Reading Group on Deep Learning Regularization (Chapter 7)

Gildas Mazo (MISTIS)

17 November 2016

Reminder from Chapter 5

Regularization:

any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error

Limit model capacity

Chapter structure

- 7.x $x \in \{1, 2\}$ penalties
- 7.3 under-constrained problems
- 7.4 dataset augmentation
- 7.5 noise robustness
- 7.6 semi-supervised learning
- 7.7 multi-task learning
- 7.8 early stopping
- 7.9 parameter tying and sharing
- 7.10 sparse representations
- 7.11 bagging and ensemble methods
- 7.12 dropout
- 7.13 adversarial training
- 7.14 tangent distance, prop and manifold tangent classifier

Chapter structure

- 7.x $x \in \{1, 2\}$ penalties
- 7.3 under-constrained problems
- 7.4 dataset augmentation
- 7.5 noise robustness
- 7.6 semi-supervised learning
- 7.7 multi-task learning
- 7.8 early stopping
- 7.9 parameter tying and sharing
- 7.10 sparse representations
- 7.11 bagging and ensemble methods
- 7.12 dropout
- 7.13 adversarial training
- 7.14 tangent distance, prop and manifold tangent classifier

Regularizing with penalties

$$\min_{\mathbf{w}} \underbrace{J(\mathbf{w})}_{\text{"old" objective function}} + \underbrace{\alpha}_{\text{tuning parameter penalty}} \underbrace{\Omega(\mathbf{w})}_{\text{penalty}}, \qquad \alpha \geq 0$$

- L2 regularization $\Omega(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|_2^2$ ridge regression, Tickhonov regularization
- L1 regularization $\Omega(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|_1^2$ Least Absolute Shrinkage and Selection Operator

Link with constrained optimization

$$\min_{\mathbf{w}} J(\mathbf{w}) \text{ such that } \Omega(\mathbf{w}) \le k, \qquad k > 0$$

Skrinkage effect: details on board

Shrinkage effect

$$\tilde{\mathbf{w}} = \sum_{i} q_{i} \underbrace{\frac{\lambda_{i}}{\lambda_{i} + \alpha}}_{\text{skrinks}} \underbrace{q_{i}^{\top} \mathbf{w}^{*}}_{\text{coord. of } \mathbf{w}^{*} \text{ in dir. } q_{i}}$$

- shrinkage effect $0 < \frac{\lambda_i}{\lambda_i + \alpha} \le 1$
- $ightharpoonup \frac{\lambda_i}{\lambda_i + \alpha}$ increasing in λ_i

λ_i	curvature	shrinkage	variability
small	small	great	small
great	great	small	great

Remember the picture

Early stopping

Optimization problem

$$\min_{\mathbf{w}} J(\mathbf{w})$$

Solve by building a sequence $\mathbf{w}^{(\tau)},\, \tau=0,1,\ldots$

$$\mathbf{w}^{(\tau)} = \mathbf{w}^{(\tau-1)} - \varepsilon \nabla_{\mathbf{w}} J(\mathbf{w}^{(\tau-1)})$$

Standard GD go on until $\nabla_{\mathbf{w}} J(\mathbf{w}^{(\tau)}) \approx 0$

Early stopping stop early

Approximately equivalent to L2 regularization "proof" on board

Dropout

Standard neural network lawyer (l+1), i-th hidden unit

$$y_i^{(l+1)} = f\left[\mathbf{w}_i^{(l+1)\top}\mathbf{y}^{(l)} + b_i^{(l+1)}\right]$$

Dropout model lawyer (l+1), i-th hidden unit

$$\begin{split} & r_i^{(l)} \sim \mathsf{Ber}(p) \\ & y_i^{(l+1)} = f\left[\mathbf{w}_i^{(l+1)\top}(\mathbf{r^{(l)}} \star \mathbf{y}^{(l)}) + b_i^{(l+1)}\right] \end{split}$$

Remove units at random

- Links with noise adding
- Links with bagging

Learning

[As far as I understood... please check!]

- ▶ input \mathbf{x} , output y, predictor $g_{\mathbf{w},\mu}(\mathbf{x})$
- \blacktriangleright μ binary vector encodes presence/absence of units

In principle minimize expected loss

$$\min_{\boldsymbol{\mu}, \mathbf{w}} E_{\boldsymbol{\mu}, \mathbf{x}, y} \left[g_{\mathbf{w}, \boldsymbol{\mu}}(\mathbf{x}) - y \right]^2$$

In practice minimize estimated loss

$$\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \left[g_{\mathbf{w}, \boldsymbol{\mu}_i}(\mathbf{x}_i) - y_i \right]^2$$

where
$$\mu_1, \ldots, \mu_n \stackrel{iid}{\sim} \mathsf{Ber}(p)$$

Dataset augmentation

Quote

create fake data and add it to the training set

- easiest for classification
- effective for object recognition
- links with noise adding

Noise robustness

Apply noise to

- ▶ inputs
- weights
- outputs

Links with dropout

Semi-supervised learning

Recall the learning context: $y \sim F(y|\mathbf{x})$.

Given a class $\{f_{\alpha}, \alpha \in A\}$, guess Nature's response

Supervised in principle we do

$$\min_{\alpha} R(\alpha) = \min_{\alpha} \int L(y, f_{\alpha}(\mathbf{x})) dF(\mathbf{x}, y).$$

In practice: we have data $\{(\mathbf{x}_i,y_i)\}$ and do

$$\min_{\alpha} R_n(\alpha) = \min_{\alpha} \int L(y, f_{\alpha}(\mathbf{x})) dF_n(\mathbf{x}, y)$$

Semisupervised incorpore a priori knowledge about F (e.g., build a joint distribution function)

Multi-task learning

Parameter Tying and parameter sharing

Learn a first task:

$$\min_{\mathbf{w}^{(A)}} \sum_{i} [y_i^{(A)} - f_A(\mathbf{w}^{(A)}, \mathbf{x}_i)]^2$$

Learn a second, but "stay close" to the first

$$\min_{\mathbf{w}^{(B)}} \sum_{i} [y_i^{(B)} - f_B(\mathbf{w}^{(B)}, \mathbf{x}_i)]^2 + \alpha \frac{1}{2} \|\mathbf{w}^{(A)} - \mathbf{w}^{(B)}\|_2^2$$

Sparse representations

Quote

place a penalty on the activations of the units in a neural network, encouraging their activation to be sparse

Example: given input x, find representation h such that

$$\mathbf{h} = \underset{\mathbf{h}: ||\mathbf{h}||_0 < k}{\operatorname{arg\,min}} ||\mathbf{x} - W\mathbf{h}||^2$$

where $\|\mathbf{h}\|_0$ is number of non-zero entries

Bagging and other ensemble methods

Data: $\{\mathbf{x}_{i}, y_{i}\}_{i=1}^{n}$. For k = 0, 1, ..., K,

- 1. draw a bootstrap sample $\{\mathbf{x}_i^{(k)}, y_i^{(k)}\}_{i=1}^n$
- 2. learn $f_n^{(k)}(\cdot)$

Then average the predictions

$$f_n^{\mathsf{bag}}(\mathbf{x}) = \frac{1}{K} \sum_{k=1}^K f_n^{(k)}(\mathbf{x})$$

More generally, the idea is to combine several models