From Field Potential Waves to Ionic Current Knowledge by Leveraging Mathematical Modeling Labcom CardioXcomp

F. Raphel², M. Boulakia³, N. Zemzemi², P. Zitoun¹, J-F. Gerbeau²

¹ Notocord, ²Inria, ³Sorbonne Universités UPMC

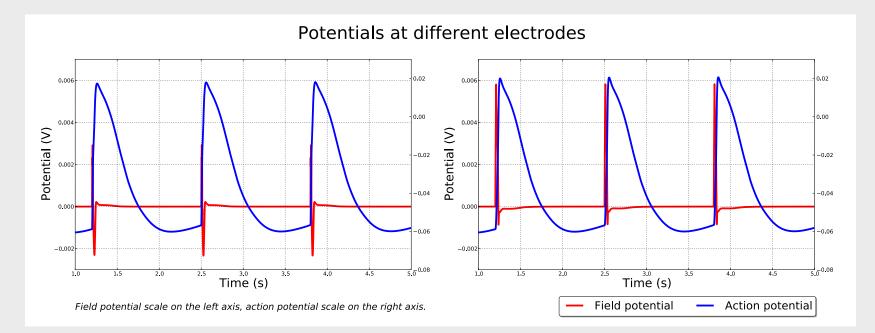
Objectives

• The combined use of :

- microelectrode arrays (MEAs)
- induced pluripotent stem cells cardiomyocytes (hiPSC-CMs)
- allows high-throughput screening on human-derived cells.
- But the field potential (FP) signals acquired by MEAs are difficult to analyze
- Objectives:
 - **Direct problem**: propose a mathematical model of MEA signals

Direct problem: results

- Example 1: potential variability with homogeneous cells. Variations of amplitude and orientation of FP are linked to:
 - MEA size, interelectrode distance, position of the ground
 - relative position of the initial stimulation



- **Inverse problem**: use this model to identify channel activities
- **Classification**: use a hybrid modeling/machine learning approach to classify compounds

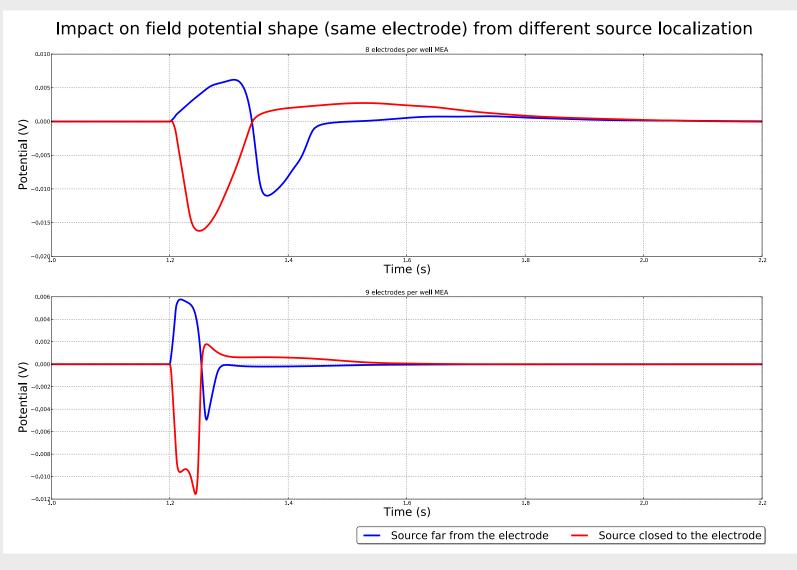
Direct problem: method

• Bidomain equations:

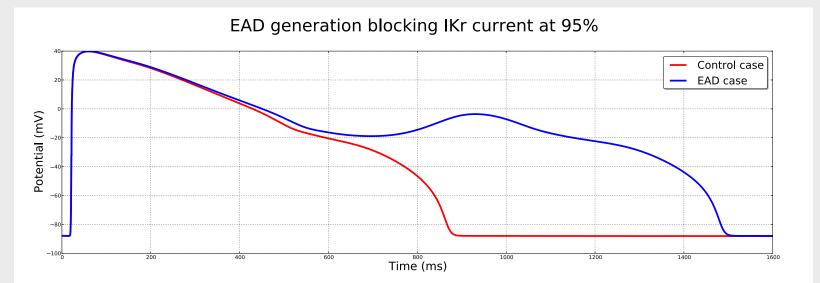
$$\begin{cases} A_{\rm m}C_{\rm m}\frac{\partial V_{\rm m}}{\partial t} + A_{\rm m}I(V_{\rm m},\boldsymbol{g}) - \operatorname{div}(\boldsymbol{\sigma}_{\rm i}\boldsymbol{\nabla} u_{\rm i}) = A_{\rm m}I_{a} \\ \operatorname{div}(\boldsymbol{\sigma}_{\rm e}\boldsymbol{\nabla} u_{\rm e}) + \operatorname{div}(\boldsymbol{\sigma}_{\rm i}\boldsymbol{\nabla} u_{\rm i}) = 0 \\ \frac{\partial \boldsymbol{g}}{\partial t} + G(V_{\rm m},\boldsymbol{g}) = 0 \end{cases}$$

- $V_{\rm m}$: transmembrane potential
- $u_{\rm e}$: extracellular potential
- g: gating variables and ionic concentrations
- Fiel potential: obtained from u_e (electrode model) G and I: ionic model
- Ionic models:
 - Stem cells (Paci *et al.* Annals biomed Engng 2013)
 - Minimal Ventricular (MV) (Bueno-Orovio *et al.*, J Theo Bio 2008)
 - O'Hara-Rudy (O'Hara *et al.*, PLOS Comp Biol 2011)

→ same action potential, but different field potentials on different electrodes.



- → different field potentials for different locations of the initial activation.
- Example 2: an Early After Depolarization simulation.
 - Model: O'Hara-Rudy



• Population of cells can be homogeneous or with different phenotypes. In the latter case, several arbitrary configurations are averaged.

• Electrode model:

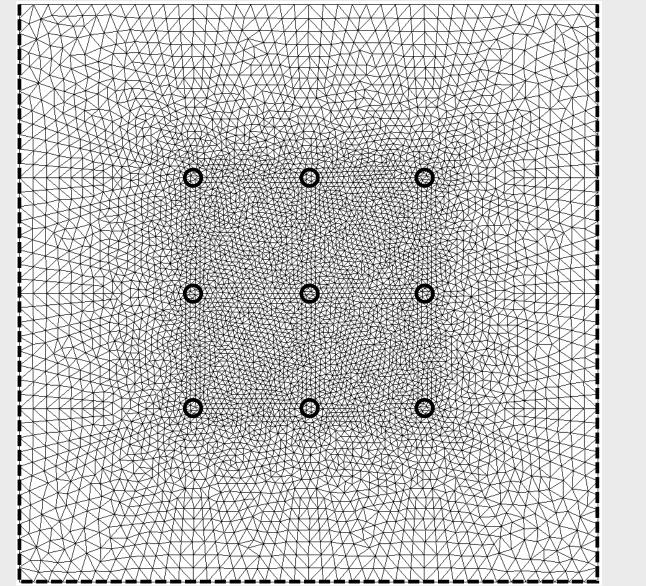
 I_{el}^k is the electric current measured by the k^{th} electrode

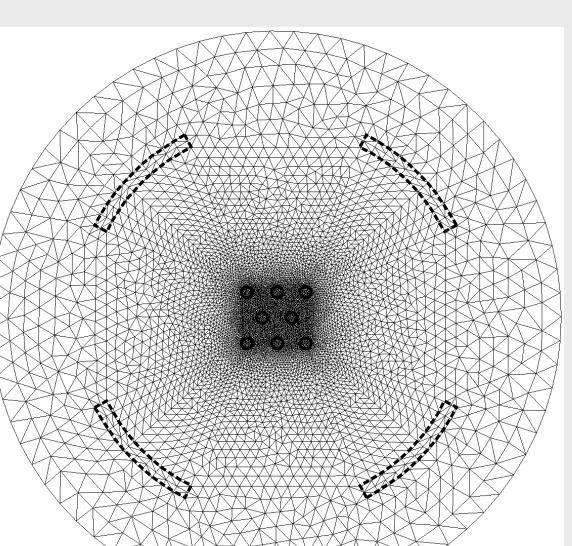
$$\frac{dI_{el}^k}{dt} + \frac{I_{el}^k}{\tau} = \frac{C_{el}}{\tau} \frac{dU^k}{dt} \qquad \text{with } U^k = \frac{1}{|e_k|} \int_{e_k} u_e, \ \boldsymbol{\sigma}_e \nabla u_e \cdot \mathbf{n} = \frac{I_{el}^k}{|e_k|}$$

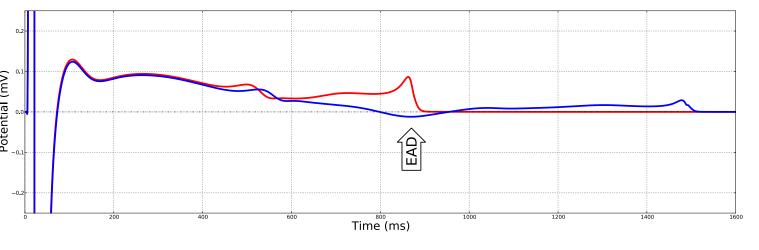
where $\tau = (R_i + R_{el})C_{el}$

 R_{el} and C_{el} : resistance and capacitance of the electrode R_i : inner resistance

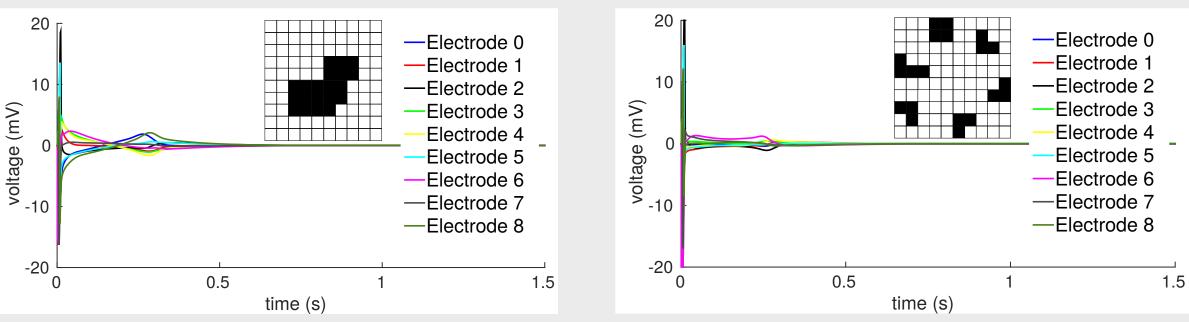
• Devices



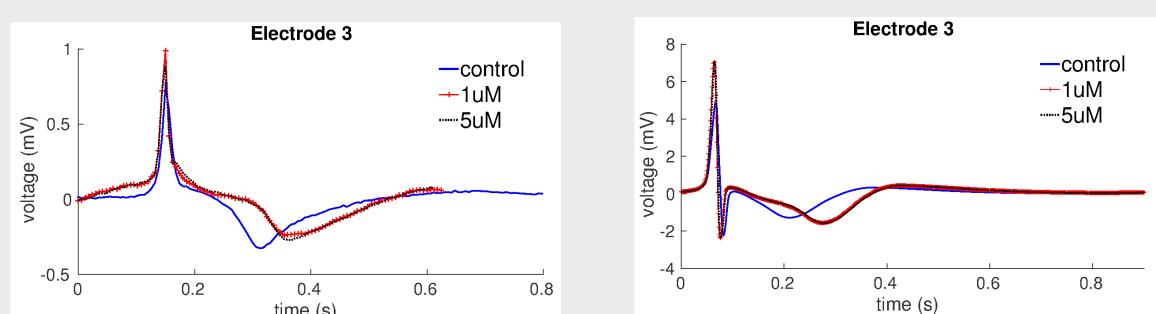




- → good agreement with experimental results (K. Asakura *et al.* JPTM 2015)
- Example 3: heterogeneous configurations of cells
 - ◆ Model: Paci *et al*.
 - Two different phenotypes distributed in clusters in the well



→ different signals with different heterogeneous cell populations

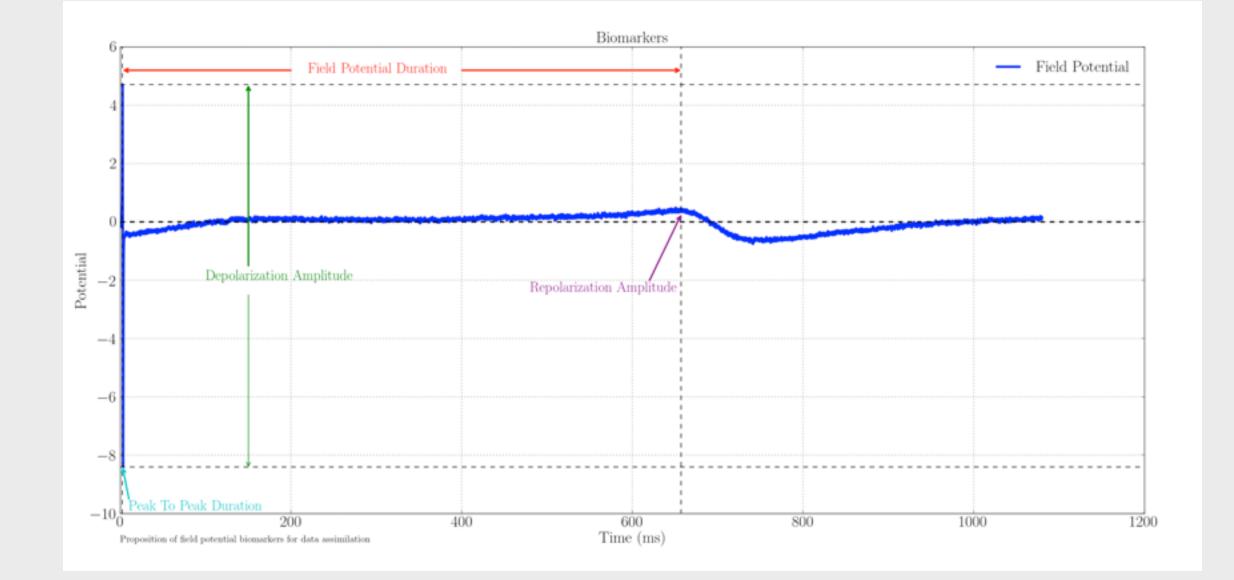


time (s)

→ Effect of BayK, with heterogeneous cells

Inverse problem: method

- Goal: from measured FP signals, identify the channel conductances.
- Extraction of 3 biomarkers from real signals with NOTOCORD-fps: depolarization amplitude (DA), repolarization amplitude (RA) and field potential duration (FPD).



• **Example 2:** Is it worth keeping all the electrodes?

- ◆ Model: MV.
- Data: synthetic.
- Identification of the conductance of the fast inward currents.
- By observing 1, 2, 3, 4, 6, 8 or 9 electrodes.

Error: 18.25% Iterations: 17	Error: 14.75% Iterations: 26	Error: 13.5% Iterations: 27	Error: 7.75% Iterations: 19
Error: 7.5% Iterations: 19	Error: 3.5% Iterations: 30	Error: 3.5% Iterations: 21	Error: 3.25% Iterations: 26

• Identification of channel conductance by minimizing the cost function:

 $J(\theta) = \sum_{k=1}^{N_{elec}} \left(\frac{\mathrm{DA}_{\mathrm{meas}}^k}{\mathrm{DA}_{\mathrm{c,meas}}^k} - \frac{\mathrm{DA}^k(\theta)}{\mathrm{DA}_{\mathrm{c}}^k} \right)^2 + \left(\frac{\mathrm{RA}_{\mathrm{meas}}^k}{\mathrm{RA}_{\mathrm{c,meas}}^k} - \frac{\mathrm{RA}^k(\theta)}{\mathrm{RA}_{\mathrm{c}}^k} \right)^2 + \left(\frac{\mathrm{FPD}_{\mathrm{meas}}^k}{\mathrm{FPD}_{\mathrm{c,meas}}^k} - \frac{\mathrm{FPD}^k(\theta)}{\mathrm{FPD}_{\mathrm{c}}^k} \right)^2$ X_{meas}^k : experimental biomarker at electrode k (with compound) $X^{k}(\theta)$: in silico biomarker at electrode k with channel conductances θ $X_{c,meas}^k$: control experimental biomarker at electrode k (without compound) X_c^k : control *in silico* biomarker at electrode k

with X = DA, RA or FPD

Inverse problem: results

- **Example 1:** verification with synthetic data (i.e. data generated by the model + noise)
 - Model: MV.
 - Data: 1 control and 5 levels of inhibition of the outward currents channel.

Error: 2.4%	Error: 2.23%	Error: 1.75%	Error: 0.75%
Iterations: 19	Iterations: 22	Iterations: 21	Iterations: 18
		+ Stimulation	

the error on the identification of the conductance depends on the relative positions of the electrodes and of the initial activation.

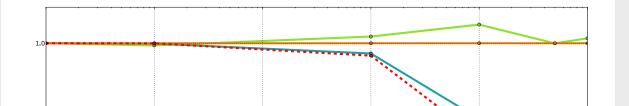
 \rightarrow it is worth keeping all the electrodes.

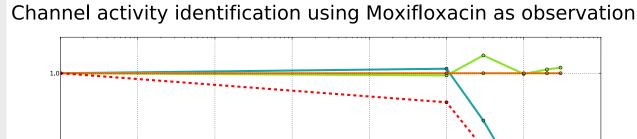
• IC50 estimation of real data with the inverse problem approach

- Model: MV.
- Data: real experiments (CDI) processed with NOTOCORD-fps.
- Identification of 3 channel conductances: fast inward, slow inward and outward currents (denoted "Na⁺", "Ca²⁺", "K⁺" for simplicity).
- Theoretical curves obtained with the published IC₅₀ and the function:

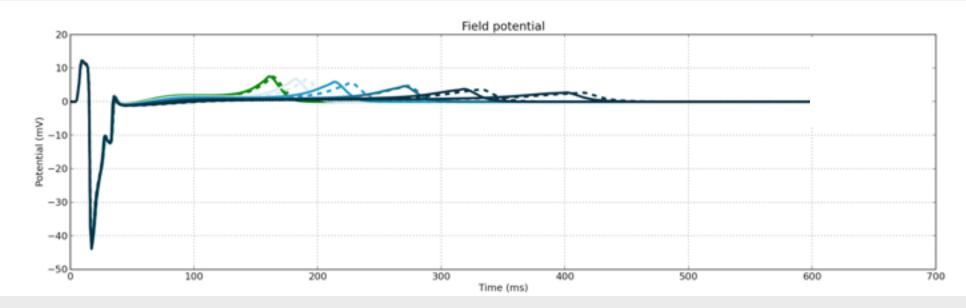
$$\vec{r}(c) = \left(1 + \frac{c}{IC_{50}}\right)^{-1}$$

Channel activity identification using Ivabradine as observation

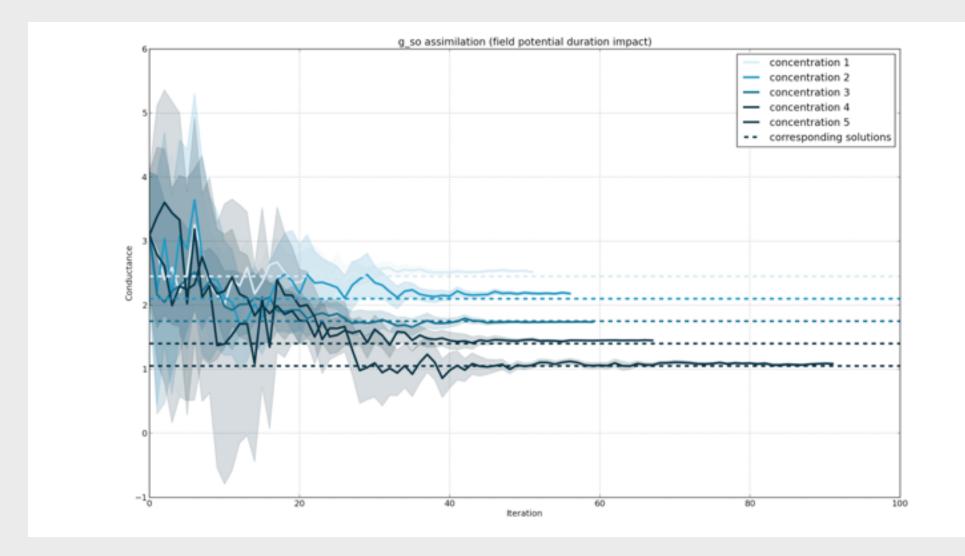




Goal: Identification of the conductance of the outward currents.

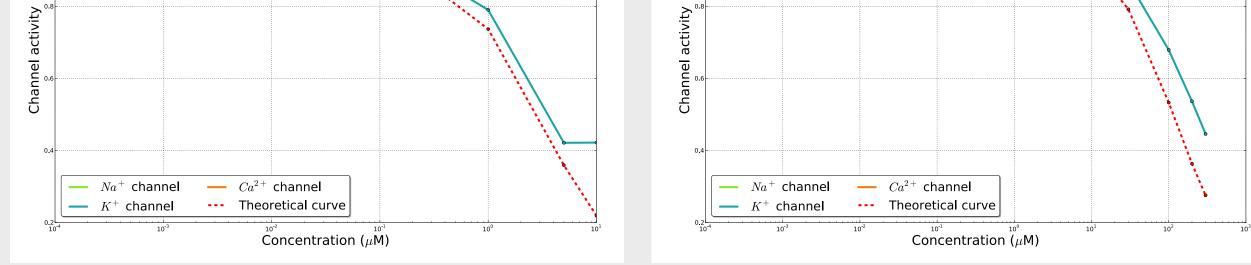


Dotted lines: synthetic data - Continuous lines: result of the identification



Identification of the values of the conductances

the correct values of the conductances are recovered



Ivabradine

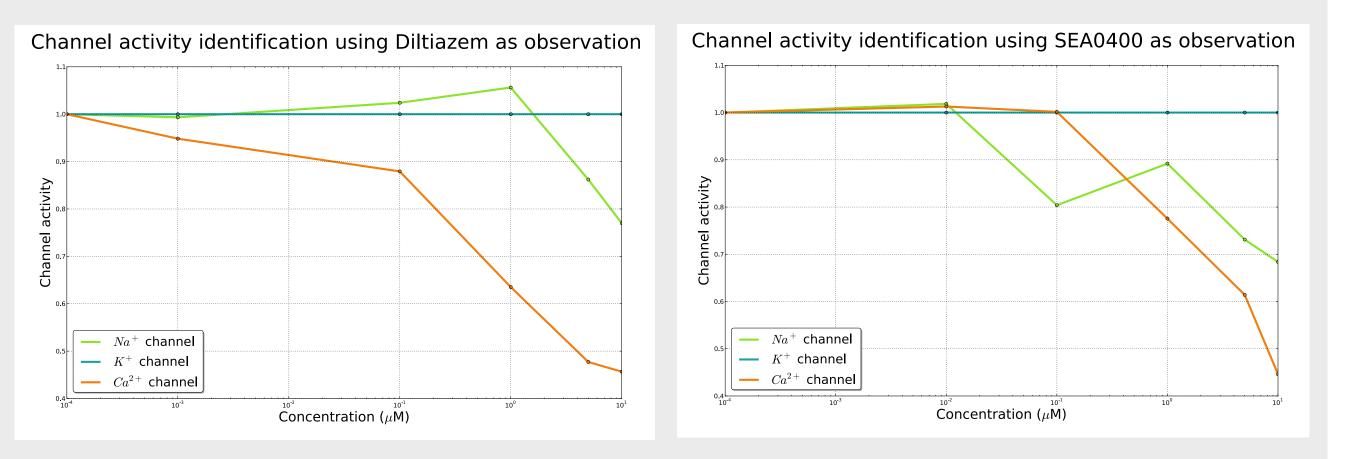
Moxifloxacin

 IC_{50} identified in silico $\approx 3.7 \mu M$ Theoretical curve with $IC_{50}(I_{Kf}) = 2.8 \mu M$ (Shattock et al. - British J Cardiology, 2006)

 IC_{50} identified in silico $\approx 220 \mu M$ Theoretical curve with $IC_{50}(I_{Kr}) = 114 \mu M$ (Alexandrou et al., British J Pharmacol. 2006)

 \rightarrow realistic values of IC₅₀ found by the inverse problem approach.

• Results with other compounds:



Classification: methods

- Model MV. 3 channels: fast inward, slow inward and outward currents (denoted "Na+", "Ca2+", "K+"for simplicity).
- Real data provided by CDI, processed with NOTOCORD-fps.
- One experiment real or in silico consists of 5 different sets of values of channel conductances. For each set of values, the ratio of the 3 biomarkers to a control is computed. The resulting 15 values are labelled (Na antagonist, K antagonist, Ca antagonist, etc.).
- A machine learning classifier Support Vector Machine (SVM) is trained with real and/or in silico data.
- Then, 8 electrodes in 2 wells of a real experiment are tested, i.e. automatically classified between the different labels, with a probability.

Classification: results (preliminary)

• Training with real experimental data

Classification probabilities obtained with SVM using experimental data* for training

Means (8 electrodes tested per drug)

Ivabradine	Mexiletine	Moxifloxacin	Diltiazem	JNJ303	Dofetilide	BayK**	SEA0400	Ranolazine	Nimodipine

Na antagonist	0.0	0.98	0.04	0.48	0.16	0.0	0.0	0.04	0.38	0.03
K antagonist	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
Ca antagonist	0.0	0.01	0.66	0.43	0.41	0.0	0.1	0.86	0.33	0.92
Ca agonist	0.0	0.01	0.3	0.08	0.43	0.0	0.9	0.1	0.29	0.05

*Ivabradine, Mexiletine, BayK and SEA0400 (as a Calcium blocker). **4 electrodes tested for the prediction.

➡ Moxifloxacin, Diltiazem, JNJ303 are not correctly classified

• Training with 4096 in silico experiments (results of simulation of a simplified model)

Classification probabilities obtained with SVM using MV model (4K samples) for training

	Ivabradine	Mexiletine	Moxifloxacin	Diltiazem	JNJ303	Dofetilide	BayK*	SEA0400	Ranolazine	Nimodipine
Na antagonist	0.0	0.99	0.0	0.01	0.22	0.0	0.1	0.0	0.39	0.0
Na agonist	0.05	0.0	0.14	0.0	0.0	0.0	0.12	0.0	0.0	0.01
K antagonist	0.0	0.0	0.8	0.0	0.77	0.0	0.0	0.0	0.61	0.0
K agonist	0.0	0.0	0.0	0.22	0.0	0.0	0.39	0.42	0.0	0.68
Ca antagonist	0.0	0.0	0.01	0.77	0.0	0.0	0.0	0.58	0.0	0.31
Ca agonist	0.95	0.0	0.05	0.0	0.01	1.0	0.39	0.0	0.0	0.0

Means (8 electrodes tested per drug)

*4 electrodes tested for the prediction.

Best probability Expected solution

Best probability

Expected solution

→ Ivabradine, Dofetilide, Ranolazine, Nimodipine are not correctly classified

• Training with the real experimental data and the 4096 in silico experiments

Classification probabilities obtained with SVM using MV model (4K samples) and experimental data* for training

	Means (o electrodes tested per drug)									
	Ivabradine	Mexiletine	Moxifloxacin	Diltiazem	JNJ303	Dofetilide	BayK**	SEA0400	Ranolazine	Nimodipine
Na antagonist	0.0	0.96	0.0	0.0	0.19	0.0	0.01	0.0	0.51	0.01
Na agonist	0.0	0.0	0.16	0.0	0.0	0.0	0.0	0.0	0.0	0.0
K antagonist	0.83	0.0	0.6	0.0	0.73	0.98	0.0	0.0	0.48	0.0
K agonist	0.0	0.0	0.0	0.12	0.0	0.0	0.0	0.45	0.0	0.48
Ca antagonist	0.0	0.03	0.05	0.87	0.01	0.01	0.0	0.54	0.01	0.51
Ca agonist	0.17	0.0	0.19	0.0	0.06	0.01	0.99	0.0	0.0	0.0
										- · · · · ·

Means (8 electrodes tested per drug)

*Ivabradine, BayK and SEA0400 (as a Calcium blocker). **4 electrodes tested for the prediction.

Best probability Expected solution

→ By mixing real and *in silico* data for the training, all the compounds are correctly classified

Conclusion

• We proposed a mathematical model of MEA (direct and inverse problems) and we trained a machine learning algorithm with real and in silico signals.

- Direct problem: allow to reproduce *in silico* observed phenomena and better understand some features of the signals (variability, ...).
- Inverse problem: identify the channel activity from synthetic and real signals, determine IC₅₀.
- Promising preliminary results to characterize the impact of compounds on ionic channel activity.
- Limitations and future work
 - The cell model used for the inverse problem should be replaced by a more comprehensive one.
 - To improve inverse problems and classification, additional biomarkers should be identified on the FP.
 - Machine learning algorithm has to be trained with more experimental and synthetic signals.

