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Objectives
•The combined use of : 

microelectrode arrays (MEAs)  
induced pluripotent stem cells cardiomyocytes (hiPSC-CMs) 

allows high-throughput screening on human-derived cells.  
•But the field potential (FP) signals acquired by MEAs are difficult to 

analyze 
•Objectives: 

Direct problem: propose a mathematical model of MEA signals 
Inverse problem: use this model to identify channel activities 
Classification: use a hybrid modeling/machine learning approach to 
classify compounds

Direct problem: method
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•Bidomain equations:

Vm: transmembrane potential

g: gating variables and ionic concentrations

ue: extracellular potential

Fiel potential: obtained from ue (electrode model)

G and I: ionic model

•Devices

96-well of 8 electrodes (Axion)6-well of 9 electrodes (MSC)

Direct problem: results
•Example 1: potential variability with homogeneous cells.  

Variations of amplitude and orientation of FP are linked to:

➡ same action potential, but different field potentials on different electrodes.

MEA size, interelectrode distance, position of the ground 
relative position of the initial stimulation 

➡ different field potentials for different locations of the initial activation.

•Example 2: an Early After Depolarization simulation.

➡ good agreement with experimental results (K. Asakura et al. JPTM 2015)  

Model: O’Hara-Rudy

•Example 3: heterogeneous configurations of cells
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➡ different signals with different heterogeneous cell populations

Model: Paci et al.  
Two different phenotypes distributed in clusters in the well 

➡ Effect of BayK, with heterogeneous cells
Experiments (CDI) In silico results 

•Population of cells can be homogeneous or with different phenotypes. 
In the latter case, several arbitrary configurations are averaged.  

Ikel is the electric current measured by the kth electrode

•Electrode model:

dIkel
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where ⌧ = (Ri +Rel)Cel

Rel and Cel: resistance and capacitance of the electrode

Ri: inner resistance

•Ionic models: 
Stem cells (Paci et al. Annals biomed Engng 2013) 
Minimal Ventricular (MV) (Bueno-Orovio et al., J Theo Bio 2008) 
O’Hara-Rudy (O’Hara et al., PLOS Comp Biol 2011)
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Inverse problem: method

•Extraction of 3 biomarkers from real signals with NOTOCORD-fps: 
depolarization amplitude (DA), repolarization amplitude (RA) and field 
potential duration (FPD).

•Identification of channel conductance by minimizing the cost function:
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•Example 2: Is it worth keeping all the electrodes? 

➡ the error on the identification of the conductance depends on the 
relative positions of the electrodes and of the initial activation. 

➡ it is worth keeping all the electrodes.

Error: 18.25%

Iterations: 17

Error: 14.75%

Iterations: 26

Error: 13.5%

Iterations: 27

Error: 7.75%

Iterations: 19

Error: 7.5%

Iterations: 19

Error: 3.5%

Iterations: 30

Error: 3.5%

Iterations: 21

Error: 3.25%

Iterations: 26

Error: 2.4%

Iterations: 19

Error: 2.23%

Iterations: 22

Error: 1.75%

Iterations: 21

Error: 0.75%

Iterations: 18

Gfi assimilation with noised observations:

ObservationStimulation

Model: MV.  
Data: synthetic. 
Identification of the conductance of the fast inward currents. 
By observing 1, 2, 3, 4, 6, 8 or 9 electrodes. 

Xk
meas : experimental biomarker at electrode k (with compound)

Xk(✓) : in silico biomarker at electrode k with channel conductances ✓

Xk
c,meas : control experimental biomarker at electrode k (without compound)

Xk
c : control in silico biomarker at electrode k

with X = DA, RA or FPD

•IC50 estimation of real data with the inverse problem approach

Model: MV.  
Data: real experiments (CDI) processed with NOTOCORD-fps. 
Identification of 3 channel conductances:  
fast inward, slow inward and outward currents  
(denoted “Na+”, “Ca2+”, “K+” for simplicity). 
Theoretical curves obtained with the published IC50 and the function:

f(c) =

✓
1 +

c

IC50

◆�1

➡ realistic values of IC50 found by the inverse problem approach.

Inverse problem: results
•Example 1: verification with synthetic data  

(i.e. data generated by the model + noise)

Model: MV.  
Data: 1 control and 5 levels of inhibition of the outward currents 
channel. 
Goal: Identification of the conductance of the outward currents.

Dotted lines: synthetic data - Continuous lines: result of the identification

Identification of the values of the conductances

➡ the correct values of the conductances are recovered 

Ivabradine Moxifloxacin

Diltiazem SEA0400 

Results with other compounds: 

IC50 identified in silico ⇡ 3.7µM
Theoretical curve with IC50(IKf ) = 2.8µM
(Shattock et al.- British J Cardiology, 2006)

IC50 identified in silico ⇡ 220µM
Theoretical curve with IC50(IKr) = 114µM
(Alexandrou et al., British J Pharmacol. 2006)

•Goal: from measured FP signals, identify the channel conductances. 
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Classification: methods

Classification: results (preliminary)

➡ Moxifloxacin, Diltiazem, JNJ303 are not correctly classified

• Training with real experimental data

• Training with 4096 in silico experiments (results of simulation of a simplified model) 

• Training with the real experimental data and the 4096 in silico experiments
➡ Ivabradine, Dofetilide, Ranolazine, Nimodipine are not correctly classified

➡ By mixing real and in silico data for the training, all the compounds are correctly classified 

•Model MV. 3 channels: fast inward, slow inward and outward currents (denoted “Na+”, “Ca2+”, “K+”for simplicity). 
•Real data provided by CDI, processed with NOTOCORD-fps.  
•One experiment – real or in silico – consists of 5 different sets of values of channel conductances. For each set of values, the ratio of the 3 biomarkers 

to a control is computed. The resulting 15 values are labelled (Na antagonist, K antagonist, Ca antagonist, Ca agonist, etc.). 
•A machine learning classifier – Support Vector Machine (SVM) – is trained with real and/or in silico data. 
•Then, 8 electrodes in 2 wells of a real experiment are tested, i.e. automatically classified between the different labels, with a probability.

Conclusion
•We proposed a mathematical model of MEA (direct and inverse problems) and we trained a machine learning algorithm with real and in silico signals. 

Direct problem: allow to reproduce in silico observed phenomena and better understand some features of the signals (variability, …). 
Inverse problem: identify the channel activity from synthetic and real signals, determine IC50. 
Promising preliminary results to characterize the impact of compounds on ionic channel activity. 

•Limitations and future work 
The cell model used for the inverse problem should be replaced by a more comprehensive one.   
To improve inverse problems and classification, additional biomarkers should be identified on the FP. 
Machine learning algorithm has to be trained with more experimental and synthetic signals. 
The overall methodology has to be tested with more compounds.


