From Field Potential Waves to Ionic Current Knowledge by Leveraging Mathematical Modeling

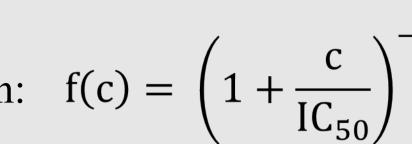
F. Raphel², M. Boulakia³, N. Zemzemi², P. Zitoun¹, J-F. Gerbeau² ¹Notocord, ²Inria, ³Sorbonne Universités UPMC

NOTOCORD® Speeding up Research, Empowering Science[™]

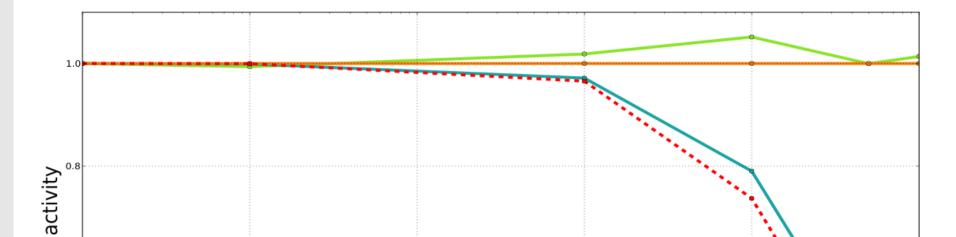
Objectives

• The combined use of :

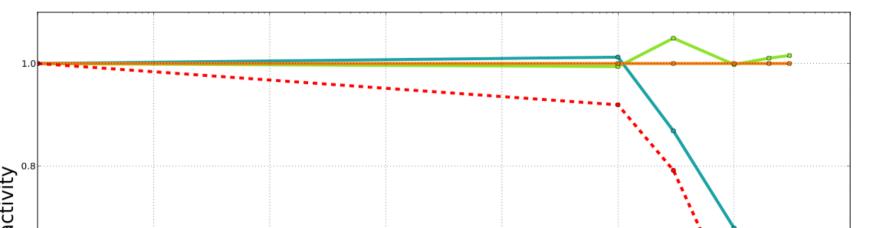
- microelectrode arrays (MEAs).
- induced pluripotent stem cells cardiomyocytes (hiPSC-CMs) allows high-throughput screening on human-derived cells. •But the field potential (FP) signals acquired by MEAs are difficult to analyze. •Objectives:
- **Direct problem**: propose a mathematical model of MEA signals.
- **Inverse problem**: use this model to identify channel activities.
- **Classification**: use a hybrid modeling/machine learning approach to classify compounds.


Direct problem: concept

• Bidomain equations: electrophysiological model to get both transmembrane potential and extracellular potential.

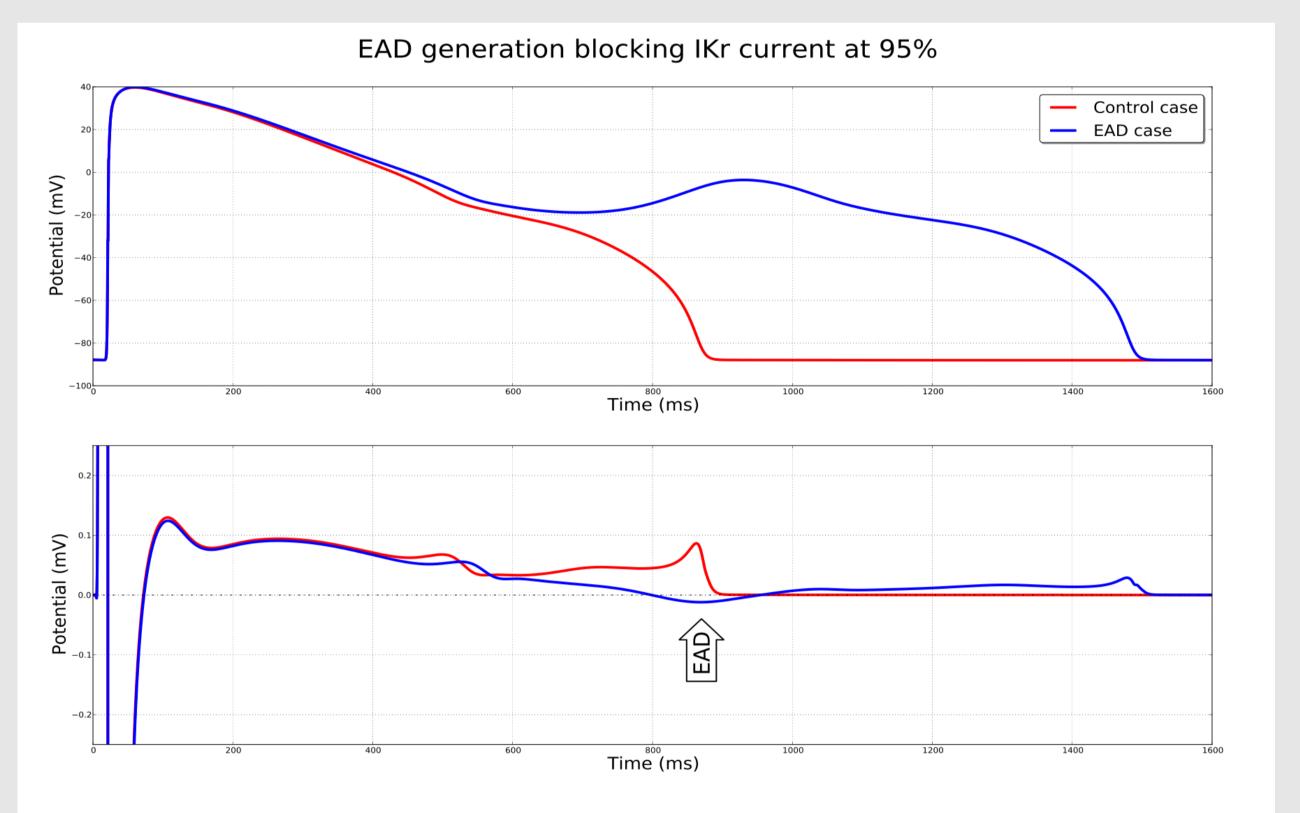

Inverse problem: channel activity identification

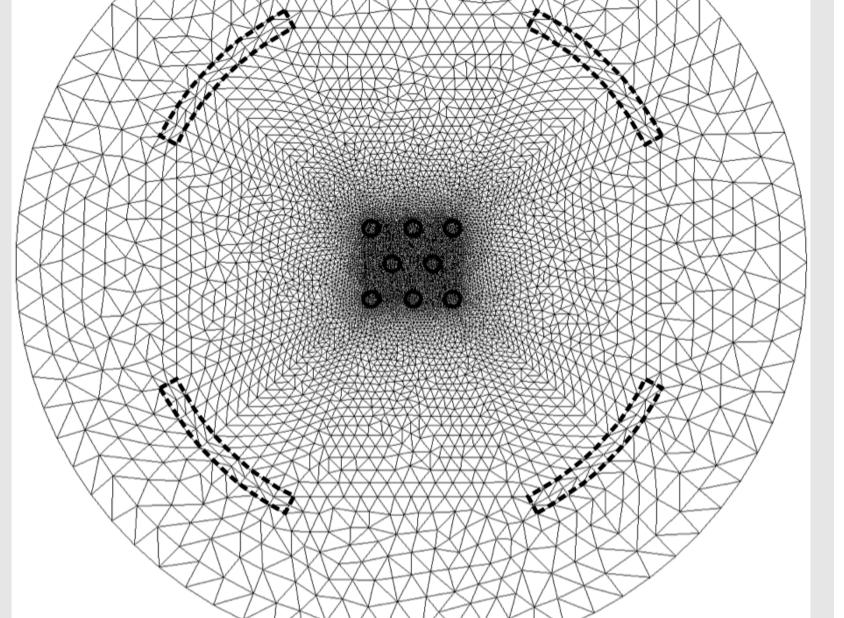
• IC50 estimation of real data with the inverse problem approach


- Model: MV.
- Data: real experiments (CDI) processed with NOTOCORD-fps.
- Identification of 3 channel conductances: fast inward, slow inward and outward currents (denoted "Na+", "Ca2+", "K+" for simplicity).
- Theoretical curves obtained with the published IC50 and the function: $f(c) = \left(1 + \frac{c}{IC_{50}}\right)^{-2}$

Channel activity identification using Ivabradine as observation

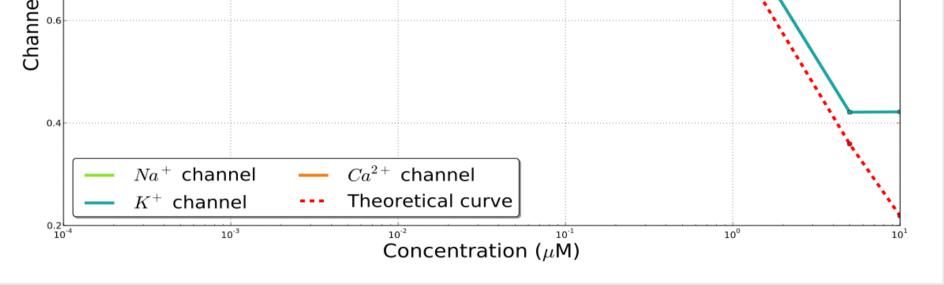
Channel activity identification using Moxifloxacin as observation

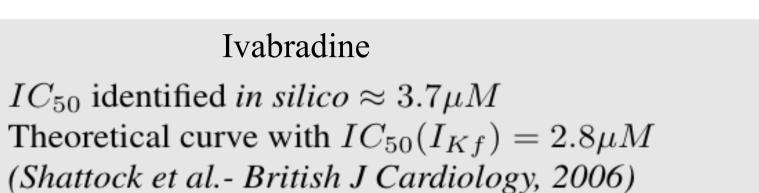


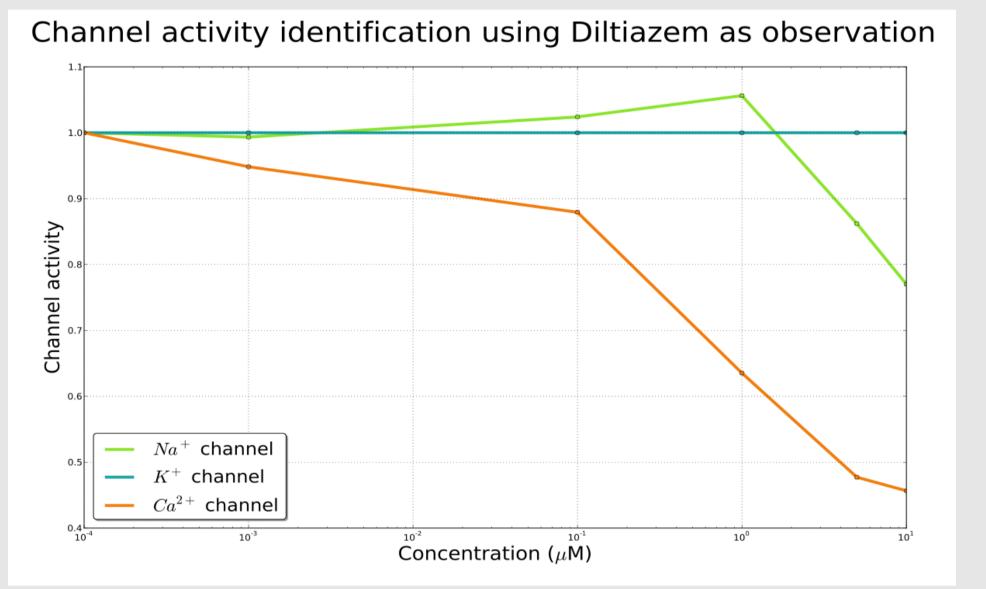

• Ionic models: phenomenological (Minimal Ventricular,...) or physiological (Paci, O'Hara-Rudy,...).

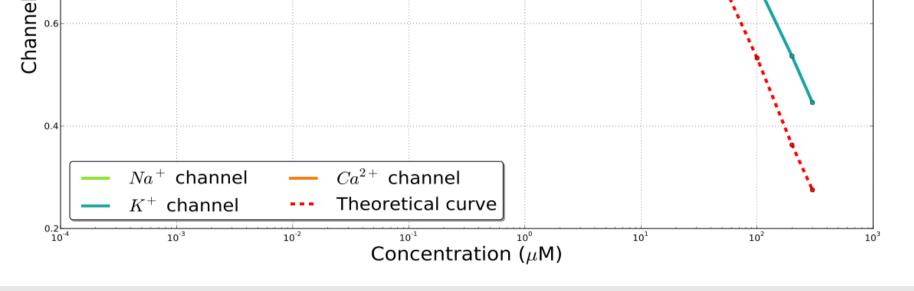
• Electrode model: for the culture-electrode contact.

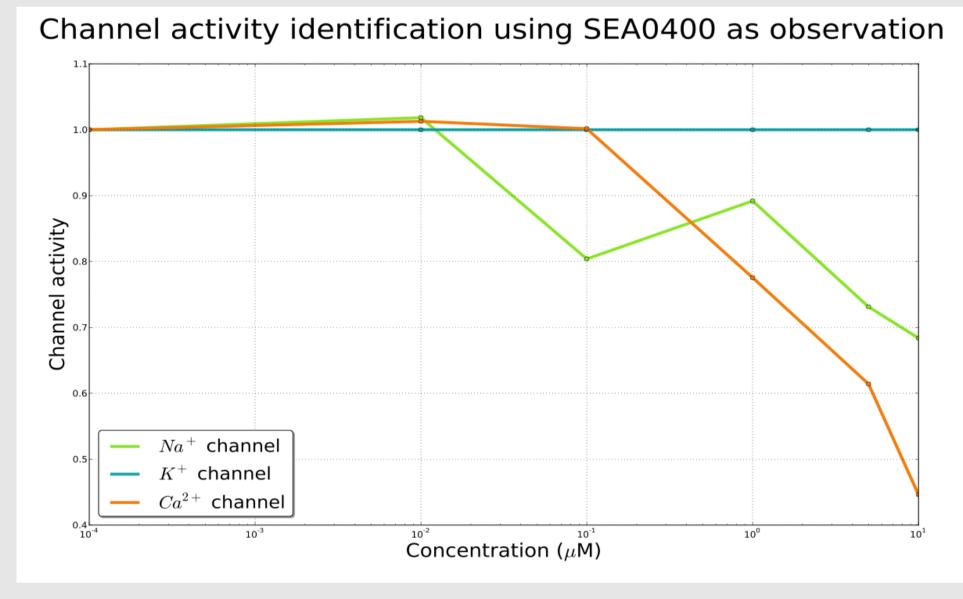
• Devices: well modeling.

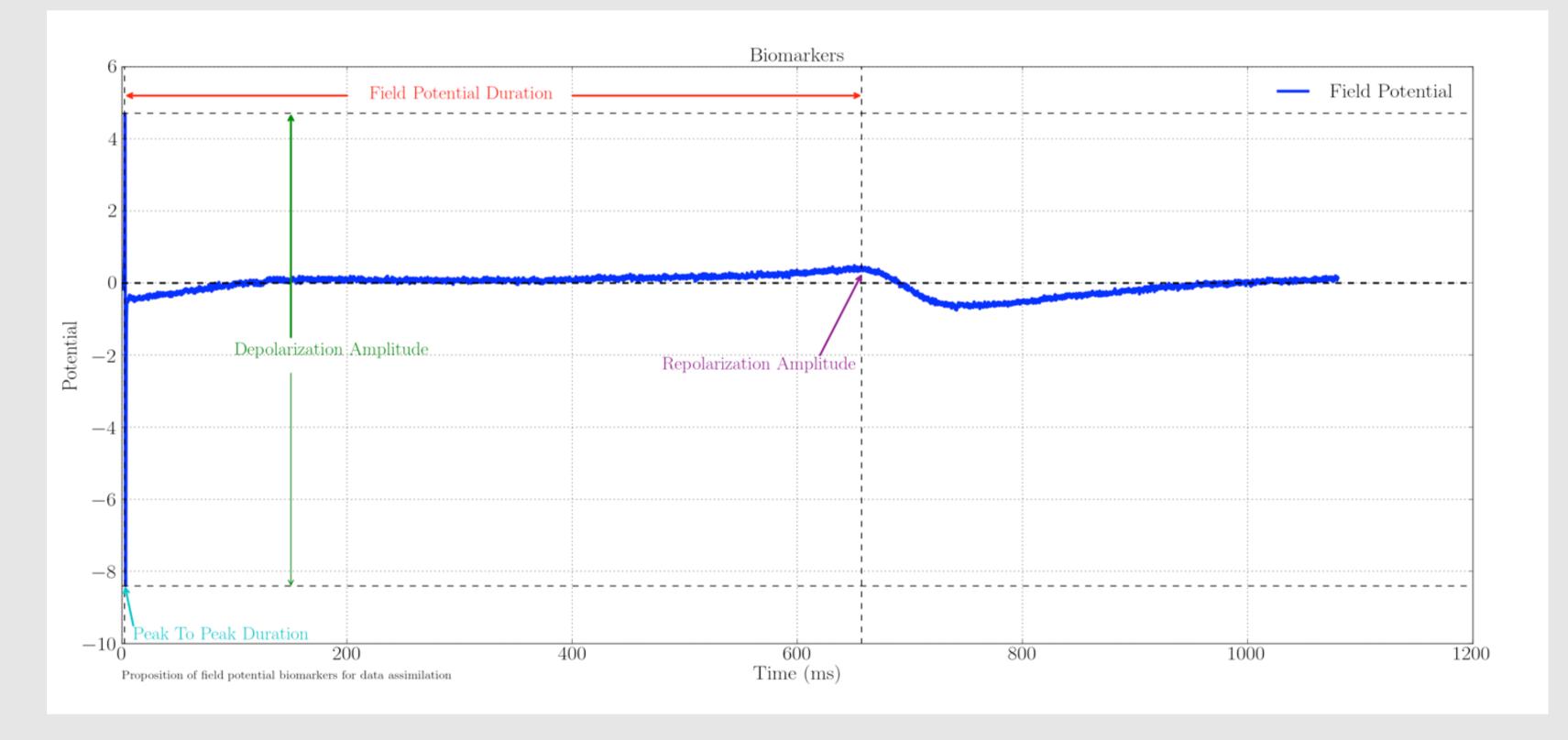

Example : an Early After Depolarization simulation, O'Hara-Rudy model (O'Hara et al., PLOS Comp Biol 2011), 96-well of 8 electrodes device (Axion)




Inverse problem: method


• Extraction of 3 biomarkers from real signals with NOTOCORD-fps: depolarization amplitude (DA), repolarization amplitude (RA) and field potential duration (FPD).


- \rightarrow realistic values of IC50 found by the inverse problem approach.
- Results with other compounds:


Moxifloxacin

 IC_{50} identified in silico $\approx 220 \mu M$ Theoretical curve with $IC_{50}(I_{Kr}) = 114 \mu M$ (Alexandrou et al., British J Pharmacol. 2006)

Diltiazem

• Identification of channel conductance by minimizing the cost function:

$$J(\theta) = \sum_{k=1}^{N_{elec}} \left(\frac{DA_{meas}^{k}}{DA_{c,meas}^{k}} - \frac{DA^{k}(\theta)}{DA_{c}^{k}} \right)^{2} + \left(\frac{RA_{meas}^{k}}{RA_{c,meas}^{k}} - \frac{RA^{k}(\theta)}{RA_{c}^{k}} \right)^{2} + \left(\frac{FPD_{meas}^{k}}{FPD_{c,meas}^{k}} - \frac{FPD^{k}(\theta)}{FPD_{c}^{k}} \right)^{2}$$

 X_{meas}^k : experimental biomarker at electrode k (with compound)

 $X^{k}(\theta)$: in silico biomarker at electrode k with channel conductances θ

 $X_{c,meas}^k$: control experimental biomarker at electrode k (without compound)

Classification

• Training with real experimental data

Classification probabilities obtained with SVM using experimental data* for training

Means (8 electrodes tested per drug)

	Ivabradine	Mexiletine	Moxifloxacin	Diltiazem	JNJ303	Dofetilide	BayK**	SEA0400	Ranolazine	Nimodipine
Na antagonist	0.0	0.98	0.04	0.48	0.16	0.0	0.0	0.04	0.38	0.03
K antagonist	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
Ca antagonist	0.0	0.01	0.66	0.43	0.41	0.0	0.1	0.86	0.33	0.92
Ca agonist	0.0	0.01	0.3	0.08	0.43	0.0	0.9	0.1	0.29	0.05

*Ivabradine, Mexiletine, BayK and SEA0400 (as a Calcium blocker). **4 electrodes tested for the prediction

Best probability Expected solution

→ Moxifloxacin, Diltiazem, JNJ303 are not correctly classified.

• Training with 4096 in silico experiments (results of simulation of a simplified model)

Classification probabilities obtained with SVM using MV model (4K samples) for training Means (8 electrodes tested per drug)

	Ivabradine	Mexiletine	Moxifloxacin	Diltiazem	JNJ303	Dofetilide	BayK*	SEA0400	Ranolazine	Nimodipine
Na antagonist	0.0	0.99	0.0	0.01	0.22	0.0	0.1	0.0	0.39	0.0
Na agonist	0.05	0.0	0.14	0.0	0.0	0.0	0.12	0.0	0.0	0.01
K antagonist	0.0	0.0	0.8	0.0	0.77	0.0	0.0	0.0	0.61	0.0
K agonist	0.0	0.0	0.0	0.22	0.0	0.0	0.39	0.42	0.0	0.68
Ca antagonist	0.0	0.0	0.01	0.77	0.0	0.0	0.0	0.58	0.0	0.31
Ca agonist	0.95	0.0	0.05	0.0	0.01	1.0	0.39	0.0	0.0	0.0

→ Ivabradine, Dofetilide, Ranolazine, Nimodipine are not correctly classified.

• Training with the real experimental data and the 4096 in silico experiments

 X_{C}^{k} : control *in silico* biomarker at electrode k

with X = DA, RA or FPD

Inverse problem: number of electrodes for the observation

• Model: MV.

Device: 6-well of 9 electrodes (MCS).

- Data: synthetic.
- Identification of the conductance of the fast inward currents.
- By observing 1, 2, 3, 4, 6, 8 or 9 electrodes.

 \rightarrow the error on the identification of the conductance depends on the relative positions of the electrodes and of the initial activation.

 \rightarrow it is worth keeping all the electrodes.

Error: 18.25% Iterations: 17	Error: 14.75% Iterations: 26	Error: 13.5% Iterations: 27	Error: 7.75% Iterations: 19
+000	+	+0 0 0	+000
\circ	$\circ \circ \circ$	$\circ \circ \circ$	

Error: 7.5%	Error: 3.5%	Error: 3.5%	Error: 3.25%
Iterations: 19	Iterations: 30	Iterations: 21	Iterations: 26

			$\bullet \circ \circ$
+ • • •	+•••	+ • • •	+•••
Error: 2.4% Iterations: 19	Error: 2.23% Iterations: 22	Error: 1.75% Iterations: 21	Error: 0.75% Iterations: 18

Observation Stimulation

Classification probabilities obtained with SVM using MV model (4K samples) and experimental data* for training Means (8 electrodes tested per drug)

	Ivabradine	Mexiletine	Moxifloxacin	Diltiazem	JNJ303	Dofetilide	BayK**	SEA0400	Ranolazine	Nimodipine
Na antagonist	0.0	0.96	0.0	0.0	0.19	0.0	0.01	0.0	0.51	0.01
Na agonist	0.0	0.0	0.16	0.0	0.0	0.0	0.0	0.0	0.0	0.0
K antagonist	0.83	0.0	0.6	0.0	0.73	0.98	0.0	0.0	0.48	0.0
K agonist	0.0	0.0	0.0	0.12	0.0	0.0	0.0	0.45	0.0	0.48
Ca antagonist	0.0	0.03	0.05	0.87	0.01	0.01	0.0	0.54	0.01	0.51
Ca agonist	0.17	0.0	0.19	0.0	0.06	0.01	0.99	0.0	0.0	0.0
	0.17	0.0	0.19	0.0	0.00	0.01	0.99	0.0	0.0	0.0

*Ivabradine, BayK and SEA0400 (as a Calcium blocker). **4 electrodes tested for the prediction

Best probability Expected solution

→ By mixing real and *in silico* data for the training, all the compounds are correctly classified.

Conclusion

• We proposed a mathematical model of MEA (direct and inverse problems) and we trained a machine learning algorithm with real and in silico signals.

• Direct problem: allow to reproduce *in silico* observed phenomena and better understand some features of the signals (EAD, ...).

- Inverse problem: identify the channel activity from synthetic and real signals, determine IC50.
- Limitations and future work:
- The cell model used for the inverse problem should be replaced by a more comprehensive one.
- To improve inverse problems and classification, additional biomarkers should be identified on the FP.
- Machine learning algorithm has to be trained with more experimental and synthetic signals.
- The overall methodology has to be tested with more compounds.