Reading Group on Deep Learning
Session 4
Unsupervised Neural Networks

Jakob Verbeek & Daan Wynen

2016-09-22

Jakob Verbeek & Daan Wynen Unsupervised Neural Networks

.
Outline

@ Autoencoders

@ (Restricted) Boltzmann Machines

@ Deep Belief Networks

Jakob Verbeek & Daan Wynen Unsupervised Neural Networks

Autoencoders

Autoencoders

Jakob Verbeek & Daan Wynen Unsupervised Neural Networks

Autoencoders

Autoencoder

Input Reconstruction

X 9(f(x))

O Lxg(f(®)) (e.g. MSE)

Jakob Verbeek & Daan Wynen Unsupervised Neural Networks

Autoencoder

Input Code Reconstruction

X fx) g(f(x)

O Lxg(f(®))) (e.g. MSE)

Jakob Verbeek & Daan Wynen Unsupervised Neural Networks

Autoencoders

Autoencoder

Input Code Reconstruction

) L(x,9(f(x)))

Jakob Verbeek & Daan Wynen Unsupervised Neural Networks

Autoencoders

Autoencoder

Input Code Reconstruction

— L(x,9(f(x)))

Autoencoders

Autoencoder

Jakob Verbeek & Daan Wynen Unsupervised Neural Networks

Autoencoders

Denoising Autoencoder

DASRELLRT N
AL

0 Lx9(f(x)))

Jakob Verbeek & Daan Wynen Unsupervised Neural Networks

Autoencoders

Denoising Autoencoder

Input Cc:rrupfed Reconstruction
x b 9(f(x))
X
| <
4 A
1 &1
> %
1T ZANQ !
a4
B N A %

/

— L{x,9(f(%)))

Jakob Verbeek & Daan Wynen Unsupervised Neural Networks

Autoencoders

Denoising Autoencoder

7? i §
? B

Lk

LN

VAVANAY

S

IAA\’ N .
|

— L(x,9(f(x)))

Jakob Verbeek & Daan Wynen Unsupervised Neural Networks

Autoencoders

Sparse Autoencoder

(Restricted) Boltzmann Machines

(Restricted) Boltzmann Machines

Jakob Verbeek & Daan Wynen Unsupervised Neural Networks

(Restricted) Boltzmann Machines

Boltzmann Machine
Binary units x

() = P

E(x) = —x"Ux — bTx
Jakob Verbeek & Daan Wynen Unsupervised Neural Networks

(Restricted) Boltzmann Machines

Boltzmann Machine
Binary units v, h

exp(—E(v,h)
Z

P(v,h) =
E(v,h)=—-v'Rv — vIWh —hTSh — bTv — ch

Jakob Verbeek & Daan Wynen Unsupervised Neural Networks

(Restricted) Boltzmann Machines

Restricted Boltzmann Machine
Binary units v, h

P(v,h) = e:cp(—g(v,h)

E(v,h) = —vTWh — —bTv —c™h

Jakob Verbeek & Daan Wynen Unsupervised Neural Networks

(Restricted) Boltzmann Machines

Slides by Honglak Lee:
http://videolectures.net/deeplearning2015_lee_
boltzmann_machines

Jakob Verbeek & Daan Wynen Unsupervised Neural Networks

http://videolectures.net/deeplearning2015_lee_boltzmann_machines
http://videolectures.net/deeplearning2015_lee_boltzmann_machines

Restricted Boltzmann Machines (RBMs)

* Representation
— Undirected bipartite graphical model
—v € {0,1}”: observed (visible) binary variables

—h € {0,1}": hidden binary variables.
hidden (H)

P(v,h) = £ exp(—E(v,h))

E1(V7 h) = — ZviWijhj — ijhj — Zcivi
j -

> \ ", \\\\‘ "\‘
: T e®
= —vIWh—-b"h -c"v .

visible (V)
= —h,(W/v) +h,(Wiv) +/,(wiv) —b"h —cTv

Z= Y Y ep(-E(v.h)

ve{0,1}P he{0,1}¥

Restricted Boltzmann Machines (RBMs)

* Representation
— Undirected bipartite graphical model
—v € {0,1}”: observed (visible) binary variables

—h € {0,1}": hidden binary variables.
hidden (H)

P(v,h) = £ exp(—E(v,h))

E1(V7 h) = _ZviWijhj — Zb]h chvz
e g
= v Wh-b"h-c'v

visible (V)
= —h,(W/v) +h,(Wiv) +/,(wiv) —b"h —cTv

Conditional Probabilities
(RBM with binary-valued input data)

* Givenyv, all the h; are
conditionally independent

hidden (H)
Pl =1 = sSWEEST A Y
= sigmoid()_, Wi;jv; + b;) Q‘ g;
= sigmoid(w; v + b;) " b’*“
— P(h|v) can be used as “features” v v,
visible (V)

* Given h, all the v; are
conditionally independent

P(vilh) = sigmoid(Y_; Wizh; + ¢;)

RBMs with real-valued input data

* Representation
— Undirected bipartite graphical model
— V: observed (visible) real variables

— H: hidden binary variables. hidden (H)

Q QO

Z \\“ ’.' \\\\\ “.
! 1 0
E(V, h) = T"Q Z(UZ — Ci)2 — ; Z ’UiWijhj — Zb]h
i 1,5 J

! visible (V)

P(v,h) = ~ exp(—E(v, h))

RBMs with real-valued input data

* Givenv, all the h; are conditionally independent

hldden (H)

. _ exp(% Zz Wij’Ui—Fbj)
P(hj o 1|V) T oexp(z X Wijvitbs)+1
= sigmoid(Z >, Wijv; + b;) Qv @ O

= sigmoid(L w1V +b)

— P(h|v) can be used as “features” b “

VISIb|e()
* Given h, all the v; are conditionally independent

P(Ullh) :N(O'Zj Wijhj + Ci,0'2)
P(vlh) = N(cWh + ¢, 0°1)

Inference

* Conditional Distribution: P(v|h) or P(h|v)
— Easy to compute (see previous slides).

— Due to conditional independence, we can sample hidden
units in parallel given visible units (& vice versa)

* Joint Distribution: P(v,h)

— Requires Gibbs Sampling (approximate)

Initialize with v°
Sample h® from P(h|v?)

Repeat until convergence (t=1,...) {
Sample vt from P(vt|ht™1)
Sample h from P(h|v?)

hORAl[0p0l [0pJ)

10

Training RBMs

Maximum likelihood training
— Objective: Log-likelihood of the training data

M
L= Z_llog P(v(™) Z 10gZP (m)

m=1

where Py (v(m), h) = % exp(—E(V(m), h;0))

— Computing exact gradient intractable.

— Typically sampling-based approximation is used (e.g.,
contrastive divergence).

— Usually optimized via stochastic gradient descent

new .__ pold Olog P(v)
rew — god 4 2108 P(v)

11

o0

Training RBMs

1
* Model: Fs5(v.h) =~ exp(=E(v,h;0))
* How can we find parameters 8 that maximize Pg(v)?

0 0

0
log P(v) = En~py(nlv) [90 E(h, V)] —Ev/ h~Py(v.h) [—%E(h/,v)]

Data Distribution

(posterior of h given v) Model Distribution

* We need to compute P(h|v) and P(v,h), and derivative of
E w.r.t. parameters {W,b,c}
— P(h|v): tractable (see previous slides)

— P(v,h): intractable
* Can approximate with Gibbs sampling, but requires lots of iterations

12

Contrastive Divergence

* Approximation of the log-likelihood gradient
1. Replace the average over all possible inputs by samples

0

0
“v/ h~ Py (v,h) —%E(hly v)

20 log P(v) = En~py (hfv) [_%E(hvv)}

2. Run the MCMC chain (Gibbs sampling) for only k steps
starting from the observed example

Initialize with v0 = v
Sample h° from P(h|v®)

Sample vt from P(vt|ht™1)
Sample ht from P(h|v?)

13

Maximum likelihood learning for RBM

<v;h;>° : ! : ! : : <v;h>"

o0 0
t=0 t=1 t=2 t = infinity

f

Equilibrium
distribution

Slide Credit: Geoff Hinton 14

Contrastive divergence to learn RBM

Start with a training vector on the
visible units.

<vihj>! Update all the hidden units in
parallel

<vihj>

Update the all the visible units in

=0 1 parallel to get a “reconstruction”.
= t=
data reconstruction Update the hidden units again.

Slide Credit: Geoff Hinton 15

Update rule: Putting together

* Training via stochastic gradient.

OE
* Note, —— = h;v;. Therefore,
aWij

0
W, log P(v) = En<py(npv) [Vili] — Ev/ nepy(v.n) [Vik]

~ viP(hj|v) — v P(hy|v¥)
— where v* is a sample from k-step CD
— Can derive similar update rule for biases b and ¢

— Mini-batch (~100 samples) are used to reduce the
variance of the gradient estimate

— Implemented in ~10 lines of matlab code

k

16

Deep Belief Networks

Deep Belief Networks

Jakob Verbeek & Daan Wynen Unsupervised Neural Networks

Deep Belief Networks (DBNs)

[Hinton et al., 2006]

* Probabilistic generative model
— With deep architecture (multiple layers)

* Unsupervised pre-training with RBMs provides
a good initialization of the model

— Theoretically justified as maximizing the lower-
bound of the log-likelihood of the data

* Supervised fine-tuning
— Generative: Up-down algorithm
— Discriminative: backpropagation (convert to NN)

Related work: Deep Boltzmann Machine (Salakhutdinov and Hinton, 2009) "

Deep Belief Networks (DBN)

Hidden /

layers

Directed
belief nets

P(v,ht,h?,....h') = P(v|h)P(h! |h?)...P(h'"2 [P(h, h')

25

DBN structure

Hinton et al., 2006

Generative
2 3
P(h ,h) process

(approximate) inference

Q(h’[h*) =P(h’ |h%)

lP(hl |h?)
hl

P(v,h*,h,...h") =P(v|h")P(h*|h?)..P(h'"? |[h'")P(h"™,h")
Q(hl | hi—l) — Hsigm(bij—l + W}hi—l) P(hi—l | hl) — HSlgm(blj + Wijlhi)

26

DBN Greedy training

* First step:

— Construct an RBM with
an input layer vand a
hidden layer h

— Train the RBM

Hinton et al., 2006

27

DBN Greedy training
Hinton et al., 2006
* Second step:
— Stack another hidden
layer on top of the RBM
to form a new RBM

— Fix W, sample h' from
Q(h'|V) as input. Train
2 W2

W* as RBM.

DBN Greedy training

* Third step:

Hinton et al., 2006

— Continue to stack layers
on top of the network,
train it as previous step

with sample sampled
from Q(h*|h')

* And so on...

29

DBN and supervised fine-tuning

* Discriminative fine-tuning
— Initializing with neural nets + backpropagation
— Maximizes logP(Y | X) (x:data Y:label)
* Generative fine-tuning
— Up-down algorithm
— Maximizes logP(Y, X) (joint likelihood of data and labels)

* Hinton et al. used supervised + generative fine-tuning in
their Neural Computation paper. However, it is possible
to use unsupervised + generative fine-tuning as well.

36

A model for digit recognition

The top two layers form an 2000 top-level neurons
associative memory

The energy valleys have names I I

10 label

— 0labe 500 neurons
neurons "

The model learns to generate 00

combinations of labels and images. neurons

To perform recognition we start with a I 1

neutral state of the label units and do an 28 x 28

up-pass from the image followed by a few pixel

iterations of the top-level associative image

memory.
http://www.cs.toronto.edu/~hinton/nipstutorial/nipstut3.ppt Slide Credit: Geoff Hinton 37

Generative fine-tuning via Up-down algorithm

After pre-training many layers of features, we can fine-
tune the features to improve generation.
1. Do a stochastic bottom-up pass

* Adjust the top-down weights to be good at reconstructing
the feature activities in the layer below.

2. Do afew iterations of sampling in the top level RBM
* Adjust the weights in the top-level RBM.
3. Do a stochastic top-down pass

* Adjust the bottom-up weights to be good at reconstructing
the feature activities in the layer above.

http://www.cs.toronto.edu/~hinton/nipstutorial/nipstut3.ppt Slide Credit: Geoff Hinton 38

Generating sample from a DBN

* Want to sample from
P(v,h%,h2,....h") = P(v|hY)P(h* |h?)...P(h"2 |) P(h' ™, h')
— Sample h'™* using Gibbs sampling in the RBM

— Sample the lower layer h"* from P(h'*|h")
Gibbs chain

OP\O/O\ Y it~ pait

39

Generating samples from DBN

o

c

A X W g
AESNRTOMYNNELEY
AN eaARNN S

(5]

E08
k]

AN et - C

NTENOCAXRXRNNES D
SENOOSNRNES D

S ANOMNPTRRAPLC Q©

L2 ANCNAITNBDEC
PN GAa<»pp

SPN e D@

-0
]
&

Figure 9: Each row shows 10 samples from the generative model with a par-
ticular label clamped on. The top-level associative memory is initialized by an
up-pass from arandom binary image in which each pixel is on with a probability
of 0.5. The first column shows the results of a down-pass from this initial high-
level state. Subsequent columns are produced by 20 iterations of alternating
Gibbs sampling in the associative memory.

Hinton et al, A Fast Learning Algorithm for Deep Belief Nets, 2006

40

Stacking of RBMs as
Deep Neural Networks

43

Using Stacks of RBMs as Neural Networks

* The feedforward (approximate) inference of
the DBN looks the same as the sigmoid deep
neural networks

* Idea: use the DBN as an initialization of the
deep neural network, and then do fine-tuning
with back-propagation

44

DBN for classification

W3
500 RBV Softmax Output
10 10
500 wi Witey
W, [2000 | [2000]
— = T T
500 RBM | . 0“3 | | . 0“3”3 |
wi T Witey
[500] [500]
W, w] T Wiee;
. RBM
Pretraining Unrolling Fine—tuning

* After layer-by-layer unsupervised pretraining, discriminative fine-tuning
by backpropagation achieves an error rate of 1.2% on MNIST. SVM’s get
1.4% and randomly initialized backprop gets 1.6%.

* Clearly unsupervised learning helps generalization. It ensures that most of
the information in the weights comes from modeling the input data.

Slide credit: Russ Salakhutdinov 45

Deep Belief Networks

Deep Boltzmann Machine

Figure: from http://www.deeplearningbook.org

» Specialization of Boltzmann Machine

Jakob Verbeek & Daan Wynen Unsupervised Neural Networks

http://www.deeplearningbook.org

Deep Belief Networks

Deep Boltzmann Machine

Figure: from http://www.deeplearningbook.org

» Specialization of Boltzmann Machine

» Also specialization of Restricted Boltzmann Machine!
Jakob Verbeek & Daan Wynen Unsupervised Neural Networks

http://www.deeplearningbook.org

DBM - Properties

» Allows for up-down interactions between layers

» Compared to DBNets, Q(h|v) can be tighter to P(h|v)
» Also makes inference and training harder
» MCMC across all layers. . .

Jakob Verbeek & Daan Wynen Unsupervised Neural Networks

	Autoencoders
	(Restricted) Boltzmann Machines
	Deep Belief Networks

