Deep Learning book, by lan Goodfellow, Yoshua Bengio and Aaron Courville Chapter 6: Deep Feedforward Networks

Benoit Massé Dionyssos Kounades-Bastian

```
Input vector x
Output vector y
Parameters Weight W and bias b
```

Prediction : $\mathbf{y} = \mathbf{W}^{\mathsf{T}} \mathbf{x} + \mathbf{b}$

Input vector x

Output vector y

Parameters Weight W and bias b

Prediction : $\mathbf{y} = \mathbf{W}^{\mathsf{T}} \mathbf{x} + \mathbf{b}$

Input vector x

Output vector y

Parameters Weight W and bias b

Prediction : $\mathbf{y} = \mathbf{W}^{\mathsf{T}} \mathbf{x} + \mathbf{b}$

Input vector x

Output vector y

Parameters Weight W and bias b

Prediction : $\mathbf{y} = \mathbf{W}^{\mathsf{T}}\mathbf{x} + \mathbf{b}$

Advantages

- Easy to use
- Easy to train, low risk of overfitting

Drawbacks

Some problems are inherently non-linear

Linear regressor

There is no value for **W** and **b** such that $\forall (x_1, x_2) \in \{0, 1\}^2$

$$\mathbf{W}^{\top} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \mathbf{b} = xor(x_1, x_2)$$

What about...?

Strictly equivalent :

The composition of two linear operation is still a linear operation

And about...? $\begin{array}{c} & W, b \\ & x_1 \\ & x_2 \\ & u_2 \\ & u_3 \\ & u_3 \\ & u_3 \\ & u_4 \\ & u_4 \\ & u_5 \\ & u_5$

And about...?

It is possible!

With
$$\mathbf{W} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$, $\mathbf{V} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ and $\mathbf{c} = 0$,
$$\mathbf{V}\phi(\mathbf{W}\mathbf{x} + \mathbf{b}) = xor(x_1, x_2)$$

Neural network with one hidden layer

Compact representation

Neural network

Hidden layer with non-linearity

→ can represent broader class of function

Universal approximation theorem

Theorem

A neural network with one hidden layer can approximate any continuous function

More formally, given a continuous function $f: C_n \mapsto \mathbb{R}^m$ where C_n is a compact subset of \mathbb{R}^n ,

$$\forall \varepsilon, \exists f_{NN}^{\varepsilon} : \mathbf{x} \to \sum_{i=1}^{K} \mathbf{v}_{i} \phi(\mathbf{w}_{i}^{\top} \mathbf{x} + b_{i}) + \mathbf{c}$$

such that

$$\forall x \in C_n, ||f(x) - f_{NN}^{\varepsilon}(x)|| < \varepsilon$$

Problems

Obtaining the network

The universal theorem gives no information about HOW to obtain such a network

- Size of the hidden layer h
- Values of W and b

Problems

Obtaining the network

The universal theorem gives no information about HOW to obtain such a network

- Size of the hidden layer h
- Values of W and b

Using the network

Even if we find a way to obtain the network, the size of the hidden layer may be prohibitively large.

Deep neural network

Why Deep?

Let's stack / hidden layers one after the other; / is called the length of the network.

Properties of DNN

- The universal approximation theorem also apply
- Some functions can be approximated by a DNN with N hidden unit, and would require $\mathcal{O}(e^N)$ hidden units to be represented by a shallow network.

Summary

Comparison

- Linear classifier
 - Limited representational power
 - + Simple
- Shallow Neural network (Exactly one hidden layer)
 - + Unlimited representational power
 - Sometimes prohibitively wide
- Deep Neural network
 - + Unlimited representational power
 - $+\,\,$ Relatively small number of hidden units needed

Summary

Comparison

- Linear classifier
 - Limited representational power
 - + Simple
- Shallow Neural network (Exactly one hidden layer)
 - + Unlimited representational power
 - Sometimes prohibitively wide
- Deep Neural network
 - + Unlimited representational power
 - + Relatively small number of hidden units needed

Remaining problem

How to get this DNN?

On the path of getting my own DNN

Hyperparameters

First, we need to define the architecture of the DNN

- The depth /
- The size of the hidden layers n_1, \ldots, n_l
- ullet The activation function ϕ
- The output unit

On the path of getting my own DNN

Hyperparameters

First, we need to define the architecture of the DNN

- The depth /
- The size of the hidden layers n_1, \ldots, n_l
- ullet The activation function ϕ
- The output unit

Parameters

When the architecture is defined, we need to train the DNN

• W^1 , b^1 , ..., W', b'

Hyperparameters¹

- The depth /
- The size of the hidden layers n_1, \ldots, n_l
 - ⇒ Strongly depend on the problem to solve

Hyperparameters

- The depth /
- The size of the hidden layers n_1, \ldots, n_l
 - Strongly depend on the problem to solve
- ullet The activation function ϕ
 - \Rightarrow ReLU $g: x \mapsto max\{0, x\}$
 - \Rightarrow Sigmoid $\sigma: x \mapsto (1 + e^{-x})^{-1}$
 - ⇒ Many others: tanh, RBF, softplus...

Hyperparameters

- The depth /
- The size of the hidden layers n_1, \ldots, n_l
 - Strongly depend on the problem to solve
- ullet The activation function ϕ
 - \Rightarrow ReLU $g: x \mapsto max\{0, x\}$
 - \Rightarrow Sigmoid $\sigma: x \mapsto (1 + e^{-x})^{-1}$
 - Many others: tanh, RBF, softplus...
- The output unit
 - \Rightarrow Linear output $\mathbb{E}[\mathbf{y}] = \mathbf{V}^{\top} \mathbf{h}_I + \mathbf{c}$
 - ullet For regression with Gaussian distribution $y \sim \mathcal{N}(\mathbb{E}[\mathbf{y}], \mathbf{I})$
 - \Rightarrow Sigmoid output $\hat{y} = \sigma(\mathbf{w}^{\top}\mathbf{h}_I + b)$
 - For classification with Bernouilli distribution $P(y=1|\mathbf{x})=\hat{y}$

Objective

Let's define $\theta = (\mathbf{W}^1, \mathbf{b}^1, \dots, \mathbf{W}^I, \mathbf{b}^I)$.

We suppose we have a set of inputs $\mathbf{X} = (\mathbf{x}^1, \dots, \mathbf{x}^N)$ and a set of expected outputs $\mathbf{Y} = (\mathbf{y}^1, \dots, \mathbf{y}^N)$. The goal is to find a neural network f_{NN} such that

$$\forall i, \ f_{NN}(x^i, \theta) \simeq y^i.$$

Cost function

To evaluate the error that our current network makes, let's define a cost function $\mathcal{L}(\mathbf{X}, \mathbf{Y}, \boldsymbol{\theta})$. The goal becomes to find

$$\operatorname*{argmin}_{\boldsymbol{\theta}} \mathcal{L}(\mathbf{X},\mathbf{Y},\boldsymbol{\theta})$$

Loss function

Should represent a combination of the distances between every \mathbf{y}^i and the corresponding $f_{NN}(\mathbf{x}^i, \boldsymbol{\theta})$

- Mean square error (rare)
- Cross-entropy

Find the minimum

The basic idea consists in computing $\hat{oldsymbol{ heta}}$ such that

$$abla_{m{ heta}}\mathcal{L}(\mathsf{X},\mathsf{Y},\hat{m{ heta}})=\mathbf{0}.$$

This is difficult to solve analytically e.g. when θ have millions of degrees of freedom.

Gradient descent

Let's use a numerical way to optimize θ , called the **gradient** descent (section 4.3). The idea is that

$$f(\boldsymbol{\theta} - \varepsilon \mathbf{u}) \simeq f(\boldsymbol{\theta}) - \varepsilon \mathbf{u}^{\top} \nabla f(\boldsymbol{\theta})$$

So if we take $\mathbf{u} = \nabla f(\boldsymbol{\theta})$, we have $\mathbf{u}^{\top}\mathbf{u} > 0$ and then

$$f(\boldsymbol{\theta} - \varepsilon \mathbf{u}) \simeq f(\boldsymbol{\theta}) - \varepsilon \mathbf{u}^{\top} \mathbf{u} < f(\boldsymbol{\theta}).$$

If f is a function to minimize, we have an update rule that improves our estimate.

Gradient descent algorithm

- $oldsymbol{0}$ Have an estimate $\hat{oldsymbol{ heta}}$ of the parameters
- 2 Compute $\nabla_{\boldsymbol{\theta}} \mathcal{L}(\mathbf{X}, \mathbf{Y}, \hat{\boldsymbol{\theta}})$
- $oldsymbol{0}$ Update $\hat{oldsymbol{ heta}} \longleftarrow \hat{oldsymbol{ heta}} arepsilon
 abla_{oldsymbol{ heta}} \mathcal{L}$
- lacktriangle Repeat step 2-3 until $abla_{oldsymbol{ heta}}\mathcal{L}<$ threshold

Gradient descent algorithm

- $oldsymbol{0}$ Have an estimate $\hat{oldsymbol{ heta}}$ of the parameters
- **2** Compute $\nabla_{\boldsymbol{\theta}} \mathcal{L}(\mathbf{X}, \mathbf{Y}, \hat{\boldsymbol{\theta}})$
- lacktriangle Repeat step 2-3 until $abla_{m{ heta}} \mathcal{L} < \mathsf{threshold}$

Problem

How to estimate efficiently $\nabla_{\theta} \mathcal{L}(\mathbf{X}, \mathbf{Y}, \hat{\boldsymbol{\theta}})$?

⇒ Back-propagation algorithm

Back-propagation for Parameter Learning

Consider the architecture:

with function:

$$y = \phi(w_2\phi(w_1x)),$$

- ullet some training pairs $\mathcal{T} = \left\{\hat{x}_n, \hat{y}_n
 ight\}_{n=1}^N$, and
- an activation-function $\phi()$.
- Learn w_1, w_2 so that: Feeding \hat{x}_n results \hat{y}_n .

Prerequisite: differentiable activation function

- For learning to be possible $\phi()$ has to be differentiable.
- Let $\phi'(x) = \frac{\partial \phi(x)}{\partial x}$ denote the derivative of $\phi(x)$.
- For example when $\phi(x) = \text{Relu}(x)$ we have:

Gradient-based Learning

- Minimize the loss function $\mathcal{L}(w_1, w_2, T)$.
- We will learn the weights by iterating:

$$\begin{bmatrix} w_1 \\ w_2 \end{bmatrix}^{\text{updated}} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} - \gamma \begin{bmatrix} \frac{\partial \mathcal{L}}{\partial w_1} \\ \frac{\partial \mathcal{L}}{\partial w_2} \end{bmatrix}, \tag{1}$$

- \mathcal{L} is the loss function (must be differentiable): In detail is $\mathcal{L}(w_1, w_2, T)$ and we want to compute the gradient(s) at w_1, w_2 .
- ullet γ is the learning rate (a scalar typically known).

Back-propagation

- Calculate intermediate values on all units:
- $b = \phi(w_1 \hat{x}_n).$
- $c = w_2 \phi(w_1 \hat{x}_n).$

- The partial derivatives are:

Calculating the Gradients I

Apply chain rule:

$$\frac{\partial \mathcal{L}}{\partial \textit{w}_1} = \!\! \frac{\partial \mathcal{L}}{\partial \textit{d}} \frac{\partial \textit{d}}{\partial \textit{c}} \frac{\partial \textit{c}}{\partial \textit{b}} \frac{\partial \textit{b}}{\partial \textit{a}} \frac{\partial \textit{a}}{\textit{w}_1},$$

$$\frac{\partial \mathcal{L}(d)}{\partial w_2} = \frac{\partial \mathcal{L}(d)}{\partial d} \frac{\partial d}{\partial c} \frac{\partial c}{w_2}.$$

Calculating the Gradients I

Apply chain rule:

$$\frac{\partial \mathcal{L}}{\partial w_1} = \frac{\partial \mathcal{L}}{\partial d} \frac{\partial d}{\partial c} \frac{\partial c}{\partial b} \frac{\partial b}{\partial a} \frac{\partial a}{w_1},$$
$$\frac{\partial \mathcal{L}(d)}{\partial w_2} = \frac{\partial \mathcal{L}(d)}{\partial d} \frac{\partial d}{\partial c} \frac{\partial c}{w_2}.$$

- Start the calculation from left-to-right.
- We propage the gradients (partial products) from the last layer towards the input.

Calculating the Gradients

• And because we have N training pairs:

$$\frac{\partial \mathcal{L}}{\partial w_1} = \sum_{n=1}^{N} \frac{\partial \mathcal{L}(d_n)}{\partial d_n} \frac{\partial d_n}{\partial c_n} \frac{\partial c_n}{\partial b_n} \frac{\partial b_n}{\partial a_n} \frac{\partial a_n}{w_1},$$

$$\frac{\partial \mathcal{L}}{\partial w_2} = \sum_{n=1}^{N} \frac{\partial \mathcal{L}(d_n)}{\partial d_n} \frac{\partial d_n}{\partial c_n} \frac{\partial c_n}{w_2}.$$

Thank you!