
Vicky Kalogeiton, Stéphane
Lathuilière, Pauline Luc, Thomas

Lucas, Konstantin Shmelkov

TensorFlow, Theano, Keras,
Torch, Caffe

Introduction

TensorFlow Google Brain, 2015 (rewritten DistBelief)

Theano University of Montréal, 2009

Keras François Chollet, 2015 (now at Google)

Torch Facebook AI Research, Twitter, Google DeepMind

Caffe Berkeley Vision and Learning Center (BVLC), 2013

http://ronan.collobert.com/
http://www.clement.farabet.net/
http://ronan.collobert.com/

Outline
1. Introduction of each framework

a. TensorFlow
b. Theano
c. Keras
d. Torch
e. Caffe

2. Further comparison
a. Code + models
b. Community and documentation
c. Performance
d. Model deployment
e. Extra features

3. Which framework to choose when ..?

Introduction of each
framework

TensorFlow architecture
1) Low-level core (C++/CUDA)
2) Simple Python API to define the computational graph
3) High-level API (TF-Learn, TF-Slim, soon Keras…)

TensorFlow computational graph
- auto-differentiation!
- easy multi-GPU/multi-node
- native C++ multithreading
- device-efficient

implementation for most ops
- whole pipeline in the graph:

data loading, preprocessing,
prefetching...

TensorBoard

TensorFlow development
+ bleeding edge (GitHub yay!)
+ division in core and contrib => very quick merging of new hotness
+ a lot of new related API: CRF, BayesFlow, SparseTensor, audio IO, CTC,

seq2seq
+ so it can easily handle images, videos, audio, text...
+ if you really need a new native op, you can load a dynamic lib
- sometimes contrib stuff disappears or moves
- recently introduced bells and whistles are barely documented

Presentation of Theano:
- Maintained by Montréal University group.
- Pioneered the use of a computational graph.
- General machine learning tool -> Use of Lasagne and Keras.
- Very popular in the research community, but not elsewhere. Falling

behind.

- Read tutorials until you no longer can, then keep going.
- Once you are convinced that coding in pure Theano is

cumbersome, pick up a Deep-learning library to go on
top. (Lasagne/Keras).

- Make the Theano/Lasagne documentation your home
page.

What is it like to start using Theano?

Theano’s flexibility.

- Automatic differentiation.
- Lasagne is very well conceived, saves a lot of code when trying new things

without hurting flexibility.
- Most new ideas can be implemented quickly with simple modifications of

existing “layers”.

Debugging in Theano: farewell to print debugging.

Main issues:

- Compile time of big models can be a huge pain.
- Error messages can be cryptic and pop up in the middle of nowhere.

Solutions: Be smart.

- Use reduced models (batch size of 1, fewer units per layer, fewer layers).
- Write modular code with defensive checks and unit test everything.
- Some debugging tools are provided.
- No prints.

Keras: strengths
● Easy-to-use Python library

● It wraps Theano and TensorFlow (it benefits from the advantages of both)

● Guiding principles: modularity, minimalism, extensibility, and

Python-nativeness

● Why python? Easy to learn, powerful libraries (scikit-learn, matplotlib...)

● Many easy-to-use tools: real-time data augmentation, callbacks

(Tensorboard visualization)

● Keras is gaining official Google support

Keras : simplicity
TF example:

kernel = tf.Variable(tf.truncated_normal([3, 3, 64, 64], type=tf.float32,stddev=1e-1), name='weights')
conv = tf.nn.conv2d(self.conv1_1, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[64], dtype=tf.float32), trainable=True, name='biases')
out = tf.nn.bias_add(conv, biases)
self.conv1_2 = tf.nn.relu(out, name=’block1_conv2’)

Keras:

x = Convolution2D(64, 3, 3, activation='relu', border_mode='same', name='block1_conv2')(x)

Keras: Weakness
● Less flexible

● No RBM for example

● Less projects available online than caffe

● Multi-GPU not 100% working

Mixed language :

➢ C / CUDA backend built on
common backend libraries

➢ Lua frontend, running on LuaJIT

Why LUA ???

- Fast & embeddable
- Readable
- Very good interface to C Package installation uses luarocks.

Torch - Framework Architecture

Backend libraries : BLAS, cuDNN, ...

TH / THC Tensor Libraries LuaT

cutorch torch

Lu
a

nn

cunn

cudnn

torchnetoptim
nngraph

any lua package...

image
rnnautograd

display

imgraph
loadcaffe

optnet

http://hunch.net/~nyoml/torch7.pdf

Torch - Getting Started
Learning Lua

...in 15 minutes + gotchas

...if I’m a “book person”

...as I’m coding

Pointers for Torch :

Torch Cheatsheet

Tutorials, official and unofficial packages,

demos and code

Torch for Matlab or Numpy users

Model Zoo

Awesome-torch

Training on multi-GPUs over ImageNet

Distributed training with Torch

Torch

Official presentation at OMLW 14

Official documentation

http://tylerneylon.com/a/learn-lua/
https://luapower.com/luajit-notes
https://www.lua.org/pil/
https://www.lua.org/pil/contents.html
https://github.com/torch/torch7/wiki/Cheatsheet
https://github.com/torch/torch7/wiki/Cheatsheet
https://github.com/torch/torch7/wiki/Cheatsheet
https://github.com/atamahjoubfar/Torch-for-Matlab-users/blob/master/Torch_for_Matlab_users.pdf
https://github.com/torch/torch7/wiki/Torch-for-Numpy-users
https://github.com/torch/torch7/wiki/ModelZoo
https://github.com/torch/torch7/wiki/ModelZoo
https://github.com/carpedm20/awesome-torch
https://github.com/carpedm20/awesome-torch
https://github.com/soumith/imagenet-multiGPU.torch
https://github.com/soumith/imagenet-multiGPU.torch
https://github.com/soumith/imagenet-multiGPU.torch
https://github.com/soumith/imagenet-multiGPU.torch
https://blog.twitter.com/2016/distributed-learning-in-torch
http://hunch.net/~nyoml/torch7.pdf
http://torch.ch/docs/package-docs.html

Torch - Main Strengths (1)
- Flexibility

- Easy extensibility - at any level, thanks to easy integration with C
- Result :

- whatever the problem, there is a package.
- new generic bricks are often very rapidly implemented by the community and

are easy to pull
- Imperative (vs declarative)
- Typical use case : write a new layer, with GPU implementation :

a. Implement for CPU nn
b. Implement for GPU cunn
c. Test (jacobian and unit testing framework)

https://github.com/torch/nn/pull/849/files
https://github.com/torch/cunn/pull/297
https://github.com/torch/nn/blob/master/doc/testing.md
https://github.com/torch/torch7/blob/master/doc/tester.md

Torch - Main Strengths (2)
- Flexibility
- Readability

- mid-level code - as well as high level - is in Lua

- Modularity
- Easy to pull someone’s code
- Use luarocks to install required packages

- Speed

Very convenient for research.

Torch - Weaknesses
- Decent proportion of projects in Torch, but less than Caffe

- LuaJIT is not mainstream and does cause integration issues

- People hate Lua. But :
- Easy to learn
- If really, you cannot bring yourself to coding in Lua...

Try it ! :)

http://pytorch.org/

https://github.com/pytorch/pytorch
https://github.com/pytorch/examples
https://github.com/pytorch/tutorials
https://github.com/pytorch/vision
https://github.com/pytorch/text
https://github.com/pytorch/extension-ffi

Caffe

Caffe- Flexibility

Caffe- Interface

pycaffe

pycaffe

Caffe- Model examples
layer {

 name: "pool1"

 type: "Pooling"

 pooling_param {

 kernel_size: 2

 stride: 2

 pool: MAX

 }

 bottom: "conv1"

 top: "pool1"

}

layer {

 name: "conv1"

 type: "Convolution"

 bottom: "data"

 top: "conv1"

 param {

 lr_mult: 0

 decay_mult: 0

 }

 convolution_param {

 num_output: 64

 kernel_size: 3

 pad: 1

 }

}

layer {

 name: "loss"

 type: "SoftmaxWithLoss"

 bottom: "fc8"

 bottom: "label"

 top: "loss"

}

Caffe- Solver
➔ creation of the training network for learning and test network(s)

for evaluation

➔ iterative optimization by calling forward / backward and
parameter updating

➔ (periodical) evaluation of the test networks

➔ snapshotting of the model and solver state throughout the
optimization

Caffe- Solver example
base_lr: 0.01 # begin training at a learning rate of 0.01 = 1e-2

lr_policy: "step" # learning rate policy: drop the learning rate in "steps"

 # by a factor of gamma every stepsize iterations

gamma: 0.1 # drop the learning rate by a factor of 10

 # (i.e., multiply it by a factor of gamma = 0.1)

stepsize: 100000 # drop the learning rate every 100K iterations

max_iter: 350000 # train for 350K iterations total

Caffe- Architecture

Caffe- Extra

Caffe- Extra

Further comparison

Code + models

https://github.com/torch/torch7/wiki/ModelZoo
https://github.com/torch/torch7/wiki/ModelZoo
https://github.com/szagoruyko/loadcaffe

Community and Documentation
Community : (Github, groups, discussions...)

- Caffe has the largest community
- TensorFlow’s is already large and growing.
- Keras’ community is growing, while Theano’s and Lasagne’s are declining

Documentation

- Great documentation for Theano, Lasagne, Keras and Torch
- Most recent API is not documented for TensorFlow. Tutorials are often

outdated.

Performance

Model deployment

Extra features

…

Which framework to
choose when...

Which framework to choose when ..?
1. You are a PhD student on DL itself?

2. You want to use DL only to get features?

3. You work in industry?

4. You started your 2 month internship?

5. You want to give practise works to your students?

6. You are curious about deep learning?

7. You don’t even know python?

Which framework to choose when ..?
1. You are a PhD student on DL itself: TensorFlow, Theano, Torch

2. You want to use DL only to get features: Keras, Caffe

3. You work in industry: TensorFlow, Caffe

4. You started your 2 month internship: Keras, Caffe

5. You want to give practise works to your students: Keras, Caffe

6. You are curious about deep learning: Caffe

7. You don’t even know python: Keras, Torch

Docker
Docker is a virtualization solution (similar to virtual machine). You can
download container (or “image”) containing all the frameworks you need.

Why is is useful for DL?

● Installing all the DL frameworks takes time, so download a docker image
instead.

● You are sure to have the same running environment on two different
machines

● You cannot be root on the cluster.
● Don’t share the code only. Share your docker image also.

Thank you for your attention

