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What is in here?

If you want to know:

• Best batch size?
• How to avoid local minima?
• Best training algorithm?
• Optimal learning rate?
• Best weight initialization policy?
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What is in here?

However, if you want to understand:

• How batch size affects training
• The problems of local minima
and saddle points

• Different training algorithm
• Importance of learning rate
• Existing initialization policies and
their implications

This is for you 3



Difference between learning and
pure optimization



What is optimization?

The process to find maxima or minima based
on constraints
• Involved in many contexts of deep
learning, but the hardest one is
neural network training

• Expend days to months to
solve a single instance

• Special techniques have been
developed specifically for this
case

• Presentation focus on one
particular case of optimization:

Finding the parameters θ of a
network that reduce a cost
function J(θ)
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Difference between learning and pure optimization

• Several differences
• Machine learning acts indirectly, unlike optimization

• Usually we want to optimize a performance measure
P, based on the test set

• Problem may be intractable
• Optimize a different cost function J instead

• Hoping that it optimizes P as well
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Example: recognizing cats

Application to recognize cats

• You don’t know which images you may receive
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Example: recognizing cats

• The performance measure P is the number of correct
classifications

• But you don’t have access to these images
• So instead you build a training set
• And measure the performance J on this set
• Minimizing J does not necessarily minimize P
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Example: recognizing cats

Training Test
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Example: recognizing cats

Training Test
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Generalization error (loss function)

• Typically the loss function is a simple average over
the training set:

J(θ) = E(x,y)∼p̂dataL(f(x,θ), y) =
1
m

m∑
i=1

L(f(x(i),θ), y(i))

(1)
where
• E is the expectation operator
• L is the per-example loss function
• f(x,θ) is the predicted output for input x
• p̂data is the empirical distribution (notice the hat)
• y is the target output
• m is the number of training examples
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Surrogate loss

• Often, minimizing the real loss is
intractable (e.g. 0-1 loss)

• Minimize a surrogate loss instead
• E.g. the negative log-likelihood is a
surrogate for the 0-1 loss

• Sometimes, the surrogate loss may
learn more

• Test error 0-1 loss keeps
decreasing even after training
0-1 loss is zero

• Even if 0-1 loss is zero, it can
be improved by pushing the
classes even farther from each
other
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Batch and minibatch algorithms

• In machine learning, the objective function
decomposes as a sum

• Compute each update based on the cost function of
a subset

• For example, the often used gradient is based on the
expectation of the training set

▽θJ(θ) = E(x,y)∼p̂data▽θL(f(x;θ), y) (2)

• Computing the expectation exactly at each update is
very expensive
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Batch and minibatch algorithms

• The gain of using more samples is
less than linear

• Estimator for the true mean µ
of a distribution

• How far the estimated mean µ̂
is?

• Compute the standard
deviation:

SE(µ̂m) =

√√√√Var
[
1
m

m∑
i=1

x(i)
]
=

σ√
m

(??)
• Error drop proportionally only
to the square root of m
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Batch and minibatch algorithms

• Generate batches by random sampling
• Random sampling may also have some benefits:

• Redundant training set→ less samples for correct
gradient

• Does not happen in practice, but many samples
contribute similarly
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Batch and minibatch algorithms

• Algorithms that use the whole training set are called
batch or deterministic

• If only subsets are used, it is called minibatch
• However, many times minibatch algorithm are simply
referred to as batch

• If the algorithm uses only one example, it is called
stochastic or online

• Most algorithm use between 1 and a few examples
• They are traditionally called minibatch, minibatch
stochastic or simply stochastic
• The canonical example is stochastic gradient
descent, which will be covered later
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Batch and minibatch algorithms

• Considerations about minibatch size:
• Larger batches are more accurate, but the return is
less than linear

• Very small batches do not make good use of
multicore capabilities

• If processed in parallel, the amount of memory
scales with the batch size

• Some hardware achieve better performance with
specific sizes (typically a power of 2)

• Small batches may offer a regularizing effect,
probably due to the noise they add

• But may require small learning rates to keep stability
• Number of steps for convergence may increase
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Batch and minibatch algorithms

• Minibatches must be selected randomly, for
unbiased estimation

• Subsequent estimates must also be independent of
each other

• In practice, we do not enforce true randomness, but
just shuffle the data
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Batch and minibatch algorithms

• Minibatch stochastic gradient descent follows the
gradient of the true generalization error
• Most algorithms shuffle the data once and then pass
through it many times

• In the first pass, each minibatch gives an unbiased
estimate

• In the next passes it becomes biased
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Challenges in network
optimization



Ill conditioning

• Condition number: how a change in input affects
output

• High value greatly propagate errors
• May cause the gradient to become ”stuck”

• Even small steps increase the cost
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When ill conditioning is a problem

• Approximate cost function by a quadratic Taylor
expansion

f(x) ≈ f(x(0))+ (x− x(0))Tg+ 1
2(x− x

(0))TH(x− x(0)) (3)

where:
• g is the gradient
• H is the Hessian matrix
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When ill conditioning is a problem

f(x) ≈ f(x(0)) + (x− x(0))Tg+
1
2(x− x

(0))TH(x− x(0)) (3)

• Updating using a learning rate of ϵ:

f(x− ϵg) ≈ f(x(0))− ϵgTg+
1
2ϵ

2gTHg (4)

• The first term is the squared gradient norm (positive)
• If second term grows too much, the cost increases
• Monitor both terms to see if ill conditioning is a
problem
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Local minima

• In convex problems, any local minimum is a global
minimum

• Non-convex functions may have several local
minima
• Neural networks are non-convex!
• But actually, not a major problem
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Model identifiability

• A model is identifiable if a large training set yields a
unique set of parameters

• Models with latent variable are often not identifiable
• Neural nets are not identifiable
• The input and output weights of any ReLU or maxout
units may be scaled to produce the same result
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Weight space symmetry

• Also, the same result can be obtained by swapping
the weights between units

• This is known as weight space symmetry
• There are n!m permutations of the hidden units
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Local minima

• Therefore, the cost function may have and
uncountable number of local minima
• But they are not a big problem

• Local minima are a problem when their cost is much
higher than the global minimum
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Local minima

• Local minima is still an open problem
• But nowadays many believe most local minima have
a low cost
[Choromanska et al., 2015, Dauphin et al., 2014,
Goodfellow et al., 2015, Saxe et al., 2013]

• Test to rule out local minima problem:
• Plot gradient norm along time
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Local minima

Source: [Goodfellow et al., 2016]
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Saddle points and flat regions

• Many attribute the
majority of problem to
local minima

• But there is another
type of point that
appears even more
often and cause
problems
• Saddle points
• Gradient is zero

Source: [Goodfellow et al., 2016]
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Are there many saddle points?

• The eigenvalues of a Hessian are all positive at a
minimum

• Saddle points contain a mix of positive and negative
eigenvalues

• Suppose the cost function is random
• The sign of the Hessian can be determined by a coin
flip

• A minimum only happens if all coins are heads
• At high dimension, extremely more likely to find a
saddle point

• Studies showed it may happen in practice
[Saxe et al., 2013]
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Are saddle points a problem?

• For second-order
methods (Newton’s
method), yes!
• But research in this
direction
[Dauphin et al., 2014]

• For gradient, it is
unclear
• Intuitively, it may be
• But studies show it is
not
[Goodfellow et al., 2015]

Source: [Goodfellow et al., 2016]
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Are saddle points a problem?

• Flat regions also have
zero gradient

• Takes a long time to
traverse

• Gradient wastes time
circumnavigating tall
mountains

Source: [Goodfellow et al., 2015]
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Cliffs and exploding gradients

• Very steep cliffs cause
gradients to explode

• More often in recurrent
networks

Source: [Goodfellow et al., 2016]
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Local and global structure

• Gradient only look at local
structure
• Actually, most useful
approaches also have the
same problem!

• If initialized at a bad position,
cannot find the lowest
minima
• However, less likely in high
dimension

Source:
[Goodfellow et al., 2016]
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Basic algorithms



Stochastic gradient descent (SGD)

• Most used algorithm for deep
learning

• Do not confuse with
(deterministic) gradient
descent
• Stochastic uses
minibatches

• Algorithm is similar, but there
are some important
modifications
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Gradient descent algorithm

• Full training samples {x(1), ..., x(m)} with targets y(i)

• Compute gradient

g← 1
m▽θ

( m∑
i=1

L(f(x(i);θ), y(i))
)

(5)

• Apply update
θ ← θ − ϵg (6)

where
• ϵ is the learning rate
• θ are the network parameters
• L(·) is the loss function
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Stochastic gradient descent algorithm

• Minibatch of training samples {x(1), ..., x(m)} with
targets y(i)

• Compute gradient

ĝ← 1
m▽θ

( m∑
i=1

L(f(x(i);θ), y(i))
)

(7)

• Apply update
θ ← θ − ϵkĝ (8)
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Learning rate for SGD

• Learning rate ϵk must be adaptive
• Minibatches introduce noise that do not disappear
along even at the minimum

• Sufficient condition for convergence:
∞∑
k=1

ϵk =∞ and
∞∑
k=1

ϵ2k <∞ (9)

• Implying limk→∞ ϵk = 0
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Learning rate for SGD

• It is common to decay the learning rate linearly until
iteration τ

• Can also be decayed at intervals
ϵk = (1− α)ϵ0 + αϵτ (10)

• Three parameters to choose
• Usually:

• τ should allow a few hundred passes through the
training set

• ϵτ should be roughly 1% of ϵ0
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Learning rate for SGD

• The main problem is how to choose ϵ0

• Tipically:
• Higher than the best value for the first 100 iterations
• Monitor the initial results and use a higher value
• Too high will cause instability
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Momentum

Adapted from [Goodfellow et al., 2016] 42



Momentum

Source: [Goodfellow et al., 2016] 42



Momentum

Adapted from [Goodfellow et al., 2016] 42



Momentum
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Momentum
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Momentum

• In these cases, momentum can help
• Derived from the physics term (= mass × velocity)
• Assume unit mass, so just consider velocity
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Momentum

• Accumulates previous gradients

v← αv− ϵ▽θ

(
1
m

m∑
i=1

L(f(x(i);θ), y(i))
)

(11)

θ ← θ + v (12)

where
• α ∈ [0, 1) is a hyperparameter
• ▽θ is the gradient
• θ are the network parameters
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Momentum

Source: [Goodfellow et al., 2016]
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Momentum
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SGD with momentum

• Compute gradient

g← 1
m▽θ

( m∑
i=1

L(f(x(i);θ), y(i))
)

(13)

• Compute velocity update

v← αv− ϵg (14)

• Apply update
θ ← θ + v (15)

where
• α is the momentum coefficient
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Parameter initialization
strategies



Parameter initialization

• Deep learning methods are strongly affected by
initialization

• It can determine if the algorithm converges at all
• Network optimization is still not well understood
• Modern techniques are simple and heuristic
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Breaking symmetry

• It is known that initialization must break symmetry
between units
• Units with same inputs and activations will be
updated the same way

• Even if using dropouts, it is better to avoid symmetry

• Common initialization choices are random and
orthogonal matrices
• The former is cheaper and works well

• Biases, however, are usually constants chosen
heuristically
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Gaussian initialization

• Choice of Gaussian function does not seem to affect
much

• However, the scale of the distribution does matter
• Larger weights break symmetry more, but may
explode
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How to choose the mean?

• The weight can be interpreted as how much units
interact with each other

• If initial weight is high, we put a prior about which
units should interact

• Therefore, it is a good idea to initialize the weights
around zero
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Normalized initialization

• Some heuristics are adapted to input/output sizes
(Glorot and Bengio, 2010)

Wi,j ∼ U
(
−
√

6
m+ n ,

√
6

m+ n

)
(16)

• Enforce same forward / backward variance between
layers

• Derived from a network with no non-linearities
• But in practice works well in other networks as well
• Xavier initialization in Caffe
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Sparse initialization

• If the layer is huge, normalized initialization yields
very low weights

• Martens (2010) propose to have exactly k non-zero
weights at each layer

• This helps to keep higher values and increase
diversity

• But put a strong prior on some connections
• It may take a long time to fix wrong priors
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Orthogonal matrices

• [Saxe et al., 2013] recommend using orthogonal
weight matrices for initialization

• If using a non-linear function ϕ that saturates as
x→∞, there exists γ > γ0 in

xl+1i =
∑
j

γW(l+1,l)
i,j ϕ(xlj) (17)

that avoid vanishing gradients despite the number
of network layers, where:
• xli is the activity of neuron i in layer l
• W(l+1,l)

i,j is a random orthogonal weight matrix
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Bias initialization

• Bias initialization is typically easier
• It is common to initialize them as zero
• Sometimes, we might want to use other constants:

• For output units, it may be beneficial to initialize
them according to the marginal statistics of the
output

• Avoid saturation, e.g., 0.1 for ReLU
• Initialize as 1 for gate units (LSTM)
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Considerations about initialization

• Often, even optimal initialization does not lead to
optimal results

• This may happen because:
• Wrong criteria. Maybe it is not good to preserve the
norm through the network

• Initial properties may be lost during training
• Speed increases, but we may be sacrificing
generalization capability

• If resources allows it, initialization should be a
hyperparameter of the network
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Algorithms with adaptive
learning rate



Adaptive learning rate

• Learning rate is one of the
hyperparameter that impacts
the most

• The gradient is highly
sensitive to some directions

• If we assume that the
sensitivity is axis-aligned, it
makes sense to use separate
rates for each parameter

Source:
[Goodfellow et al., 2016]
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Delta-bar-delta [Jacobs, 1988]

• Early heuristic approach
• Simple idea: if the partial derivative in respect to
one parameter remains the same, increase the
learning rate, otherwise, decrease

• Must be used in batch methods
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AdaGrad [Duchi et al., 2011]

• Scale the gradient according to the historical norms
• Learning rates of parameters with high partial
derivatives decrease fast

• Enforces progress in more gently sloped directions
• Nice properties for convex optimization
• But for deep learning decrease the rate in excess
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AdaGrad algorithm

• Accumulate squared gradients

r← r+ g⊙ g (18)

• Element-wise update

∆θ ← − ϵ

δ +
√
r
⊙ g (19)

• Update parameters

θ ← θ +∆θ (20)

where
• g is the gradient
• δ is a small constant for stabilization
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RMSProp [Hinton, 2012]

• Modification of AdaGrad to perform better on
non-convex problems

• AdaGrad accumulates since beginning, gradient may
be too small before reaching a convex structure

• RMSProp uses an exponentially weighted moving
average
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RMSProp algorithm

• Accumulate squared gradients

r← ρr+ (1− ρ)g⊙ g (21)

• Element-wise update

∆θ ← − ϵ

δ +
√
r
⊙ g (22)

• Update parameters

θ ← θ +∆θ (23)

where
• ρ is the decay rate
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Adam [Kingma and Ba, 2014]

• Adaptive Moments, variation of RMSProp +
Momentum

• Momentum is incorporated directly as an estimate of
the first order moment
• In RMSProp momentum is included after rescaling
the gradients

• Adam also add bias correction to the moments
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Adam algorithm

• Update time step: t← t+ 1
• Update biased moment estimates

s← ρ1s+ (1− ρ1)g (24)

r← ρ2r+ (1− ρ2)g⊙ g (25)
• Correct biases

ŝ← s
1− ρt1

(26)

r̂← r
1− ρt2

(27)

• Update parameters

∆θ ← −ϵ ŝ
δ +
√
r̂

(28)

θ ← θ +∆θ (29) 65



Thank you!

Questions?
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