

COMPSYSBIO

ADVANCED LECTURE COURSE ON COMPUTATIONAL SYSTEMS BIOLOGY Aussois, France March 31 - April 6, 2019

Monday, April 1st

Opening session (chair: D. Kahn) La Parrachée

08:30	Daniel KAHN
	Course opening

08:40 Eric SIGGIA

Keynote: Geometry, Genetics and Gene regulation

10:00 Coffee break

Evolutionary Systems Biology

10:30 **Jeff GORE**

The dynamics of biological populations

12:15 Lunch

Early afternoon free

Parallel blackboard teaching and hands-on sessions

La Scolette

16:30 Jakob RUESS

Optimally learning dynamical models from data

Le Râteau

16:30 Anne GOELZER

Resource Balance Analysis

L'Echelle

16:30 François NÉDÉLEC

Simulation of intracellular mechanics

La Norma

16:30 Wolfram LIEBERMEISTER

Enzyme economy in metabolic models

19:00 Dinner

Selected short talks (chair: G. Yvert) La Parrachée

20:30 Emma KEIZER

Unravelling the dynamics of adaptive immunity in CRISPR-Cas through single-cell histories

20:50 **Mona TONN**

Emergence of non-genetic heterogeneity in metabolic reactions

Poster session 1

21:15-22:00 **Even number** poster presenters stand by their posters

Tuesday, April 2nd

Integrated molecular networks (chair: J. Gore) La Parrachée

08:30	Andrea	WEISSE

Modelling bacterial growth

10:00 Coffee break

10:30 Mattia ZAMPIERI

Using metabolic fingerprints to rationally design combination therapies

12:15 Lunch

Early afternoon free

Parallel blackboard teaching and hands-on sessions

La Scolette

16:30 Jakob RUESS

Optimally learning dynamical models from data

Le Râteau

16:30 Anne GOELZER

Resource Balance Analysis

L'Echelle

16:30 François NÉDÉLEC

Simulation of intracellular mechanics

La Norma

16:30 Wolfram LIEBERMEISTER

Enzyme economy in metabolic models

19:00 Dinner

Selected short talks (chair: M. Zampieri) La Parrachée

20:30 Laurens KRAH

Noise propagation in an integrated model of bacterial gene expression and growth

20:50 Svetlana VOLKOVA

Towards personalized mechanistic models of red blood cell metabolism

Poster session 2

21:15-22:00 **Odd number** poster presenters stand by their posters

Wednesday, April 3rd

Control Theory in Systems Biology (chair: H. de Jong) La Parrachée

08:30 Antonis PAPACHRISTODOULOU

Control theory tools for the analysis and design of biological networks

10:00 Coffee break

10:30 Irene OTERO-MURAS

Inferring design principles in systems and synthetic biology through optimization-based methods

12:15 Lunch

13:30-16:30

Social program: Guided walking tour of Aussois village, church and fort

Dynamical Systems in Biology (chair: C. Chaouiya) La Parrachée

17:00 Felix NAËF

Organization of temporal gene expression: from promoter cycles to circadian clocks

19:00 Dinner

Selected short talks (chair: D. Jost) La Parrachée

20:30 Colas DROIN

Reconstructing the low-dimensional dynamics of two coupled biological oscillators

20:50 Sant KUMAR

Stochastic single-cell feedback provides new insights into biomolecular controller design

Poster session 3

21:15-22:00 Open poster session

Thursday, April 4th

Dynamical Systems in Biology (chair: A. Weisse) La Parrachée

08:30 Jana WOLF

Modeling signalling networks and gene expression involved in cancer

10:00 Coffee break

Evolutionary Systems Biology

10:30 Orkun SOYER

Evolution of cell metabolism and metabolic interactions

12:15 Lunch

Early afternoon free

Parallel blackboard teaching and hands-on sessions

La Scolette

16:30 Mustafa KHAMMASH

Stochastic modeling, simulation and analysis

Le Râteau

16:30 Claudine CHAOUIYA

Qualitative dynamical modelling of (multi-) cellular networks

La Norma

16:30 Hidde DE JONG

Dynamic models integrating metabolism and gene expression

19:00 Dinner

Selected short talks (Chair: M. Ibañes) La Parrachée

20:30 Pau CASANOVA

Modelling of patA and hetF genes function in Anabaena heterocyst formation

20:50 Anna DENEER

Mathematical modeling of trichome pattern formation: Explaining complex changes in mutant phenotypes

Poster session 4

21:15-22:00 Open poster session

Friday, April 5th

Spatio-temporal models (Chair: O. Gandrillon) La Parrachée

08:30	Dagmar	IBER
-------	--------	-------------

From Networks to Function - Computational Models of Organogenesis

10:00 Coffee break

10:30 Marta IBAÑES

Models for pattern formation in development

12:15 Lunch

Early afternoon free

Parallel blackboard teaching and hands-on sessions

La Scolette

16:30 Mustafa KHAMMASH

Stochastic modeling, simulation and analysis

Le Râteau

16:30 Claudine CHAOUIYA

Qualitative dynamical modelling of (multi-) cellular networks

La Norma

16:30 Hidde DE JONG

Dynamic models integrating metabolism and gene expression

19:30 Gala Course Dinner

21:00 Closing Course Party

Posters

1	Tunde	GAIZER	Role of cell-cell interactions between strains of S. cerevisiae in yeast colony formation
2	Patrick	SINCLAIR	Growth-dependent drug susceptibility can prevent or enhance spatial expansion of a bacterial population
3	Stephen	WILLIAMS	Colloidal transport in heterogeneous landscapes of micro-swimmer activity
4	Pau	CASANOVA	Modelling of patA and hetF genes function in Anabaena heterocyst formation
5	Fabrice	DELBARY	3D tension inference of embryo cells
6	Hans	KUBITSCHKE	Roadmap to Local Tumor Growth
7	Ernst	SCHÄFER	Root Senescence and Soil Nutrient Capture
8	Anna	DENEER	Mathematical modeling of trichome pattern formation: Explaining complex changes in mutant phenotypes
9	Ronan	DUCHESNE	Identifiability in Mixed Effect Models: the example of in vitro Erythropoiesis
10	Colas	DROIN	Exploring circadian liver zonation
11	Masoud	HOORE	Multiscale modeling of neuroinflammation in the onset of Alzheimer's disease
12	Hélène	ARDUIN	Modelling the differentiation dynamics of monocytes in contact with CLL B cells
13	Micks	MORVAN	Communications and processes in complex dynamic biological systems
14	Siras	HAKOBYAN	Assessment of somatic mutations impact on the activity of biological pathways in tumours
15	Xavier	HERNANDEZ ALIAS	Tissue-specificity of codon usage and tRNAs determines gene expression
16	Daniel	JOST	Systems biology of 3D Epigenomics
17	Kapil	NEWAR	The epigenetic model of histone modifications to elucidate their diverse distribution around gene
18	Gianluca	SELVAGGIO	Logical modelling and analysis of cell adhesion properties along Epithelial to Mesenchymal Transition
19	Dimitrij	TSCHODU	Machine Learning mechanical parameters of breast cancer cells and blood cells
20	Pascal	GROBECKER	A Bayesian Model for Cell Type Inference from Single-Cell RNAseq Data
21	Alexey	KOSHKIN	Infering of B cell gene regulatory networks from the single cell data
22	Flaminia	ZANE	Understanding the Gene Regulatory Networks Alterations at the End-Of-Life
23	Debdas	PAUL	A rule-based modeling approach for regulation of gene expression
24	Hernan	MAKSE	Building blocks of gene regulatory networks
25	Ana	FONSECA	Genome-Scale Logical Regulatory Models for S. cerevisiae, C. albicans and C. glabrata
26	Gael	YVERT	Standing genetic variation can modify molecular regulations in a probabilistic manner
27	Jiayin	HONG	Mathematical modeling reveals the control parameters underlying diverse GAL response in natural yeast isolates
28	Shiny	MARTIS BADIADKA	Interplay of local and global regulators in pectin catabolism during plant infection by Dickeya dadantii
29	Irina	KALITA	Exploring a mystery of RecBCD regulation in Escherichia coli
30	Luc	THOMÈS	Genomic study of oxidative stress response using a multi-species model
31	Fabio	MARCHIANO	mitoXplorer 2.0 : A systematic functional analysis of mitochondrial dynamics in health young, aged and sarcopenic muscle

32	Ousmane	DIOP	Summarizing complex asynchronous Boolean attractors:
	5		application to a cell cycle model
33	Rowan	HOWELL	A Boolean model of the Mitotic Exit Network
34	Denise	THIEL	Tracking the metabolic footprints of cancer using network analysis
35	Janina	MÜLLER	High-throughput growth-rate measurements using time-lapse imaging of bacterial colonies
36	Jacques- Alexandre	SEPULCHRE	Modeling the bioconversion of polysaccharides in a continuous reactor: a study case of the recycling of pectin
37	Torkel	LOMAN	Modelling the heterogeneous lysozyme stress response in B. subtilis
38	Chuang	XU	One-dimensional stochastic reaction networks: Classification and dynamics
39	Clarmyra	HAYES	Kinetic and structural requirements for bistability in homotropic allosteric enzyme- mediated substrate cycles
40	Laurens	KRAH	Noise propagation in an integrated model of bacterial gene expression and growth
41	Emma	KEIZER	Unravelling the dynamics of adaptive immunity in CRISPR-Cas through single-cell histories
42	Moritz	BENISCH	Online optogenetic control of protein production in E. Coli
43	Joaquin	GUTIERREZ	Optogenetic feedback stabilization of microbial co-cultures
44	Sant	KUMAR	Stochastic single-cell feedback provides new insights into biomolecular controller design
45	Agustin G.	YABO	Bacterial growth strategies as Optimal Control problems: maximizing metabolite production
46	Bob	VAN SLUIJS	Reverse Engineering in vitro Genetic Networks
47	Lewis	GROZINGER	Investigating the effects of host organism on genetic circuits with interval analysis of context-sensitive model parameters
48	Sarah	CHERKAOUI	Disentangling the relation between metabolite levels and pathway activity
49	Thomas	DIEDEREN	High throughput flux analysis
50	Ohad	GOLAN	Quantitative analysis of the nutrient management: The central metabolism — amino acid module
51	Mona K.	TONN	Emergence of non-genetic heterogeneity in metabolic reactions
52	Antrea	PAVLOU	Experimental and computational analysis of bacterial self-replicators
53	Svetlana	VOLKOVA	Towards personalized mechanistic models of red blood cell metabolism
54	Denis	SHEPELIN	Benchmarking kinetic models of E. coli metabolism.
55	Diane	ADJAVON	Metabolic oscillations as an optimization problem
56	Yu	HUO	Quantification and Modelling of Cellular Decision between Coexisting Maltose and Galactose
57	Soukaina	TIMOUMA	Mining and modeling the genome of yeast industrial hybrids
58	Claudio	TOMI ANDRINO	The use of thermodynamics and biomass assembly to further constrain metabolic flux analysis based methods: toward monitoring bacterial metabolism
59	Hadrien	DELATTRE	Modelling the dynamics of pathway switching in microbial populations
60	Riccardo	MUOLO	Specific Flux Optimization in the Threonine Pathway
61	Rik	VAN ROSMALEN	Automated Construction and Application of Mathematical Models for Metabolic Systems