[?)| Gross-Pitaevskii equation (GP)

L rup s G5

Models: superconductivity, superfluidity, Bose-Einstein condensates,
nonlinear optics

Associated energy



Vortices

v

in general |u| <1, |u| ~ 1 = superconducting/superfluid phase,
|u| ~ 0 = normal phase

v

u has zeroes with nonzero degrees = vortices

v

u = pe'#, characteristic length scale of {p < 1} is & = vortex core
size

v

degree of the vortex at xp:

1 0
= % _dez
2w 8B(xo,r) or

v

In the limit € — 0 vortices become points, (or curves in dimension
3).



Solutions of (GL), bounded number N of vortices

» [Bethuel-Brezis-Hélein '94]
ue. minimizing E. has vortices all of degree +1 (or all —1) which
converge to a minimizer of

W((x1,d1),...,(xn,dn)) = -7 Z d;d; log | xj—x;j|+boundary terms...
i#)
“renormalized energy"”, Kirchhoff-Onsager energy (in the whole

plane)
minimal energy

min E. = whN|loge| + min W +0(1) as € =0

» Some boundary condition needed to obtain nontrivial minimizers
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» [Bethuel-Brezis-Hélein '94]
ue. minimizing E. has vortices all of degree +1 (or all —1) which
converge to a minimizer of

W((x1,d1),...,(xn,dn)) = -7 Z d;d; log | xj—x;j|+boundary terms...
i#)
“renormalized energy"”, Kirchhoff-Onsager energy (in the whole

plane)
minimal energy

min E. = whN|loge| + min W +0(1) as € =0

» Some boundary condition needed to obtain nontrivial minimizers
» nonminimizing solutions: wu. has vortices which converge to a critical
point of W:
VW({x})=0 Vi=1,--N
[Bethuel-Brezis-Hélein '94]
» stable solutions converge to stable critical points of W [S. '05]



Dynamics, bounded number N of vortices

v

For well-prepared initial data, d; = +1, solutions to (PGL) have
vortices which converge (after some time-rescaling) to solutions to

dX,'
E = —V,-W(xl, e ,XN)

[Lin "96, Jerrard-Soner '98, Lin-Xin '99, Spirn '02, Sandier-S '04]

» For well-prepared initial data, d; = £1, solutions to (GP)
dxi L 1
E = 7V,~ W(Xl,...,XN) V = (*82,31)

[Colliander-Jerrard '98, Spirn '03, Bethuel-Jerrard-Smets '08]

All these hold up to collision time

v

v

For (PGL), extensions beyond collision time and for ill-prepared data
[Bethuel-Orlandi-Smets '05-07, S. '07]



Vorticity

» In the case N. — oo, describe the vortices via the vorticity :
supercurrent

J- = (iu, Vu.) (a, b) := %(31_3+ ab)

vorticity
le = curl jo

> = vorticity in fluids, but quantized: jic >~ 27}, didae

7 . .
> ST T signed measure, or probability measure,



Mean-field limit for stationary solutions

If u. is a solution to (GL) and N, > 1 then u./N. — p solution to

uVh=0 h=-A"1u

in a suitable weak sense (~ Delort):

1 .
Ti:==Vh& Vh+ 2|Vh[S]

Weak relation is
div T, =0 in “finite parts"

[Sandier-S '04]

~> h is constant on the support of u

AN



Dynamics in the case N. > 1

Back to

|log

N, u
€|8tu =Au+ 8—2(1 — |ul?)

in R?

. u 2
iN:Oru = Au + 6—2(1 — |ul?)

in R?




Dynamics in the case N. > 1

Back to

Ne

—_— — 1 2
||og€|8 Au—|— (1 lul?) in R (PGL)

iN:Oru = Au—|— (1 — |uf?) in R?| (GP)

» For (GP), by Madelung transform, the limit dynamics is expected to
be the 2D incompressible Euler equation. Vorticity form

Orpp—div (uV*rh) =0  h=—-A"1u (EV)

» For (PGL), formal model proposed by
[Chapman-Rubinstein-Schatzman '96], [E '95]: if 4 >0

Oipp —div (uWh)=0  h=—-A"'u (CRSE)



Study of the Chapman-Rubinstein-Schatzman-E equation

» [Lin-Zhang '00, Du-Zhang '03, Masmoudi-Zhang '05] existence of
weak solutions (a la Delort) by vortex approximation method,
existence and uniqueness of L solutions, which decay in 1/t (uses
pseudo-differential operators)
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Existence of weak solutions for bounded energy initial data (i.e.

p € H™1) via the minimizing movement scheme of De Giorgi,
uniqueness in the class L, propagation of LP regularity. Takes into
account possible entrance / exit of mass via the boundary ( [, 1 not
preserved).

Extension by [Ambrosio-Mainini-S '11] for signed measures.

» [S-Vazquez '13] PDE approach in all dimension. Existence via limits
in fractional diffusion O;p + div (uVA~°u) when s — 1, uniqueness
in the class L°°, propagation of regularity, asymptotic self-similar
profile

1

=—1
wt)=—1s,



Previous rigorous convergence results

» (PGL) case : [Kurzke-Spirn '14] convergence of p./(2mwN.) to u
solving (CRSE) under assumption N, < (loglog |loge[)'/* +
well-preparedness

» (GP) case: [Jerrard-Spirn '15] convergence to u solving (EV) under
assumption N, < (log |loge|)'/? 4 well-preparedness



Previous rigorous convergence results

v

(PGL) case : [Kurzke-Spirn '14] convergence of u./(2mN;) to p
solving (CRSE) under assumption N, < (loglog |loge[)'/* +
well-preparedness

(GP) case: [Jerrard-Spirn '15] convergence to u solving (EV) under
assumption N, < (log |loge|)'/? 4 well-preparedness

both proofs “push" the fixed N proof (taking limits in the evolution
of the energy density) by making it more quantitative

difficult to go beyond these dilute regimes without controlling
distance between vortices, possible collisions, etc



Alternative method: the “modulated energy"

» Exploits the regularity and stability of the solution to the limit
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» Works for dissipative as well as conservative equations
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1 1 — [ul?2)2
wt) =5 [ 1vu-iomv(op + S0,
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Alternative method: the “modulated energy"

» Exploits the regularity and stability of the solution to the limit
equation

» Works for dissipative as well as conservative equations

» Works for gauged model as well

Let v(t) be the expected limiting velocity field (such that
N%(Vug, ius) — v and curlv = 27pu). Define the modulated energy

P + (1—\U\ )?)

)

/ |Vu— iuN.v(t)

modelled on the Ginzburg-Landau energy.
Analogy with “relative entropy" and “modulated entropy" methods
[Dafermos '79] [DiPerna '79] [Yau '91] [Brenier '00]...



Main result: Gross-Pitaevskii case

Theorem (S. '15)

Assume u. solves (GP) and let N be such that |loge| < N. < L. Letv
be a L>(R, C%) solution to the incompressible Euler equation

0;v = 2vtcurlv + Vp in R?
(IE)

divv =0 in R?,

with curlv € L>=(L1).
Let {u.}.~0 be solutions associated to initial conditions u?, with
E-(u2,0) < o(N?). Then, for every t > 0, we have

1
W(VUE, iu) = v in LL(R?).
El

Implies of course the convergence of the vorticity u./N. — curlv
Works in 3D



Main result: parabolic case

Theorem (S. '15)

Assume u. solves (PGL) and let N be such that 1 < N. < O(|logel).
Let v be a L>([0, T], C*7) solution to

o if N. < |loge| (L1)

divv=0 in R?,

{ O0yv = —2vcurlv + Vp in R?

1
o if No ~ \|loge| Oy = ~Vdiv v — 2vcurlv in R?.| (L2)

A
Assume E.(u?,0) < wN.|loge| + o(N?) and curlv(0) > 0. ThenVt < T
we have q
W<Vu5, i) = v in L (R?).

Taking the curl of the equation yields back the (CRSE) equation if
N: < |logel, but not if N;  |loge]!
Long time existence proven by [Duerinckx '16].



Proof method

» Go around the question of minimal vortex distances by using instead
the modulated energy and showing a Gronwall inequality on £.

> the proof relies on algebraic simplifications in computing <& (u.(t))
which reveal only quadratic terms

» Uses the regularity of v to bound corresponding terms

» An insight is to think of v as a spatial gauge vector and div v (resp.
p) as a temporal gauge
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The disordered case

» In real superconductors one wants to flow currents and prevent the
vortices from moving because that dissipates energy

» Model pinning and applied current by pinning potential
0 < a(x) <1 and force F

» equation reduces to

. \% .
(a+i|loge|B)0rus = Aug+%(lf|u5|2)+§~v%+/| log e| F*-Vu.+fu.

competition between vortex interaction, pinning force
Vh:= —Vloga and applied force F

» Case of finite number of vortices treated in [Tice '10], [S-Tice '11],
[Kurzke-Marzuola-Spirn '15]



Convergence to fluid-like equations

Gross-Pitaevskii case
Theorem (Duerinckx-S)

In the regime |loge| < N < % convergence of j. /N, to solutions of

v = Vp+ (—F + 2vi)curlv in R?
div (av) =0 in R?,




Parabolic case

Theorem (Duerinckx-S)

Ne
F. = \.F,a. = a* (h. = \.h)

.N5<<||Og£‘:|7 )\5 = m, c

Je/ N converges to

0;v =Vp+ (=V+h— Ft —2v)curlv in R2
divv=0 in R?,

o N. = Alloge| (A >0)

Je/ N converges to

Orv = %V(édiv (av)) + (=V*+th— FX —2v)curlv  in R

~~ vorticity evolves by
Orpe = div (Tw)
with I = pinning + applied force + interaction
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Homogenization questions

» we want to consider rapidly oscillating pinning force

n:h(x, i) ne <1

€

and scale 7. with ¢
» too difficult to take the diagonal limit . — 0 directly from GL eq.

» Instead homogenize the limiting equations
Opp=div (Tp) T=-Vth—Ft -2y

~ homogenization of nonlinear transport equations.

» easier when interaction is negligible ~» I independent of g,
washboard model

» Understand depinning current and velocity law (in v/F — F.)

» Understand thermal effects by adding noise to such systems ~~
creep, elastic effects



Sketch of proof: quantities and identities

E(u,t) == /Rz |Vu — iuN-v(t)> + % (modulated energy)
Je = (iug, V) curlj. = pe  (supercurrent and vorticity)
V. = 2(idsus, Vue) (vortex velocity)
Otje = V{iug, Orue) + Ve

Orcurl j. = O = curl V, (VEl transports the vorticity).



Sketch of proof: quantities and identities

1 1— |uf?)?
= f/ |Vu— iuNv(t)]> + ( 2|€u2| Y) (modulated energy)
Rz

Je = (iug, V) curlj. = pe  (supercurrent and vorticity)
V. = 2(idsus, Vue) (vortex velocity)

Opje = V<iuaa6tua> + Ve

Orcurl j. = O = curl V, (Vl transports the vorticity)

1
S == (Okue, Orug)— (|Vu€|2 + —(1 - |u€2)2) Ok (stress-energy tensor)

= (Okue — iug Nevg, Opue — iugNevy)

1
<|VuE iuNov|? + e 51— u5|2)2) dk “modulated stress tensor

I\)\I—l U')l



The Gross-Pitaevskii case

Time-derivative of the energy (if u. solves (GP) and v solves (IE))

d&:(uc(t), t))

:/ N (Nov — o) - OV NV, -v
dt R2 N——— ~—~

linear term  2v-+tcurlv+Vp

linear term a priori controlled by v/& ~» unsufficient
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linear term a priori controlled by v/& ~» unsufficient
But

N 1
dwi:—mwnyTMW—mw%+§M%



The Gross-Pitaevskii case

Time-derivative of the energy (if u. solves (GP) and v solves (IE))

d&:(uc(t), t))

:/ Nz (Nov — Jjo) - OV NV, -v
dt R2 N——— ~—~

linear term  2v-+tcurlv+Vp

linear term a priori controlled by v/& ~» unsufficient
But

N 1
div S, = —N.(N.v — j.) curlv — Novt e + SNV

Multiply by 2v

/ 2v -div S, :/ —No(N-v —j.) - 2vteurlv + NV, - v
Rz ]RZ

d¢ .
= = 2 Se . Vv
dt R2 ~—~ ~—~
controlled by £,  bounded

~ Gronwall OK: if £.(u-(0)) < o(N?) it remains true (vortex energy is
7N |loge| < N2 in the regime N. > |loge|)



The parabolic case

If u. solves (PGL) and v solves (L1) or (L2)

M__ - Vo— ) Oyv — -V
dt - /]Rz ||Og |‘ tu E‘ +/ (NE(N- _/-) at Nevs )

- N
div S, = ——— (0. — iu-N-, Vu, — iuoN.v)
|log e

+ N.(Nov — ) teurlv — Novt e

p=p if N <|loge| ¢ = Adiv v if not



The parabolic case

If u. solves (PGL) and v solves (L1) or (L2)

M__ - Vo— ) Oyv — -V
dt - /]Rz ||Og |‘ tu E‘ +/ (NE(N- _/-) at Nevs )

- N
div S, = ——— (0. — iu-N-, Vu, — iuoN.v)
|log e

+ N.(Nov — ) teurlv — Novt e

p=p if N <|loge| ¢ = Adiv v if not
Multiply by v* and insert:

dé.
dt

= / 25, Vvt - N.V. v — 2N, || e
RZ

N,
—/ |Or e —iu N.¢|?+2v+- (Oruc—iu-N.p, Vu.—iusNv).
R

€
2 |loge] log €|



The vortex energy N, |loge| is no longer negligible with respect to N2.
We now need to prove

dé&.
dt —

C(E. — mN-|logel|) 4+ o( N?).

Need all the tools on vortex analysis:

» vortex ball construction [Sandier '98, Jerrard '99, Sandier-S '00,
S-Tice '08]: allows to bound the energy of the vortices from below
in disjoint vortex balls B; by 7|d;|| loge| and deduce that the energy
outside of U;B; is controlled by the excess energy & — wN_|log ¢|

» “product estimate" of [Sandier-S '04] allows to control the velocity:

’/V v| < ||og5| </|8tu5 iu: N ¢|? /| Vue — iuNov) - V|2>
1
< ||og€| ( /|('9tu6 i, 5¢\2+2/| Vue — iugNev) - V|2>




d€&. =
= 2 e
dt /Rz >

D Vvt —
~—~ ~~—
< C(E: — N logel)
. s
R

NEVE -V _2N€|V|2M€
———
bounded controlled by prod. estimate
N,
|at"-’s_"Ua/\la¢|2+2vL : -
2 |loge| | log |

(Orue — iucNep, Vue — iuzNov) .

bounded by Cauchy-Schwarz




—2N5|V|2/L5

d& =
“=/ 2 S D Vvt — N. V.- v
dt R2 ~~ S~~~ ——
< C(€&: 7N | loge|) bounded  controlled by prod. estimate

N, N, : .
—/ |Or e —iu E¢|2+ vt = (Ot — iu-N.p, Vu. — iu-N-v) .
r2 | loge| loge

bounded by Cauchy-Schwarz

dE. N 11 _ ,
| S5 = Do — i
> (Ss 7T s| 0og 5|) +/]R I |0g€| (2 + )|atus ug 6¢|

dt
||ogs| / (Ve —iugNev)- VL|2+|(VU5—IUSN v)-v|? — 2N, / V|2 e
= C(E&—mN,|logel) — iuN_v|?|v|]? — 2N, / V|2 e

bounded by C(€. — mwN.|loge|) by ball construction estimates

~ Gronwall OK



Joyeux anniversaire, Yann!
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