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Introduction
X —-’ W 9. h e

Building block: y = h(WXx)
W = linear (also convolutional, low rank, etc...)

h = element-wise non-linear operation (tanh, reLU, etc..)



Multilayer Network

e e e ey

Same input and output, but hidden representations: more powerful!
Composition of building blocks

Can still learn parameters with backpropagation



Sequential Input/Output

So far x,y fixed size vectors --> limiting factor!

We want input output with a complex structure eg. variable length sequence!

. ﬁ ? ﬁ
How arevyou? ——» W | =» h Y (OB) (VB) (SB)

Can we reuse the same building block?



Repeated Network
) b y +  Works!
HOW  — [ h ‘ H(OoB) + Scale well with data

because reuses same
parameters!

are X Y, v - No context, every
‘ [ h J decision is taken

independently!




Convolutional Network
X _H\ y + Works!
HOwW = [ h ‘ “ (OB)  + Scale well with data
are

because same
parameters reused!
HOW + Context, every decision
are X W h Yo vB)
UOU ‘ depends also on the
neighbours!
- Context has fixed,

' |
Sre X, W H jﬁl (SB) predefined struc.;ture.
you _ | - Does not scale if we

want long range, sparse
correlations!




Recurrent Network
X N y + Works!
HOW - [ h ‘ - (OB) + Scale well with data

because same

parameters reused!

\ y + State vector can
are , ¢ (VB) :
[ summarize all the past,
thus global context with
long term dependencies!

m (SB) + Same optimization as
before with

Backpropagation




RNN topology: Many to Many (Coupled)

Works!

+ Scale well with data
because same
parameters reused!

+ State vector can
summarize all the past,
thus global context with
long term dependencies!

+ Same optimization as
before with
Backpropagation




RNN topology: Many to one
X _H\ y Classification problems with
- - [ h ‘ - variable input size.

E.g.:

\ - Classify the category of a
sentence

Sentiment Classification

{ { on a audio track




RNN topology: One to many
) T Generation of a sequence
- ﬁ—»} h ‘ ‘” - given an initial state.

E.g.:

\ - Generate a sentence
describing an image

Generate a sentence

{ { given the first word




RNN topology: Many to Many (Encoder/Decoder)

Generation of a sequence

B - w -
o m— ) given a different length
W

sequence.

E.g.:

_{ W n 4 [ Jr—
ml " P} ! ‘ - Translate a sentence

- Describe a movie
e w e




RNN graphical representation
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Forward propagation in a single neuron

@‘ Computation inside one single hidden
neuron, denoted h.
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A network with one neuron per layer
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A network with one neuron per layer

o~
[
|

o(61x)

0'(92()1)
o(020(01x))

o>
(\V)
|




Making the network recurrent
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Unfolding the graph in time

Output layer ?
Hidden layer L 02
01

Input layer @

b% = 0(9132‘1 + 0)




Unfolding the graph in time

Output layer ’ ?

Hidden layer DQQ a% — 91 CEQ -+ 92 bi
2 2
91 '91 bl — 0(a1)

Input layer @ @




Unfolding the graph in time
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A recurrent network with one hidden layer
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Unfolding the graph
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Unfolding the graph
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Unfolding the graph

.

Input layer e

Output layer K
Hidden layers

o~
Il
'—l
~
I
[N}
o~
I
W
~
I
N




Equations of the recurrence
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The unfolded graph is a feed-forward graph
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Output layer

Hidden layer

Input layer
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Unfolding the graph in time
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Back-propagation in a recurrent network

t=20 t=1 t=2 t=3 t=4 t=5




Equations of the back-propagation
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Equations of the back-propagation




The vanishing gradient problem

Hidden
Layer

Figure credit: Alex Graves



A simple case of vanishing gradient
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A sufficient condition for gradients to vanish
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A sufficient condition for gradients to vanish
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We have the following sufficient conditions: If there exists 3 < 1 such that for all 7, ab - < 16} then ab
vanishes exponentially with the number of time steps. If there exists v > 1 such that for all i, ab = 226y

then abt explodes exponentially with the number of time steps.




Oby
Oby,

A sufficient condition for gradients to vanish

Ob;
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A sufficient condition for gradients to vanish

Conclusion: ¢ is upper bounded by « and ||4| 1, < % is sufficient for H g ’ 1, to vanish exponen-

oh;_,
tially fast.

The contraposition of this property is: if ¢’ is upper bounded by « and gradient explosion is observed
then ||0pial|L, is greater than -

We cannot proceed similarily as with equations (1) to get a simple sufficient condition on 6;,;,; for
H% L, to explode: allthough ||0p;4| L, is lower-bounded by Ay (frid), ¢'(x) — 0 when z — oo
and so the product of operator norms can not be lower-bounded without further hypothesis. Therefore we
simply keep the result that H ob;

5h, T |[L2 > 1 is sufficient for the gradient to explode. In practice this can
happen, as the previous intuitive example shows.




Improved RNNs

e Gated Units

o Long-Short Term Memory RNN
o Gated Recurrent Unit

e SKip connections

o Clockwork RNN
o Hierarchical Multi-resolution RNN



LSTM recurrent networks

[based on Christopher Olah blog]
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LSTM recurrent networks

Long term dependencies problem
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Inside a standard RNN




Inside a LSTM




Gated units @
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Gated units




Gated units @

LSTM

‘ N Ci_1
Cy = fer xCiq1 + 14 x O} —
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Gated units

Gated Recurrent Unit




Gated units

Gated Recurrent Unit

tanh




Gated units

hut

Gated Recurrent Unit
hi—1

;Lt — tanh (W . [’l"t S ht—la CBt])

ht:(l_zt)*ht—l+zt*ﬁt




Figure credit: Alex Graves
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LSTM equations
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GRU Equations
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Clockwork RNN

[Koutnik at al. 2014]
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Clockwork RNN
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Clockwork RNN

[Chung et al. 2016]

@ Use prior knowledge about data to define

a hierarchy of representations
e
"\f‘D - h1 represents char
- h2 represents words
@ - h3 represents sentences

UPDATE: standard RNN step

COPY: h is copied to the next timestep

FLUSH: state passed to the upper layer



Hierarchical Multiscale RNN

Learn when to flush and update from data

phr:zsel
if zf_, =0and 27! = 1 (UPDATE)
if 2/, =0and z:~' = 0 (COPY)
if 2¢_, =1 (FLUSH).




Hierarchical Multiscale RNN

Optimization problem: Penn Treebank
s di ol Model BPC
Z Is discrete: Norm-stabilized RNN (Krueger and Memisevic, 2015) 1.48
Clockwork RNN (Koutnik ef al. 1.46
- Sampling: REINFORCE HF-MRNN (Mikolov et al.} 1.41
- Soft: softmax on z MI-RNN (Wu et al., 1.39
. Step Fn: ME n-gram (Mikolov et al., 137
P ' _ Batch-normalized LSTM oolymans et al., 1:32
straight-through estim.- Zoneout RNN eger ef al.| 1.30
- fwd pass step HM-LSTM Sampling 1.30
) ... HM-LSTM Soft 1.29
bkd pass hard S|gm0|d HM.LSTM §tep Fis 198
- Step Fn & Annealing: HM-LSTM Step Fn. & Slope Annealing 1.27

- slope from 110 5
P Table 1: Bits-per-character on the Penn Treebank test set.



Hierarchical Multiscale RNN

Penn Treebank Line 1

o
consumers may want to move their telephones a little closer to the twv set =<=unk> =<unk> watc
Penn Treebank Line 2
zl
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|
21
“"hbc <unk=> consumer

rs from among four or five =<unk=> =<unk> two weeks ago viewers of several
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handwriting data 4 £ I ‘
Ground truth of pen-tip location
predict (x,y) coordinates
of strokes Nttt fEkA PHres. e

s,  DeAare e i
The states of z*



Regularization in RNNs

Standard Dropout in recurrent layers does not work well because it causes loss of
long-term memory!

- Dropout in input-to-hidden and hidden-to-output [zaremba et al. 2014]

- Apply dropout at sequence level (same zeroed units for the entire sequence)
[Gal 2016]

- Dropout only at the cell update (for LSTM and GRU units) [Semeniuta et al. 2016]

- Enforcing norm of the hidden state to be similar along time [Krueger & Memisevic
2016]

- Zoneout some hidden units (copy their state to the next timestep) [Krueger et al.
2016]



RNN Regularization

Similar to dropout: _ — Zonsout
1 | By, MR SR —  Weight noise
instead of dropping out hidden units, i 3;’.:1:;2?#?‘”
. . . #—a Recurrent dropout
here it zones out hidden units! wial Faew ciecaaie |
character-level Penn Treebank i ;
=20 S
Model Valid Test :
LSTM 1.664  1.398 \ :
Recurrent dropout  1.481  1.382 1sf :
BatchNorm 1.32 ;
0 5 10 15 20 25

ZDI]EDUt 1. 362 1 29? Epochs




Teacher Forcing for sequence prediction

Training: Teacher forcing Test:Sampling from Y
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Scheduled Sampling

[Bengio et al. 2015]

Slowly move from Teacher Forcing to Sampling

1 e T | I I
0.9 I Exponential decay |
08 |- Inverse sigmoid decay - |
Sample : Linear decay
0.7 - \ -
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o A 1 ‘
y(t) 04 | s
03 .
02 - : _
DR ... —— h(t) ___» 01| | | \‘““Ew ]
0 | —
T ? 0 200 400 600 800 1000

Probability of sampling from the
__A ground truth

sampled y(t-2)

true y(t-2) true y(t-1)



Scheduled Sampling

Microsoft COCO developement set

Approach vs Metric BLEU-4 | METEOR | CIDER
Baseline 28.8 24.2 89.5
Baseline with Dropout 28.1 239 87.0
Always Sampling 11.2 15.7 49.7
Scheduled Sampling 30.6 243 92.1
Uniform Scheduled Sampling 29.2 24.2 90.9
Baseline ensemble of 10 30.7 235.1 95.7
Scheduled Sampling ensemble of 5 32.3 254 98.7

Baseline: based on google NIC

Baseline with dropout. see part about regularization of RNN

Always Sampling: using sampling from the beginning of training

Scheduled Sampling: the proposed approach with inverse Sigmoid decay

Uniform scheduled Sampling: using scheduled sampling but with uniform Y sampling



Sequence Level Training

[Ranzato et al. 2016]
During training objective is different than at test time

- Training: generate next word given the previous
- Test: generate the entire sequence given an initial state

Optimize directly evaluation metric (e.g. BLUE score for sentence generation)
Set the problem as a Reinforcement Learning:

- RNN is an Agent

- Policy defined by the learned parameters

- Action is the selection of the next word based on the policy

- Reward is the evaluation metric



Comparison of different training approaches

- XENT = Cross Entropy loss: standard approach, but suffers of exposure bias

- DAD = Scheduled Sampling: the loss is always based on fixed target labels, that
may not be aligned with the so far generated sentence
- E2E = End-to-end backprop: select top k output and renormalize. Uses a
schedule between target labels and top k output
- MIXER = Sequence level training: optimize at sequence level. Start from model
trained with Cross Entropy and use reinforce for the last K steps of the sequence.

TASK XENT | DAD | E2E | MIXER
summarization 13.01 12.18 | 12.78 | 16.22
translation 17.74 20.12 | 17.77 | 20.73
image captioning || 27.8 28.16 | 26.42 | 29.16




Further reading

e Other topologies
o Bidirectional RNN
o Recursive RNN
e Applications

o RNN for text generation
o RNN for image captioning
o RNN language translation
o pixel RNN for image generation

e RNN + Attention models

o Draw for image generation
o Encode + Review + Decode






Outline:

Motivation: why we need RNNs / intuition of how they work. (for the moment 1 will use old
illustrations, then | will try to use yours...)

- Equations and notations (+derivation of backprop?)

- RNN topologies

- Intuitions of why the gradients vanish.

- Sufficient condition for vanishing gradient.

- Solutions to the vanishing gradient problem.

- Gated units (Lstm/Gru). (some equations)

- Clockwork RNN.
- Hierarchical Multiscale RNN (http://arxiv.org/pdf/1609.01704v2.pdf).

- Teacher forcing
- scheduled sampling
- optimization on BLUE scores

-  RNNSs with bells and whistles

- Regularisation of RNNs (zone-out)



http://arxiv.org/pdf/1609.01704v2.pdf

