
Optimization for Training Deep Models
Deep learning reading group

Henrique Morimitsu
December 13, 2016

INRIA

Presentation based on Chapter 8 of the Deep Learning book by [Goodfellow et al., 2016]

Table of contents

1. Difference between learning and pure optimization
2. Challenges in network optimization
3. Basic algorithms
4. Parameter initialization strategies
5. Algorithms with adaptive learning rate
6. Approximate second-order models
7. Optimization strategies and meta-algorithms

1

What is in here?

If you want to know:

• Best batch size?
• How to avoid local minima?
• Best training algorithm?
• Optimal learning rate?
• Best weight initialization policy?

2

What is in here?

If you want to know:

• Best batch size?
• How to avoid local minima?
• Best training algorithm?
• Optimal learning rate?
• Best weight initialization policy?

No luck for you 2

What is in here?

However, if you want to understand:

• How batch size affects training
• The problems of local minima
and saddle points

• Different training algorithm
• Importance of learning rate
• Existing initialization policies and
their implications

This is for you 3

Difference between learning and
pure optimization

What is optimization?

The process to find maxima or minima based
on constraints
• Involved in many contexts of deep
learning, but the hardest one is
neural network training

• Expend days to months to
solve a single instance

• Special techniques have been
developed specifically for this
case

• Presentation focus on one
particular case of optimization:

Finding the parameters θ of a
network that reduce a cost
function J(θ)

4

Difference between learning and pure optimization

• Several differences
• Machine learning acts indirectly, unlike optimization

• Usually we want to optimize a performance measure
P, based on the test set

• Problem may be intractable
• Optimize a different cost function J instead

• Hoping that it optimizes P as well

5

Example: recognizing cats

Application to recognize cats

• You don’t know which images you may receive

6

Example: recognizing cats

Application to recognize cats

• You don’t know which images you may receive

7

Example: recognizing cats

Application to recognize cats

• You don’t know which images you may receive

8

Example: recognizing cats

• The performance measure P is the number of correct
classifications

• But you don’t have access to these images
• So instead you build a training set
• And measure the performance J on this set
• Minimizing J does not necessarily minimize P

9

Example: recognizing cats

Training Test

10

Example: recognizing cats

Training Test

11

Generalization error (loss function)

• Typically the loss function is a simple average over
the training set:

J(θ) = E(x,y)∼p̂dataL(f(x,θ), y) =
1
m

m∑
i=1

L(f(x(i),θ), y(i))

(1)
where
• E is the expectation operator
• L is the per-example loss function
• f(x,θ) is the predicted output for input x
• p̂data is the empirical distribution (notice the hat)
• y is the target output
• m is the number of training examples

12

Surrogate loss

• Often, minimizing the real loss is
intractable (e.g. 0-1 loss)

• Minimize a surrogate loss instead
• E.g. the negative log-likelihood is a
surrogate for the 0-1 loss

• Sometimes, the surrogate loss may
learn more

• Test error 0-1 loss keeps
decreasing even after training
0-1 loss is zero

• Even if 0-1 loss is zero, it can
be improved by pushing the
classes even farther from each
other

13

Batch and minibatch algorithms

• In machine learning, the objective function
decomposes as a sum

• Compute each update based on the cost function of
a subset

• For example, the often used gradient is based on the
expectation of the training set

▽θJ(θ) = E(x,y)∼p̂data▽θL(f(x;θ), y) (2)

• Computing the expectation exactly at each update is
very expensive

14

Batch and minibatch algorithms

• The gain of using more samples is
less than linear

• Estimator for the true mean µ
of a distribution

• How far the estimated mean µ̂
is?

• Compute the standard
deviation:

SE(µ̂m) =

√√√√Var
[
1
m

m∑
i=1

x(i)
]
=

σ√
m

(??)
• Error drop proportionally only
to the square root of m

15

Batch and minibatch algorithms

• Generate batches by random sampling
• Random sampling may also have some benefits:

• Redundant training set→ less samples for correct
gradient

• Does not happen in practice, but many samples
contribute similarly

16

Batch and minibatch algorithms

• Algorithms that use the whole training set are called
batch or deterministic

• If only subsets are used, it is called minibatch
• However, many times minibatch algorithm are simply
referred to as batch

• If the algorithm uses only one example, it is called
stochastic or online

• Most algorithm use between 1 and a few examples
• They are traditionally called minibatch, minibatch
stochastic or simply stochastic
• The canonical example is stochastic gradient
descent, which will be covered later

17

Batch and minibatch algorithms

• Considerations about minibatch size:
• Larger batches are more accurate, but the return is
less than linear

• Very small batches do not make good use of
multicore capabilities

• If processed in parallel, the amount of memory
scales with the batch size

• Some hardware achieve better performance with
specific sizes (typically a power of 2)

• Small batches may offer a regularizing effect,
probably due to the noise they add

• But may require small learning rates to keep stability
• Number of steps for convergence may increase

18

Batch and minibatch algorithms

• Minibatches must be selected randomly, for
unbiased estimation

• Subsequent estimates must also be independent of
each other

• In practice, we do not enforce true randomness, but
just shuffle the data

19

Batch and minibatch algorithms

• Minibatch stochastic gradient descent follows the
gradient of the true generalization error
• Most algorithms shuffle the data once and then pass
through it many times

• In the first pass, each minibatch gives an unbiased
estimate

• In the next passes it becomes biased

20

Challenges in network
optimization

Ill conditioning

• Condition number: how a change in input affects
output

• High value greatly propagate errors
• May cause the gradient to become ”stuck”

• Even small steps increase the cost

21

When ill conditioning is a problem

• Approximate cost function by a quadratic Taylor
expansion

f(x) ≈ f(x(0))+ (x− x(0))Tg+ 1
2(x− x

(0))TH(x− x(0)) (3)

where:
• g is the gradient
• H is the Hessian matrix

22

When ill conditioning is a problem

f(x) ≈ f(x(0)) + (x− x(0))Tg+
1
2(x− x

(0))TH(x− x(0)) (3)

• Updating using a learning rate of ϵ:

f(x− ϵg) ≈ f(x(0))− ϵgTg+
1
2ϵ

2gTHg (4)

• The first term is the squared gradient norm (positive)
• If second term grows too much, the cost increases
• Monitor both terms to see if ill conditioning is a
problem

23

Local minima

• In convex problems, any local minimum is a global
minimum

• Non-convex functions may have several local
minima
• Neural networks are non-convex!
• But actually, not a major problem

24

Model identifiability

• A model is identifiable if a large training set yields a
unique set of parameters

• Models with latent variable are often not identifiable
• Neural nets are not identifiable
• The input and output weights of any ReLU or maxout
units may be scaled to produce the same result

25

Weight space symmetry

• Also, the same result can be obtained by swapping
the weights between units

• This is known as weight space symmetry
• There are n!m permutations of the hidden units

26

Local minima

• Therefore, the cost function may have and
uncountable number of local minima
• But they are not a big problem

• Local minima are a problem when their cost is much
higher than the global minimum

27

Local minima

• Local minima is still an open problem
• But nowadays many believe most local minima have
a low cost
[Choromanska et al., 2015, Dauphin et al., 2014,
Goodfellow et al., 2015, Saxe et al., 2013]

• Test to rule out local minima problem:
• Plot gradient norm along time

28

Local minima

Source: [Goodfellow et al., 2016]

29

Saddle points and flat regions

• Many attribute the
majority of problem to
local minima

• But there is another
type of point that
appears even more
often and cause
problems
• Saddle points
• Gradient is zero

Source: [Goodfellow et al., 2016]

30

Are there many saddle points?

• The eigenvalues of a Hessian are all positive at a
minimum

• Saddle points contain a mix of positive and negative
eigenvalues

• Suppose the cost function is random
• The sign of the Hessian can be determined by a coin
flip

• A minimum only happens if all coins are heads
• At high dimension, extremely more likely to find a
saddle point

• Studies showed it may happen in practice
[Saxe et al., 2013]

31

Are saddle points a problem?

• For second-order
methods (Newton’s
method), yes!
• But research in this
direction
[Dauphin et al., 2014]

• For gradient, it is
unclear
• Intuitively, it may be
• But studies show it is
not
[Goodfellow et al., 2015]

Source: [Goodfellow et al., 2016]

32

Are saddle points a problem?

• Flat regions also have
zero gradient

• Takes a long time to
traverse

• Gradient wastes time
circumnavigating tall
mountains

Source: [Goodfellow et al., 2015]

33

Cliffs and exploding gradients

• Very steep cliffs cause
gradients to explode

• More often in recurrent
networks

Source: [Goodfellow et al., 2016]

34

Local and global structure

• Gradient only look at local
structure
• Actually, most useful
approaches also have the
same problem!

• If initialized at a bad position,
cannot find the lowest
minima
• However, less likely in high
dimension

Source:
[Goodfellow et al., 2016]

35

Basic algorithms

Stochastic gradient descent (SGD)

• Most used algorithm for deep
learning

• Do not confuse with
(deterministic) gradient
descent
• Stochastic uses
minibatches

• Algorithm is similar, but there
are some important
modifications

36

Gradient descent algorithm

• Full training samples {x(1), ..., x(m)} with targets y(i)

• Compute gradient

g← 1
m▽θ

(m∑
i=1

L(f(x(i);θ), y(i))
)

(5)

• Apply update
θ ← θ − ϵg (6)

where
• ϵ is the learning rate
• θ are the network parameters
• L(·) is the loss function

37

Stochastic gradient descent algorithm

• Minibatch of training samples {x(1), ..., x(m)} with
targets y(i)

• Compute gradient

ĝ← 1
m▽θ

(m∑
i=1

L(f(x(i);θ), y(i))
)

(7)

• Apply update
θ ← θ − ϵkĝ (8)

38

Learning rate for SGD

• Learning rate ϵk must be adaptive
• Minibatches introduce noise that do not disappear
along even at the minimum

• Sufficient condition for convergence:
∞∑
k=1

ϵk =∞ and
∞∑
k=1

ϵ2k <∞ (9)

• Implying limk→∞ ϵk = 0

39

Learning rate for SGD

• It is common to decay the learning rate linearly until
iteration τ

• Can also be decayed at intervals
ϵk = (1− α)ϵ0 + αϵτ (10)

• Three parameters to choose
• Usually:

• τ should allow a few hundred passes through the
training set

• ϵτ should be roughly 1% of ϵ0

40

Learning rate for SGD

• The main problem is how to choose ϵ0

• Tipically:
• Higher than the best value for the first 100 iterations
• Monitor the initial results and use a higher value
• Too high will cause instability

41

Momentum

Adapted from [Goodfellow et al., 2016] 42

Momentum

Source: [Goodfellow et al., 2016] 42

Momentum

Adapted from [Goodfellow et al., 2016] 42

Momentum

43

Momentum

43

Momentum

• In these cases, momentum can help
• Derived from the physics term (= mass × velocity)
• Assume unit mass, so just consider velocity

44

Momentum

• Accumulates previous gradients

v← αv− ϵ▽θ

(
1
m

m∑
i=1

L(f(x(i);θ), y(i))
)

(11)

θ ← θ + v (12)

where
• α ∈ [0, 1) is a hyperparameter
• ▽θ is the gradient
• θ are the network parameters

45

Momentum

Source: [Goodfellow et al., 2016]

46

Momentum

47

SGD with momentum

• Compute gradient

g← 1
m▽θ

(m∑
i=1

L(f(x(i);θ), y(i))
)

(13)

• Compute velocity update

v← αv− ϵg (14)

• Apply update
θ ← θ + v (15)

where
• α is the momentum coefficient

48

Parameter initialization
strategies

Parameter initialization

• Deep learning methods are strongly affected by
initialization

• It can determine if the algorithm converges at all
• Network optimization is still not well understood
• Modern techniques are simple and heuristic

49

Breaking symmetry

• It is known that initialization must break symmetry
between units
• Units with same inputs and activations will be
updated the same way

• Even if using dropouts, it is better to avoid symmetry

• Common initialization choices are random and
orthogonal matrices
• The former is cheaper and works well

• Biases, however, are usually constants chosen
heuristically

50

Gaussian initialization

• Choice of Gaussian function does not seem to affect
much

• However, the scale of the distribution does matter
• Larger weights break symmetry more, but may
explode

51

How to choose the mean?

• The weight can be interpreted as how much units
interact with each other

• If initial weight is high, we put a prior about which
units should interact

• Therefore, it is a good idea to initialize the weights
around zero

52

Normalized initialization

• Some heuristics are adapted to input/output sizes
(Glorot and Bengio, 2010)

Wi,j ∼ U
(
−
√

6
m+ n ,

√
6

m+ n

)
(16)

• Enforce same forward / backward variance between
layers

• Derived from a network with no non-linearities
• But in practice works well in other networks as well
• Xavier initialization in Caffe

53

Sparse initialization

• If the layer is huge, normalized initialization yields
very low weights

• Martens (2010) propose to have exactly k non-zero
weights at each layer

• This helps to keep higher values and increase
diversity

• But put a strong prior on some connections
• It may take a long time to fix wrong priors

54

Orthogonal matrices

• [Saxe et al., 2013] recommend using orthogonal
weight matrices for initialization

• If using a non-linear function ϕ that saturates as
x→∞, there exists γ > γ0 in

xl+1i =
∑
j

γW(l+1,l)
i,j ϕ(xlj) (17)

that avoid vanishing gradients despite the number
of network layers, where:
• xli is the activity of neuron i in layer l
• W(l+1,l)

i,j is a random orthogonal weight matrix

55

Bias initialization

• Bias initialization is typically easier
• It is common to initialize them as zero
• Sometimes, we might want to use other constants:

• For output units, it may be beneficial to initialize
them according to the marginal statistics of the
output

• Avoid saturation, e.g., 0.1 for ReLU
• Initialize as 1 for gate units (LSTM)

56

Considerations about initialization

• Often, even optimal initialization does not lead to
optimal results

• This may happen because:
• Wrong criteria. Maybe it is not good to preserve the
norm through the network

• Initial properties may be lost during training
• Speed increases, but we may be sacrificing
generalization capability

• If resources allows it, initialization should be a
hyperparameter of the network

57

Algorithms with adaptive
learning rate

Adaptive learning rate

• Learning rate is one of the
hyperparameter that impacts
the most

• The gradient is highly
sensitive to some directions

• If we assume that the
sensitivity is axis-aligned, it
makes sense to use separate
rates for each parameter

Source:
[Goodfellow et al., 2016]

58

Delta-bar-delta [Jacobs, 1988]

• Early heuristic approach
• Simple idea: if the partial derivative in respect to
one parameter remains the same, increase the
learning rate, otherwise, decrease

• Must be used in batch methods

59

AdaGrad [Duchi et al., 2011]

• Scale the gradient according to the historical norms
• Learning rates of parameters with high partial
derivatives decrease fast

• Enforces progress in more gently sloped directions
• Nice properties for convex optimization
• But for deep learning decrease the rate in excess

60

AdaGrad algorithm

• Accumulate squared gradients

r← r+ g⊙ g (18)

• Element-wise update

∆θ ← − ϵ

δ +
√
r
⊙ g (19)

• Update parameters

θ ← θ +∆θ (20)

where
• g is the gradient
• δ is a small constant for stabilization

61

RMSProp [Hinton, 2012]

• Modification of AdaGrad to perform better on
non-convex problems

• AdaGrad accumulates since beginning, gradient may
be too small before reaching a convex structure

• RMSProp uses an exponentially weighted moving
average

62

RMSProp algorithm

• Accumulate squared gradients

r← ρr+ (1− ρ)g⊙ g (21)

• Element-wise update

∆θ ← − ϵ

δ +
√
r
⊙ g (22)

• Update parameters

θ ← θ +∆θ (23)

where
• ρ is the decay rate

63

Adam [Kingma and Ba, 2014]

• Adaptive Moments, variation of RMSProp +
Momentum

• Momentum is incorporated directly as an estimate of
the first order moment
• In RMSProp momentum is included after rescaling
the gradients

• Adam also add bias correction to the moments

64

Adam algorithm

• Update time step: t← t+ 1
• Update biased moment estimates

s← ρ1s+ (1− ρ1)g (24)

r← ρ2r+ (1− ρ2)g⊙ g (25)
• Correct biases

ŝ← s
1− ρt1

(26)

r̂← r
1− ρt2

(27)

• Update parameters

∆θ ← −ϵ ŝ
δ +
√
r̂

(28)

θ ← θ +∆θ (29) 65

Thank you!

Questions?

65

References I

Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B.,
and LeCun, Y. (2015).
The loss surfaces of multilayer networks.
In AISTATS.

Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K.,
Ganguli, S., and Bengio, Y. (2014).
Identifying and attacking the saddle point problem
in high-dimensional non-convex optimization.
In Advances in Neural Information Processing
Systems, pages 2933–2941.

66

References II

Duchi, J., Hazan, E., and Singer, Y. (2011).
Adaptive subgradient methods for online learning
and stochastic optimization.
Journal of Machine Learning Research,
12(Jul):2121–2159.
Goodfellow, I., Bengio, Y., and A., C. (2016).
Deep Learning.
MIT Press.

67

References III

Goodfellow, I. J., Vinyals, O., and Saxe, A. M. (2015).
Qualitatively characterizing neural network
optimization problems.
In International Conference on Learning
Representations.

Hinton, G. (2012).
Neural networks for machine learning.
Coursera, video lectures.

68

References IV

Jacobs, R. A. (1988).
Increased rates of convergence through learning
rate adaptation.
Neural networks, 1(4):295–307.

Kingma, D. and Ba, J. (2014).
Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

69

References V

Saxe, A. M., McClelland, J. L., and Ganguli, S. (2013).
Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks.
In International Conference on Learning
Representations.

70

	Difference between learning and pure optimization
	Challenges in network optimization
	Basic algorithms
	Parameter initialization strategies
	Algorithms with adaptive learning rate

